PREFER: Exploring Preference Relations as Feedback in Recommender Systems

Workshop on Conformal Prediction for Reliable Machine Learning Dec 10, 2015

Maunendra Sankar Desarkar IIT Hyderabad

Recommender Systems: Example

Frequently Bought Together With This Mobile

Samsung BHM1100NBEGINU Price: Rs.800

Transcend Memory Card MicroSD 16GB Class 4 Price: Rs.640

Molife M-ML8009WH Pouch for Apple iPhone Price: Rs.299 Rs.270

Customers Who Viewed This Mobile Also Viewed

Samsung Galaxy S Advance i9070 (Metallic Price: Rs. 18999

Samsung Galaxy Ace S5830i (Black, with 2 GB

Samsung Galaxy S3 (Marble White, with Price: Rs.34900

The Dark Knight Rises (2012)

PG-13 165 min - <u>Action | Crime | Drama</u> - <u>20 July 2012 (India)</u>

Your rating: -/10

Ratings: **8.7**/10 from 467,328 users Metascore: 78/100

Reviews: 2,281 user | 663 critic | 45 from Metacritic.com

Eight years on, a new terrorist leader, Bane, overwhelms Gotham's finest, and the Dark Knight resurfaces to protect a city that has branded him an enemy.

Director: Christopher Nolan

Writers: <u>Jonathan Nolan</u> (screenplay), <u>Christopher Nolan</u> (screenplay), <u>and 3 more credits</u> »

screenplay), and 5 more creates

Stars: Christian Bale, Tom Hardy and Anne Hathaway

See full cast and crew

People who liked this also liked...

Add to Watchlist

Next »

Recommender Systems: Example

The secret of Apollo Hospitals' success

In recent years, the hospital chain is being challenged by younger players in the business. Apollo's plan of action. **

- India's dangerous airports
- World's biggest airport
- Latest Business News

Recommender Systems

- Recommend / suggest items to the users
- The recommendations are personalized
- System gathers user feedback
- Feedbacks: Ratings, Like/Dislike, Clicks etc.
- Uses these feedbacks to generate personalized recommendations

Examples of feedback

Few Problems RS Domain

- Rating Prediction
 - Predict the rating that a user would give to an item that he has not rated in the past

User ID	Item ID	Rating
1	1	***
1	5	****
1	6	***
1	8	?
2	1	****
2	3	**
2	5	?

Few Problems RS Domain

- Item Recommendation
 - Suggest a list of items to a user

Preference Relations as User Feedback

Preference Relations: Easier to Give Feedbacks

Preference Relations: No Choice Constraint due to Rating Scale

Preference Relations: Address Rating Biases of the Users

User ID	Movie ID	Rating
1	10	5
1	20	5
1	30	4

User ID	Movie ID	Rating
2	10	4
2	20	3
2	30	3

Research Question

Develop recommender system that uses preference relations as feedback

^{*}Not attempting to answer this design question in this talk.

Research Question

Induce preference relations from existing feedbacks and use them in recommender systems?

* Focus of the next part of the talk

Aggregating preference graphs for collaborative rating prediction

Presented in RecSys 2010
Barcelona

Neighborhood based CF for Rating Prediction

- Find rating for <test user, test item> pair
- Similar users rate items similarly
- For each test user, pick neighbors / experts
- Use ratings given by those users to predict ratings for the test user

Inducing Preference Relations

• If $r \downarrow ui > r \downarrow uj$, we assume that User u prefers i over j

Why do this?

- $-r \downarrow ui$, $r \downarrow uj$ etc. can be noisy. But if many people say that $r \downarrow ui > r \downarrow uj$, then that information can be useful
- Allows to connect different items. Helpful for sparse items.

Rating profile as preference graph

- Each user's rating profile is considered as a preference graph.
- Nodes are the items rated by the user
- Edges denote preference relations over the item

Outline of our approach

- Given a user (u) and a set of items (I) predict the ratings.
- Phase 1 (Aggregation Phase):
 - Represent ratings from each user as preference graph

 Assign weights to the users (or their preference graphs – algorithm motivated by online learning)

Compute weighted aggregation of the graphs

Weight Assignment Algorithm

Input: (3) (3) (3) (3)

For each item pair (A) (B) in u's graph

12/22/15

Presentation at CPRML, IITH

Create Aggregate Graph

Aggregate Graph: Weighted combination of the individual preference graphs

Weight(a,b) = weighted votes in favor of the relation {b is better than a}

Weight(b,a) = weighted votes in favor of the relation {a
 is better than b}

Recover Ratings from Aggregate Graph

- Assign ratings so as to minimize the total weight of back edges (W)
- This is the first rating prediction algorithm that works by looking at preference relations only, completely ignoring absolute rating information.

Our algorithm: Phase 2

minimize
$$Z = W + CX$$
 where

$$W = \sum_{\substack{i,j \in M \\ k,l \in R}} x_{ik} x_{jl} (\delta_{lk} w_{ji} + \delta_{kl} w_{ij}) + \sum_{\substack{i \in M, a \in T \\ k \in R}} x_{ik} (\delta_{r_a k} w_{ai} + \delta_{kr_a} w_{ia})$$

$$X = \sum_{\substack{i \in M \\ k \in R}} x_{ik} (k - \mu)^2$$

$$\delta_{\alpha\beta} = \begin{cases} 1 & \text{if } \alpha > \beta \\ c & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha < \beta \end{cases}$$

subject to
$$\sum_{k} x_{ik} = 1, \forall 1 \leq i \leq m$$

Results (on Movielens dataset)

Ratings given (Test User)	<= 10	<= 20	<= 30	<= 40
Pref-GrAgg	1.144	1.122	1.115	1.109
Somers [2]	1.616	1.355	1.295	1.302
UPCC [1]	1.342	1.216	1.174	1.173
IPCC [1]	1.816	1.468	1.324	1.234
RWR [3]	1.263	1.255	1.250	1.248

RMSE corresponding to item sparsity 40 (Maximum number of available ratings for the test items is 40)

Improvements vary from 5% to 9%

Preference Relation Based Matrix Factorization for Recommender Systems

Presented in UMAP 2012 Montreal

Latent Feature Model: Pictorially

Figure 2. A simplified illustration of the latent factor approach, which characterizes both users and movies using two axes—male versus female and serious versus escapist.

Non Negative Matrix Factorization

- User Vector: p_u
- Item Vector: q_i
- Predicted utility: p_uq_i^T
- Objective function to optimize:

$$\min_{p,q} \sum_{\langle u,i,r_{ui} \rangle} (r_{ui} - p_u q_i^T)^2 + \lambda_1 \sum_{u \in U} ||p_u||^2 + \lambda_2 \sum_{i \in I} ||q_i||^2.$$

- 1st term is the error on the training data
- Remaining terms are for regularization

Relative Ratings for Item Recommendation (PrefNMF)

$$\pi(u, i, j) = \begin{cases} 0 & \text{if } u \text{ prefers } j \text{ over } i, \\ 0.5 & \text{if } i \text{ and } j \text{ are equally preferable to } u, \\ 1 & \text{if } u \text{ prefers } i \text{ over } j. \end{cases}$$

Modeling users and items using MF

- User representation: p_u
- Item representation: q_i
- Predicted preference relations: Modeled using the inverse-logit function

$$\hat{\pi}(u,i,j) \stackrel{def}{=} \frac{e^{p_u(q_i-q_j)^T}}{1+e^{p_u(q_i-q_j)^T}}$$

The features can be learned by optimizing

$$\min_{\substack{p,q \\ \langle u,i,j,\pi(u,i,j)\rangle \\ \hat{\sigma}(i,j,j)}} \sum_{\substack{(\pi(u,i,j) - \hat{\pi}(u,i,j))^2 + \lambda_p \\ \hat{\sigma}(i,j,j,m,u,i,j)\rangle \\ \hat{\sigma}(i,j,m,u,i,j,m,u,i,j)}} ||\pi(u,i,j) - \hat{\pi}(u,i,j)|^2 + \lambda_p \sum_{u \in U} ||p_u||^2 + \lambda_q \sum_{i \in I} ||q_i||^2$$

Determining item scores

Score of i:

$$x(u,i) = \sum p_u(q_i - q_j)^T$$

– O(nd) time to compute

 Select Top-K items (according to scores) for recommendation

Using PrefNMF for Item Recommendation

 PrefNMF gives better recommendation, specially for the dense users.

 First published algorithm that incorporates preference relations in the NMF framework for recommendation.

Comparing NMF and PrefNMF: All users

x-axis represents number of features. y-axis represents Precision@k.

Comparing NMF and PrefNMF: *Dense* users

x-axis represents number of features. y-axis represents Precision@k.

Rating Prediction Using Preference Relations Based Matrix Factorization

Presented in FactMod Workshop in UMAP 2012

Montreal

Rating Prediction using PrefNMF

- User and item representations are learned using the previous algorithm (PrefNMF)
- The score should be mapped to rating

Personalized Scaling

- Suppose u has rated I different items: I_u={i₁, i₂, i₃, ..., i_I}
- Corresponding ratings are: R_u={r_{u1}, r_{u2}, ..., r_{ul}}
- Use this to learn a linear function:

$$r_{u,ik} = \alpha_u y(u,i_k) + \beta_u$$

Can be achieved by solving the following optimization function

min
$$_{\alpha\beta}$$
 [$\sum_{k} (r_{u,ik} - \alpha_u y(u,i_k) - \beta_u)^2$]

Experimental Results

Performed on two different samples (D1, D2) of Netflix data

Statistics	D1	D2
#Ratings	124,637	485,333
#Users	3229	22920
#Items	1255	1232
Sparsity	96.9%	98.2%
Minimum #ratings by any user	20	10
Maximum #ratings by any user	449	455
Average #ratings for any user	38	21
Minimum #ratings for any item	1	16
Maximum #ratings for any item	652	16,
Average #ratings for any item Presentation at CPRML, I	99 ITH	394

Comparing Prediction Accuracies

Results on D1 [Lower values are better]

Improvements MAE:5.9%, RMSE: 3.2%

Algorithm	MAE	RMSE
PC-CF [1]	1.0765	1.5543
Som-CF [2]	1.2068	1.6678
Pref-CF [5]	1.0579	1.4783
Pref-GrAgg	0.7650	1.0850
NMF [4]	0.8085	1.1278
PrefNMF-RP	0.7199	1.0505

Results on D2 [Lower values are better]

Improvements MAE: 6.1%, RMSE: 4.4%

Algorithm	MAE	RMSE
PC-CF [1]	0.9602	1.4001
Som-CF [2]	1.0898	1.5300
Pref-CF [5]	0.9759	1.3665
Pref-GrAgg	0.7623	1.0738
NMF [4]	0.8525	1.1832
n PrefMMF+RP	0.7153	1.0267 37

Presentatio

Summary

- Use of preference relations as feedback eliminates some of the drawbacks of absolute ratings.
- Explained preference relations based algorithms in both the collaborative Filtering and NMF framework.
- The described methods work better than methods from literature on benchmark datasets.
- Need to understand the issues that may exist in a real system that supports preference relations based feedbacks.

References

- [1] D. Heckerman, J. Breese, and C. M. Kadie. "Empirical analysis of predictive algorithms for collaborative filtering". UAI 1998.
- [2] N. Lathia, S. Hailes, and L. Capra. "Private distributed collaborative filtering using estimated concordance measures". In RecSys 2007, pages 1–8.
- [3] H. Yildirim and M. S. Krishnamoorthy. "A random walk method for alleviating the sparsity problem in collaborative filtering". In RecSys 2008, pages 131–138.
- [4] Y. Koren, R. Bell, and C. Volinsky. "Matrix factorization techniques for recommender systems". IEEE Computer, 42:30–37, August 2009.
- [5] A. Brun, A. Hamad, O. Buffet, and A. Boyer, "Towards preference relations in recommender systems," in Preference Learning (PL-10) ECML/PKDD-10 Workshop, 2010.
- [6] N. Kawamae, H. Sakano, and T. Yamada. "Personalized recommendation based on the personal innovator degree". In RecSys 2009, pages 329–332, ACM.
- [7] N. Zheng and Q. Li. "A recommender system based on tag and time information for social tagging systems". In Expert Syst. Appl., 38:4575–4587, 2011.

