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“The goal of statistical learning theory 

is to study, in a statistical framework, 

the properties of learning algorithms”

– [Bousquet et.al., 04]

What is STL?



Supervised Learning Setting

■ Given:

– Training data: 𝐷 = 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑚 , 𝑦𝑚
– Model: set of candidate predictors of the form 𝑔:𝒳 ↦ 𝒴

– Loss function: 𝑙: 𝒴 × 𝒴 ↦ ℝ+

■ Goal: ?? Do well on new data

■ Assumptions: 

– There exists 𝐹𝑋𝑌 that generates 𝐷 (Stochastic framework)

– iid samples
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Minimize expected loss

(a.k.a. risk 𝑅𝑙[𝑔] minimization)
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Well-defined, but un-realizable.
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How well can we approximate?



Skyline ?

■ Case of 𝒢 = 1 (estimate error rate)

– Law of large numbers: 
1

𝑚
 𝑖=1
𝑚 𝑙 𝑌𝑖, 𝑔 𝑋𝑖

𝑚=1

∞ p
𝐸 𝑙 𝑌, 𝑔(𝑋)

With high probability,

average loss (a.k.a. empirical risk)

on (a large) training set is a good 

approximation for risk
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■ Case of 𝒢 = 1 (estimate error rate)

– Law of large numbers: 
1

𝑚
 𝑖=1
𝑚 𝑙 𝑌𝑖, 𝑔 𝑋𝑖

𝑚=1

∞ p
𝐸 𝑙 𝑌, 𝑔(𝑋)

For given (but any) 𝐹𝑋𝑌, 𝛿 > 0, 𝜖 > 0,  we have that:

There exists 𝑚0 𝛿, 𝜖 ∈ ℕ, such that 

𝑃
1

𝑚
 

𝑖=1

𝑚

𝑙 𝑌𝑖 , 𝑔 𝑋𝑖 − 𝐸 𝑙 𝑌, 𝑔(𝑋) > 𝜖 ≤ 𝛿

for all 𝑚 ≥ 𝑚0 𝛿, 𝜖 .



Some Definitions

■ A problem 𝒢, 𝑙 is learnable iff there exists an algorithm that selects  𝑔𝑚 ∈ 𝒢 such

that for any F𝑋𝑌, 𝛿 > 0, 𝜖 > 0, we have that there exists 𝑚0 𝛿, 𝜖 ∈ ℕ, such that

𝑷 𝑹𝒍  𝒈𝒎 − 𝑹𝒍 𝒈
∗ > 𝝐 ≤ 𝜹 for all 𝒎 ≥ 𝒎𝟎 𝜹, 𝝐 .

– 𝑔∗ is the (true) risk minimizer

■ Such an algorithm is called universally consistent 𝑚0 𝛿, 𝜖 may depend on 𝐹𝑋𝑌

■ (Smallest) 𝑚0 is called sample complexity of the problem

– Analogously sample complexity of algorithm
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[Vapnik, 92]

Some Algorithms

SAMPLE AVERAGE APPROXIMATION            

(a.k.a Empirical Risk Minimization)

1. min
𝑔∈𝒢

𝐸 𝑙 𝑌, 𝑔(𝑋) ≈ min
𝑔∈𝒢

1

𝑚
 𝑖=1
𝑚 𝑙 𝑦𝑖 , 𝑔 𝑥𝑖

(consistent estimator approximation)

2. Bounds based on concentration of mean

3. Indirect bounds (choice optimization alg.)
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Minimize error on

training set  𝑹𝒎[𝒈]
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SAMPLE APPROXIMATION                

(a.k.a Stochastic Gradient Descent)

1. Update 𝑔(𝑘) using 𝑙(𝑦𝑘 , 𝑥𝑘) and   

 𝑔 ≡
1

𝑚
 𝑘=1
𝑚 𝑔 𝑘

(weak estimator approximation)

2. Online learning literature

3. Direct bounds on risk
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ERM consistency: Sufficient conditions

■ 0 ≤ 𝑅  𝑔𝑚 − 𝑅 𝑔∗ = 𝑅  𝑔𝑚 −  𝑅𝑚  𝑔𝑚 +  𝑅𝑚  𝑔𝑚 −  𝑅𝑚 𝑔∗ +  𝑅𝑚 𝑔∗ − 𝑅[𝑔∗]

■ ≤ max
𝑔∈𝒢

𝑅 𝑔 −  𝑅𝑚 𝑔 +  𝑅𝑚 𝑔∗ − 𝑅[𝑔∗]
𝑝
0 ∵LLN

■ Hence one-sided uniform convergence is a sufficient condition for ERM consistency

– i.e., max
𝑔∈𝒢

𝑅 𝑔 −  𝑅𝑚 𝑔
𝑚=1

∞ 𝑝
0 as 𝑚 → ∞

– Vapnik proved this is necessary for “non-trivial” consistency (of ERM)
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Story so far …

■ Two algorithms: Sample Average Approx., Sample Approx.

■ One-sided uniform convergence of mean is sufficient for SAA consistency.

■ Defined Rademacher Complexity.

■ Pending:

– Concentration around mean for the max. term.

– 𝓡𝐦 𝓖 𝒎=𝟏
∞ → 𝟎 ⇒ a Learnable problem.



≤ 𝐸 max
𝑔∈𝒢

𝐸  𝑅𝑚
′ 𝑔 −  𝑅𝑚 𝑔

Candidate for Problem Complexity
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Candidate for Problem Complexity

1. Ensure (asymptotically) goes to zero.

2. Show concentration around mean for max. div.
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Candidate for Problem Complexity

MAXIMUM DISCREPANCY



≤ 𝐸 max
𝑔∈𝒢

𝐸  𝑅𝑚
′ 𝑔 −  𝑅𝑚 𝑔

Towards Rademacher Complexity



𝐸𝜎𝐸 max
𝑔∈𝒢

1

𝑚
 

𝑖=1

𝑚

𝜎𝑖 𝑙 𝑌𝑖
′, 𝑔 𝑋𝑖

′ − 𝑙 𝑌𝑖 , 𝑔 𝑋𝑖

Towards Rademacher Complexity



𝐸𝜎𝐸 max
𝑔∈𝒢

1

𝑚
 

𝑖=1

𝑚

𝜎𝑖 𝑙 𝑌𝑖
′, 𝑔 𝑋𝑖

′ − 𝑙 𝑌𝑖 , 𝑔 𝑋𝑖

Towards Rademacher Complexity

iid Rademacher

random variables

𝑃 𝜎𝑖 = 1 = 0.5,
𝑃 𝜎𝑖 = −1 = 0.5.



≤ 2𝐸 𝐸𝜎 max
𝑔∈𝒢

1

𝑚
 

𝑖=1

𝑚

𝜎𝑖𝑙 𝑌𝑖 , 𝑔 𝑋𝑖

Empirical term

Distribution−dependent term

Rademacher Complexity



= 2𝐸 𝐸𝜎 max
𝑔∈𝒢

1

𝑚
 

𝑖=1

𝑚

𝜎𝑖𝑙 𝑌𝑖 , 𝑔 𝑋𝑖

Empirical term

Distribution−dependent term

Rademacher Complexity

𝑓(𝑍𝑖)

𝑓 ∈ ℱ



= 2𝐸 𝐸𝜎 max
𝑓∈ℱ

1

𝑚
 

𝑖=1

𝑚

𝜎𝑖𝑓(𝑍𝑖)

 ℛ𝑚 ℱ

ℛ𝑚 ℱ

Rademacher Complexity

ℛ𝑚 ℱ is Rademacher Complexity;  ℛ𝑚 ℱ is empirical Rademacher Complexity



Story so far …

■ Two algorithms: Sample Average Approx., Sample Approx.

■ One-sided uniform convergence of mean is sufficient for SAA consistency.

■ Defined Rademacher Complexity.

■ Pending:

– Concentration around mean for the max. term.

– 𝓡𝐦 𝓖 𝒎=𝟏
∞ → 𝟎 ⇒ a Learnable problem.



Closer look at ℛ𝑚 ℱ = 𝐸 max
𝑓∈ℱ

1

𝑚
 𝑖=1
𝑚 𝜎𝑖𝑓(𝑍𝑖)

■ High if ℱ correlates with random noise

– Classification problems: ℱ can assign arbitrary labels

■ Higher ℛ𝑚 ℱ , lower confidence on prediction

■ ℱ1 ⊆ ℱ2 ⇒ ℛ𝑚 ℱ1 ≤ ℛ𝑚 ℱ2

■ Lower ℛ𝑚 ℱ , higher chance we miss Bayes optimal
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Closer look at ℛ𝑚 ℱ = 𝐸 max
𝑓∈ℱ

1

𝑚
 𝑖=1
𝑚 𝜎𝑖𝑓(𝑍𝑖)

■ High if ℱ correlates with random noise

– Classification problems: ℱ can assign arbitrary labels

■ Higher ℛ𝑚 ℱ , lower confidence on prediction

■ ℱ1 ⊆ ℱ2 ⇒ ℛ𝑚 ℱ1 ≤ ℛ𝑚 ℱ2

■ Lower ℛ𝑚 ℱ , higher chance we miss Bayes optimal

Choose model with 

right trade-off using 

Domain knowledge.



Relation with classical measures

■ Growth Function: Π𝑚 ℱ ≡ max
𝑥1,…,𝑥𝑚 ⊂𝒳

𝑓 𝑥1 , … , 𝑓(𝑥𝑚) | 𝑓 ∈ ℱ

– Classification case: Π𝑚 ℱ is max. no. of distinct classifiers induced

– Massart’s Lemma: 𝓡𝒎 𝓕 ≤
𝟐𝚷𝐦 𝓕

𝒎

■ VC-Dimension: 𝑉𝐶𝑑𝑖𝑚 ℱ ≡ max
𝑚:Π𝑚 ℱ =2𝑚

𝑚

– Sauer’s Lemma: 𝓡𝒎 𝓕 ≤
𝟐𝒅 𝐥𝐨𝐠

𝒆𝒎

𝒅

𝒎



Mean concentration: Observation

■ Define ℎ 𝑋1, 𝑌1 , … , 𝑋𝑚, 𝑌𝑚 ≡ max
𝑔∈𝒢

𝑅 𝑔 −  𝑅𝑚 𝑔

■ ℎ is function:

– of iid random variables

– Satisfies bounded difference property

■ Δℎ when one (𝑋𝑖 , 𝑌𝑖) changes ≤
Δ𝑙

𝑚
(∵ bounded loss)

– Concentration around mean – McDiarmid’s inequality



McDiarmid’s Inequality

Let 𝑋1, … , 𝑋𝑚 ∈ 𝒳𝑚 be iid rvs and ℎ:𝒳𝑚 ↦ ℝ satisfying:

ℎ 𝑥1, … , 𝑥𝑖 , … , 𝑥𝑚 − ℎ 𝑥1, … , 𝑥𝑖
′, … , 𝑥𝑚 ≤ 𝑐𝑖

Then the following hold for any 𝜖 > 0:

𝑃 ℎ − 𝐸 ℎ ≥ 𝜖 ≤ 𝑒
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𝑃 ℎ − 𝐸 ℎ ≤ −𝜖 ≤ 𝑒

−2𝜖2

 𝑖=1
𝑚 𝑐𝑖

2



McDiarmid’s Inequality
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2

𝑒
−2𝑚𝜖2

Δ𝑙2 → 0
𝟎 ⇒learnable



Learning Bounds

■ Let 𝛿 ≡ 𝑒
−2𝑚𝜖2

Δ𝑙2 , i.e., 𝝐 = 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎

■ 𝑃 ℎ − 𝐸 ℎ ≥ 𝜖 ≤ 𝛿 is same as:

– with probability atleast 1 − 𝛿, we have:

𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐𝓡𝒎 𝓕 + 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖

■ With probability atleast 1 − 𝛿, we have:

𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐𝓡𝒎 𝓕 + 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖
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∀ 𝒈 ∈ 𝓖
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𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐𝓡𝒎 𝓕 + 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖Computable 

except this term!



Learning Bounds

■ Let 𝛿 ≡ 𝑒
−2𝑚𝜖2

Δ𝑙2 , i.e., 𝝐 = 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎

■ 𝑃 ℎ − 𝐸 ℎ ≥ 𝜖 ≤ 𝛿 is same as:

– with probability atleast 1 − 𝛿, we have:

𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐𝓡𝒎 𝓕 + 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖

■ With probability atleast 1 − 𝛿, we have:

𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐𝓡𝒎 𝓕 + 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖Use McDiarmid on  ℛ𝑚(ℱ)



Learning Bounds

■ Let 𝛿 ≡ 𝑒
−2𝑚𝜖2

Δ𝑙2 , i.e., 𝝐 = 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎

■ 𝑃 ℎ − 𝐸 ℎ ≥ 𝜖 ≤ 𝛿 is same as:

– with probability atleast 1 − 𝛿, we have:

𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐𝓡𝒎 𝓕 + 𝚫𝒍
𝐥𝐨𝐠

𝟏

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖

■ With probability atleast 1 − 𝛿, we have:

𝑹 𝒈 ≤  𝑹𝒎 𝒈 + 𝟐  ℛ𝒎 𝓕 + 𝟑𝚫𝒍
𝐥𝐨𝐠

𝟐

𝜹

𝟐𝒎
∀ 𝒈 ∈ 𝓖



Story so far …

■ Two algorithms: Sample Average Approx., Sample Approx.

■ One-sided uniform convergence of mean is sufficient for SAA consistency.

■ Defined Rademacher Complexity.

■ Concentration around mean for the max. term.

■ 𝓡𝐦 𝓖 𝒎=𝟏
∞ → 𝟎 ⇒ a Learnable problem.

■ Examples of usable Learnable problems

– Shows sufficiency condition not loose



Linear model with Lipschitz loss

■ Consider 𝒢 ≡ 𝑔 | ∃ 𝑤 ∋ 𝑔 𝑥 = 𝑤,𝜙 𝑥 , 𝑤 ≤ 𝑊 , 𝜙:𝒳 ↦ ℋ (linear model)

■ Contraction Lemma:  ℛ𝑚 ℱ ≤  ℛ𝑚 𝒢

■  ℛ𝑚 𝒢 = 𝐸𝜎 max
𝑤 ≤𝑊

1

𝑚
 𝑖=1
𝑚 𝜎𝑖 𝑤,𝜙 𝑥𝑖

– = 𝐸𝜎 max
𝑤 ≤𝑊

𝑤,
1

𝑚
 𝑖=1
𝑚 𝜎𝑖 𝜙 𝑥𝑖

– =
𝑊

𝑚
𝐸𝜎

1

𝑚
 𝑖=1
𝑚 𝜎𝑖 𝜙 𝑥𝑖

– ≤
𝑊

𝑚
𝐸𝜎

1

𝑚
 𝑖=1
𝑚 𝜎𝑖 𝜙 𝑥𝑖

2
(∵ Jensen’s Inequality)

– =
𝑊

𝑚
 𝑖=1
𝑚 𝜙(𝑥𝑖)

2
≤

𝑊𝑅

𝑚
→ 0 (if 𝜙(𝑥) ≤ 𝑅)
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