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Objective Inference?

Jon Williamson (2004): Two norms for (precise)
Objective (Bayesian) Inference

Empirical: An agent’s knowledge of the world should constrain
her degrees of belief. Thus if one knows that a coin is symmetrical
and has yielded heads roughly half the time, then one’s degree of
belief that it will yield heads on the next throw should be roughly
1/2.
Logical: An agent’s degrees of belief should also be fixed by her
lack of knowledge of the world. If the agent knows nothing about
an experiment except that it has two possible outcomes, then she
should award degree of belief 1/2 to each outcome.
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Objective Inference Reformulated

Perhaps we can interpret these norms, loosely, as follows:
‘Empirical’: Objective inferences should not disagree with
empirical evidence.
‘Logical’: If one has no information suggesting that one possible
outcome is more likely than another, then this should be reflected
by identical uncertainty quantifications for these outcomes.
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Hill’s assumption A(n) (Hill, 1968)

X1, . . . ,Xn,Xn+1 are real-valued and exchangeable random
quantities

x1 < x2 < . . . < xn are the ordered observed values of X1, . . . ,Xn
(and let x0 = −∞ and xn+1 =∞)

For Xn+1, A(n) is given by

P(Xn+1 ∈ Ij = (xj−1, xj)) =
1

n + 1
, j = 1, . . . ,n + 1
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Nonparametric predictive inference (NPI)

NPI is based on Hill’s assumption A(n)

Let B be the Borel σ-field over R. For any element B ∈ B, lower
probability P(.) and upper probability P(.) for the event Xn+1 ∈ B,
based on the intervals Ij = (xj−1, xj) (j = 1,2, . . . ,n + 1) created by
n real-valued non-tied observations, and the assumption A(n), are

P(Xn+1 ∈ B) =
1

n + 1
|{j : Ij ⊆ B}|

P(Xn+1 ∈ B) =
1

n + 1
|{j : Ij ∩ B 6= ∅}|
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Illustration example

n = 4

0 x1 x2 x3 x4 ∞

6 / 34



Illustration example

n = 4

1
5

1
5

1
5

1
5

1
5

0 x1 x2 x3 x4 ∞

P(X5 ∈ (0, x1)) = 1
5 P(X5 ∈ (x4,∞)) = 1

5

P(X5 ∈ (xi , xi+1)) = 1
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Comparing two independent groups

Data from two independent groups X and Y :

x1 < x2 < . . . < xnx and y1 < y2 < . . . < yny

The classical methods test H0 : FX = FY .

For complete data, Coolen (1996) introduced NPI to compare two
independent groups depending on A(n) . This is given via the lower
and upper probabilities

P(Xnx+1 < Yny+1) P(Xnx+1 < Yny+1)
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Lower Probability, P(Xnx+1 < Yny+1)
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Upper Probability, P(Xnx+1 < Yny+1)
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Example

We use data on birthweights for 12 male and 12 female babies as
presented by Dobson (1983).
Male (X ) 2625 2628 2795 2847 2925 2968

2975 3163 3176 3292 3421 3473
Female (Y ) 2412 2539 2729 2754 2817 2875

2935 2991 3126 3210 3231 3317

P(X13 > Y13) =
86
169

= 0.509

P(X13 > Y13) =
111
169

= 0.657.
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NPI for m future observations

We are interested in m ≥ 1 future observations, Xn+i for
i = 1, . . . ,m.

We link the data and future observations via Hill’s assumption
A(n), actually via A(n+m−1) (which implies A(n+k) for all
k = 0,1, . . . ,m − 2).

Let Sj = #{Xn+i ∈ Ij , i = 1, . . . ,m}, then inferences about these
m future observations, assuming A(n+m−1), can be based on the
following probabilities, for any (s1, . . . , sn+1) with non-negative
integers sj with

∑n+1
j=1 sj = m

P(
n+1⋂
j=1

{Sj = sj}) =

(
n + m

n

)−1
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Reproducibility of tests

Will a statistical test, when the experiment is repeated under the same
circumstances, give the same overall result (e.g. reject a
null-hypothesis or not)?

This is a topic of much confusion in (classical) statistics, particularly
also in the literature in a range of application areas. One reason for
confusion may be misunderstanding of a p-value.

This problem seems, quite obviously, to have a predictive nature!

PhD thesis Sulafah Bin Himd, 2014
Also introduced NPI-Bootstrap, and also used this for test
reproducibility
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NPI-RP for the one-sample signed-rank test

H0 : X1, . . . ,Xn symmetrically distributed around median θ.

W =
∑
Xi>θ

Rank(|Xi − θ|)

Reject H0 in favour of H1 : median > θ iff W ≥Wα, the 100(1− α)
percentile of the null-distribution for W .

Without loss of generality: set θ = 0.

NPI considers future observations Xn+1, ...,X2n. Given real test results
x(1) < ... < x(n), there are

(2n
n

)
equally likely possible orderings of the

future observations among the real test results.
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For each specific ordering, we calculate the minimum and maximum
possible test statistic values, W f and W

f
.

If original data led to rejection of H0, as W ≥Wα, then RP is the
proportion of all

(2n
n

)
orderings with W f ≥Wα and RP the proportion

with W
f ≥Wα.

W f and W
f

can be calculated without the need to order the n future
observations.

For a specific ordering, let Sj be the number of the n future
observations in interval (x(j−1), x(j)) (with x(0) = −∞, x(n+1) =∞).
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To calculate W f , all Sj future observations in (x(j−1), x(j)) are put at
(‘just to the right of’) x(j−1).

Order the absolute data and −∞, with ranks j = 1, . . . ,n + 1. Let x|j|
denote the j-th ordered value if positive, x−|j| if negative
(x−|n+1| = −∞).

For j = 1, . . . ,n + 1, Let Tj be the number of future observations, in the
specific ordering considered, that are put at x|j|, and T−j the number of
such future observations that are put at x−|j|. This means that Tj = Sl
with x(l−1) = x|j| > 0 and T−j = Sl with x(l−1) = x−|j| < 0.

W f =
∑
j>0

Tj

(Tj + 1)

2
+
∑
|i|<j

Ti

 (1)

W
f

is similarly derived, with all Sj future observations in (x(j−1), x(j))
put at (‘just to the left of’) x(j).
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Example signed-rank test

sign-ranked data W RP RP
1,2,3,4,5,6 21 0.5 1
-1,2,3,4,5,6 20 0.364 0.773
-2,1,3,4,5,6 19 0.326 0.712
-3,1,2,4,5,6 18 0.364 0.718
-2,-1,3,4,5,6 18 0.5 0.788
-4,1,2,3,5,6 17 0.429 0.750
-3,-1,2,4,5,6 17 0.538 0.810
-3,-2,-1,4,5,6 15 0.728 0.902
-6,1,2,3,4,5 15 0.494 0.773
-6,-3,-1,2,4,5 11 0.805 0.935
-6,-5,-4,-3,-2,-1 0 0.992 1

Table: NPI-RP for signed-rank test with H1: median> 0, n = 6, α = 0.05,
W0.05 = 19.
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Diagnostic tests

One has real-valued measurements for two groups, say healthy and
diseased people, and wants to determine an optimal threshold for
classification. For example:

X : ‘healthy’, nx = 2 observations (underlined)

Y : ‘disease’, ny = 14 observations

140, 150, 180, 185, 188, 190, 203, 204, 205, 230, 260, 280, 300, 305,
330, 344

Aim: find optimal threshold c such that ‘X ≤ c < Y ’
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A popular nonparametric method considers the ROC curve and
determines optimal c by maximising the empirical Youden’s index

Je(c) = TPFe(c)− FPFe(c) =

∑nx
i=1 1[xi ≤ c]

nx
+

∑ny
j=1 1[yj > c]

ny
− 1

We can consider this explicitly as a predictive problem.
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Consider m ≥ 1 future healthy people (X group) and also m future
diseased people (Y group).

Using threshold c:

CX
c (m): number of correct diagnoses for m future healthy people

CY
c (m): number of correct diagnoses for m future diseased people
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One possibility is to consider the lower and upper expected values

E(CX
c (1)) + E(CY

c (1)) =

∑nx
i=1 1[xi ≤ c]

nx + 1
+

∑ny
j=1 1[yj > c]

ny + 1

E(CX
c (1)) + E(CY

c (1)) =

∑nx
i=1 1[xi ≤ c]

nx + 1
+

∑ny
j=1 1[yj > c]

ny + 1

+
1

nx + 1
+

1
ny + 1

Maximising these gives the same optimal threshold c

Using m > 1 for these criteria leads to exactly the same c
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140, 150, c(NPI), 180, 185, 188, 190, 203, 204, 205, c(YI), 230, 260,
280, 300, 305, 330, 344

Classification of the actual data:

Youden: both X correct, 7 of the 14 Y correct

NPI (Expectation): 1 of the 2 X correct, 13 of the 14 Y correct

Note: Most practical examples no difference, and always identical if
nx = ny
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But we can easily consider more exciting criteria, e.g. for α, β ∈ [0,1]
we can maximise

P(CX
c (mx ) ≥ αmx ,CY

c (my ) ≥ βmy )

or
P(CX

c (mx ) ≥ αmx ,CY
c (my ) ≥ βmy )

Use of α, β reflects importance to get diagnoses right for specific
groups, so related to use of utilities (possibly more intuitive?)
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X : nx = 14; Y : ny = 18 (underlined)

120,130,135,155,157,159,162,166,168,172,185,187,
188,189,191,194,199,200,207,220,227,230,231,240,
242,244,250,255,270,277,280,282

Optimal values for c:

Empirical Youden’s index gives c ∈ (191,194)

α = 0.5, β = 0.6 gives same interval for lower and upper probabilities
for most values of m considered, but for large m, 100 and 150, the
lower probability gives the same but the upper probability gives interval
(188,189).
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Of course, α smaller and β larger moves optimal c to the left, and α
larger and β smaller moves it to the right.

Different values of m can also have some (usually) minor effect on
optimal interval, and lower and upper probabilities often lead to the
same interval for c but not always.

It may also be important to choose mx future people from X and my
from Y with mx 6= my , straightforward to implement.
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Regression

We consider the basic regression model

yi = α + βxi + εi

Assume that the εi are exchangeable, the xi are not random

Use the standard criterion to fit the line: minimum sum of squares of
the residuals

How can we use NPI?
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Example

4 observations (xi , yi): (1,1), (3,4), (5,3), (7,6)

Goal: predict y -values corresponding to x = 4, x = 6 and x = 10,
thereafter for all values of x
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Algorithm

1 Range for Prediction:

RP = {xn+1|(xn+1− x̄)(x̄ − xi) <
n∑

j=1

(xj − x̄)2} for all i = 1, . . . ,n

2 For xn+1 ∈ RP, calculate, for i = 1, . . . ,n,

ỹi =

[∑n
j=1(xj − x̄)yj

]
(xn+1 − xi) + yi

∑n+1
j=1 (xj − x̄)2∑n

j=1(xj − x̄)2 − (xn+1 − x̄)(x̄ − xi)

3 Ordered values ỹ(1) ≤ ỹ(2) ≤ . . . ≤ ỹ(n).
4 NPI prediction for Yn+1 corresponding to xn+1 ∈ RP gives, for

j = 1, . . . ,n + 1 and with ỹ(0) = −∞ and ỹ(n+1) =∞,

P(Yn+1 ∈ (ỹ(j−1), ỹ(j))) =
1

n + 1
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This method can be used for any parametric model of the form
y = g(x) + ε (with real-valued y ) with the A(n) assumption for the ε’s,
and with any loss function.

This method is closely related to conformal prediction!
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Some further results

NPI has been presented for other kinds of data, including
Bernoulli, multinomial, and right-censored data
A start has been made on research towards NPI for multivariate
data
NPI has been presented for many problems in Statistics,
Reliability, Risk and OR
NPI is never in disagreement with inferences based on empirical
probabilities, so one could call NPI ‘objective’
NPI has helped us to get better understanding of foundations of
statistics with imprecise probabilities
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Challenges

Develop further methodology for data with covariates and
multivariate data
A wide range of topics (e.g. general censoring) for which we have
a good idea how to do them but not enough time...
Applications!
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www.npi-statistics.com

maths.dur.ac.uk/stats/people/fc/fc.html

frank.coolen@durham.ac.uk
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