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What is STL?

“The goal of statistical learning theory
IS to 1IN a framework,
the properties of "’

— [Bousquet et.al., 04]




Supervised Learning Setting

m Given:
- Training data: D = {(xll yl); (xz, J’z); reny (xm; ym)}
- Model: set of candidate predictors of the form g: X — Y
- Loss function: I: Y x Y » R*
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Supervised Learning Setting

m Given:
- Training data: D = {(xll }’1); (xZ, )’2); naey (xm; Ym)}
- Model: set G of candidate predictors of the form g: X » Y
- Loss function: I: Y X Y —» R*
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Supervised Learning Setting

m Given:
- Training data: D = {(xli J’1); (xZJ 3’2); ey (xm; Ym)}
- Model: set G of candidate predictors of the form g: X » Y
- Loss function: I: Y X Y —» R*

_ Minimize expected loss
m Goal: g =argminE[L(Y,g(X))]

9gey

(a.k.a. risk R;[g] minimization)

m Assumptions:
- There exists Fyy that generates D as well as “new data”
- iid samples and bounded, Lipschitz loss




Supervised Learning Setting

m Given:
- Training data: D = {(xll 3’1); (XZ, 3’2)» L) (xml ym)}
- Model: set G of candidate predictors of the form g: X — UY
~  Loss function: I: Y X Y » R*

m Goal: g =argminE[l(Y,g(X))] Well-defined, but un-realizable.
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m Assumptions:
- There exists Fyy that generates D as well as “new data”
- iid samples and bounded, Lipschitz loss




Supervised Learning Setting

m Given:
- Training data: D = {(xli J’1); (xZJ 3’2); ey (xm; ym)}
- Model: set G of candidate predictors of the form g: X » Y
- Loss function: I: Y X Y —» R*

m Goal: g* =argminE[l(Y, g(X))] How well can we approximate?
9€§

m Assumptions:
- There exists Fyy that generates D as well as “new data”
- iid samples and bounded, Lipschitz loss




Skyline ?

m Case of |G| = 1 (estimate error rate)

- Lawoflargenumbers:{ {le(Yi,g(Xi))} P, E[L(Y, g(X))]

1 co
m m=1

With high probability,

average loss (a.k.a. empirical risk)
on (a large) training set is a good
approximation for risk




Skyline ?

m Case of |G| = 1 (estimate error rate)

p

- Lawoflargenumbers:{ ’l?;ll(Yi,g(Xi))} — E[I(Y,g(X))]

1 oo
1 m=1

For given (but any) Fyxy,6 > 0, > 0, we have that:

There exists my(6, €) € N, such that

Pl 20 10 900) — EILCY, 9G] > €] < 0

forallm = my (6, €).




Some Definitions

m A problem (G,1) is iff there exists an algorithm that selects g,, € G such
that for any Fyy, 5 > 0,€ > 0, we have that there exists my(6, €) € N, such that

- g is the (true) risk minimizer




Some Definitions

m A problem (G,1) is learnable iff there exists an algorithm that selects §,,, € G such
that for any Fyy, 5 > 0,€ > 0, we have that there exists my(6, €) € N, such that

P[Rl[gm] — Rl[g*] > E] < éforallm = m0(6, E).
- g is the (true) risk minimizer

m Such an algorithm is called

m (Smallest) m, is called of the problem
— Analogously sample complexity of algorithm




Some Algorithms

SAMPLE AVERAGE APPROXIMATION
(a.k.a Empirical Risk Minimization)

. .1
1. glelgE[l(Y,g(X))] ~ rgé?gZﬁﬂ()’t:Q(%))

Bounds based on concentration of mean

3. Indirect bounds (choice optimization alg.)

[Vapnik, 92]



Some Algorithms

SAMPLE AVERAGE APPROXIMATION
(a.k.a Empirical Risk Minimization)

. .1
1. rgnelgE[l(Y,g(X))] ~ rgggaZ?iﬂ(%ﬂ@J)

Minimize error on

training set R,,[g]

Bounds based on concentration of mean

3. Indirect bounds (choice optimization alg.)

[Vapnik, 92]




Some Algorithms
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Some Algorithms
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ERM consistency: Sufficient conditions

m 0< R[gm] o R[g ] - R[gm] o Rm[gm] + R\m[/\m] o ﬁm[g ] + R\m[g ] _ R[g ]
. < (maxRIg] = Rmlg]) + Rulg’] = Rlg]
P00  “LLN
m Hence one-sided uniform convergence is a condition for ERM consistency

- e, {maXR[g] — ﬁm[g]} L 0asm - o
g€y m=1




ERM consistency: Sufficient conditions

m 0 <R[Jm] —Rlg"] = RG] — RnlGm] + R[] — Rmlg*] + Rm[g"] — R[g"]
. = (e Pl ¥ ,Eg Rly'
—0 ~LLN

m Hence one-sided uniform convergence is a sufficient condition for ERM consistency

geg
- Vapnik proved this is necessary for “non-trivial” consistency (of ERM)

- e, {maXR[g] —R [g]} L 0asm - o
m=1




Story so far ...

m Two algorithms: Sample Average Approx., Sample Approx.

m One-sided uniform convergence of mean is sufficient for SAA consistency.




Candidate for Problem Complexity

max R lg]l —Rnlgl]




Candidate for Problem Complexity

Elmax R [g] —Rn,lg]
dgeg




Candidate for Problem Complexity

Elmax R [g] —Rnlg]
geg

1. Ensure (asymptotically) goes to zero.

2. Show concentration around mean for max. div.




Candidate for Problem Complexity

Elmax R [g] —Rn,lg]
dgeg




Candidate for Problem Complexity

E | max E [Rnlg]] - Rmlg]




Candidate for Problem Complexity

AN

<E|max Rplg]l —Rnlg]
gey

MAXIMUM DISCREPANCY




Towards Rademacher Complexity

AN

E|max Rp[g9] —Rnlg]
dgeg




Towards Rademacher Complexity

1
max
geg

uMg

(1(r!, g(xD) - l(Yi,g(Xi)))ﬂ




Towards Rademacher Complexity

max (%Z gi (l(Yi’,g(X{)) — l(Yi,g(Xi)))ﬂ

iid Rademacher
random variables
Plo; = 1] = 0.5,

Plo; = —1] = 0.5.




Rademacher Complexity

m
1
<2E|E, rggg}((az: O'il(Yi:g(Xi)))

1=1

N s

Empiriéal term

N s

Distribution—dependent term




Rademacher Complexity

m

1
= 2 FE |E, |[max —z
m

1=1

N

Empiriéal term

Distr ibution—dependent term



Rademacher Complexity

m

1
= 2E|E; max EE oif (Z;)
~ R (F) 1
R (F)

R, (F) is Rademacher Complexity; :fem(:r) is empirical Rademacher Complexity




Story so far ...

m Defined Rademacher Complexity.

m Pending:
- Concentration around mean for the max. term.




Closer look at ®R,,(F) = E [rjpeajg( (% i=1 aif(Zi))]

m High if F correlates with random noise
— Classification problems: F can assign arbitrary labels

m Higher R, (F), lower confidence on prediction
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m Lower R, (F), higher chance we miss Bayes optimal




Closer look at ®,,,(F) = E r}lajg(( =1 0if (Z; ))]

m High if F correlates with random noise

— Classification problems: F can assign arbitrary labels
_ o Choose model with
m Higher R,,(F), lower confidence on prediction right trade-off using

Domain knowledge.

o TlgT'Z:Rm(?l)SRm(TZ)

m Lower R, (F), higher chance we miss Bayes optimal




Relation with classical measures

m Growth Function: I1,,,(F) = max [{(f(xy),...f(x)) | f € F}

{xl,...,xm}cx

- Classification case: I1,,, (F) is max. no. of distinct classifiers induced
- Massart’s Lemma:
m VC-Dimension: VCdim(F) = max m
m:Il,, (F)=2m

- Sauer’s Lemma:




Mean concentration: Observation

| Define h((Xl) Yl)) reny (Xm; Ym)) = meagXR[g] _ R\m[g]
g

m his function:
— of iid random variables
- Satisfies bounded difference property
m Ah whenone (X;,Y;) changes < %

- Concentration around mean - McDiarmid’s inequality




McDiarmid’s Inequality

Let X4, ..., X;;, € X™ be iid rvs and h: X™ — R satisfying:
|R(xq, ooy Xy ooy X)) — R (X1, o, X4, o, )| < ¢

Then the following hold for any € > 0:
—2¢%

P[h—E[h] >E] <ezl 1 l
—2€?

P[h — E[h] < —€] < eXit1 ¢




McDiarmid’s Inequality

Let X4, ..., X;;, € X™ be iid rvs and h: X™ — R satisfying:
|R(xq, ooy Xy ooy X)) — R (X1, o, X4, o, )| < ¢

Then the following hold for any € > 0:
—2€2

Plh — E[fl]>€]<ez—1l
—2€2
P[h — E[h] < —¢] < eZits i




Learning Bounds

2 1
—2me =
log(S

m letd=e a2 |je.,e=Al |—°
2m

m P|lh—E|h] = €] <6 issame as:
- with probability atleast 1 — §, we have:




Learning Bounds

m let§=e a2 je.,e=Al |—2
2m

m P|lh—E|h] = €] <6 issame as:
- with probability atleast 1 — §, we have:

_ logl
R[g] < Rplg] + 2R, (F) + Al /% Vgeg

Computable

except this term!




Learning Bounds

m let§=e a2 je.,e=Al |—2
2m

m P[h—E[h] = €] < § is same as:
- with probability atleast 1 — §, we have:

. logk
R[g] < Rplg] + 2R, (F) + Al /Z—if Vgeg

Use McDiarmid on R, (F)




Learning Bounds

m With probability atleast 1 — &, we have:




Story so far ...

m Examples of usable Learnable problems
- Shows sufficiency condition not loose




Linear model with Lipschitz loss

m ConsiderG={g|aw3gx) =W, o)) |lw|| W} ¢p: X »H
m Contraction Lemma: R,,,(F) < R,,,(G)




Linear model with Lipschitz loss

m ConsiderG={g|aw3gx) =W, o)) |lw|| W} ¢p: X »H

m Contraction Lemma: R,,,(F) < R,,,(G)
H jém(g) = E; | max = ?;10-1' (w, ¢(xl)>]

lwllsw m

- = E_| max <w,%2{i1 al-q')(xl-)>]

7 Liwli=w H |
|

— Z%EUH%Z?Z1O-L'¢(3Q)
- =Y el <% -0

_ s%\/Ea[H%Zﬁlﬂi(/)(xi)‘




faz
foa

uniform convergence

learnable



THANK YOU




