◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

Progeny of spectrum

D. Sukumar Department of Mathematics, IIT Hyderabad

Prof. P C Vaidya National Conference on Mathematical Science Gujarat Ganit Mandal and Department of Mathematics, Sardar Patel University Gujarat.

March 16, 2022

1 Part I

- Spectrum
- Broad themes

2 Part II

- Condition spectrum
- Continuity

æ

- Spectrum
- Broad themes

æ

-≣->

・日・ ・ ヨ・・

 $Eig(A) := \{\lambda \in \mathbb{C} : A - \lambda I_n \text{ is not invertible}\}$

- 4 同 ト 4 ヨ ト 4 ヨ ト

э

 $Eig(A) := \{\lambda \in \mathbb{C} : A - \lambda I_n \text{ is not invertible}\}$

• This is a non-empty, finite subset of \mathbb{C} with atmost n elements.

▲ □ ▶ ▲ □ ▶ ▲

 $Eig(A) := \{\lambda \in \mathbb{C} : A - \lambda I_n \text{ is not invertible}\}$

- This is a non-empty, finite subset of \mathbb{C} with atmost n elements.
- Gershgorin discs give approximate location of these eigenvalues in terms of entries of the matrix *A*.

< 同 > < 三 > <

 $Eig(A) := \{\lambda \in \mathbb{C} : A - \lambda I_n \text{ is not invertible}\}$

- This is a non-empty, finite subset of \mathbb{C} with atmost n elements.
- Gershgorin discs give approximate location of these eigenvalues in terms of entries of the matrix *A*.
- $\bullet\,$ not invertible $\sim\,$ not one-one $\sim\,$ not onto.

$$A: \mathbb{C}^n \to \mathbb{C}^n$$

▲ □ ▶ ▲ □ ▶ ▲

Spectrum

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

 $Spec(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}$

- 4 同 ト 4 ヨ ト 4 ヨ ト

э

Part I Spectrum Part II

Spectrum

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

 $Spec(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}$

• not invertible \approx not one-one \approx not onto.

・ 同 ト ・ ヨ ト ・ ヨ ト

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

```
Spec(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}
```

- not invertible \approx not one-one \approx not onto.
- Point spectrum \sim not one-one.

▲ □ ▶ ▲ □ ▶ ▲

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

 $Spec(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}$

- not invertible ∞ not one-one ∞ not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.

・ 一 マ ト ・ 日 ト ・

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

- not invertible ∞ not one-one ∞ not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum \sim not having dense range.

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

- not invertible \approx not one-one \approx not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum \sim not having dense range.
- Residual spectrum \sim not having dense range but one-one.

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

- not invertible ∞ not one-one ∞ not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum \sim not having dense range.
- Residual spectrum \sim not having dense range but one-one.
- Continuous spectrum.∼ not onto but having dense range and one-one.

Spectral value - infinite dimensional spaces

Let $T : \mathcal{X} \to \mathcal{X}$ be a linear map.

- not invertible ∞ not one-one ∞ not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum \sim not having dense range.
- Residual spectrum \sim not having dense range but one-one.
- Continuous spectrum.∼ not onto but having dense range and one-one.

Spectral value - infinite dimensional spaces

Let $T: \mathcal{X} \to \mathcal{X}$ be a linear map.

 $Spec(T) := \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible}\}$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum \sim not having dense range.
- Residual spectrum \sim not having dense range but one-one.
- Continuous spectrum. \sim not onto but having dense range and one-one.

Rich results are available for the case when \mathcal{X} is a Banach space or a Hilbert space \mathcal{H} . That is when $T \in B(\mathcal{X})$ or $T \in B(\mathcal{H})$

$Spec(a) := \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible}\}$

D. Sukumar, IITH Progeny of spectrum

- 4 同 1 4 三 1 4 三 1

э

$$Spec(a) := \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible}\}$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.

$$Spec(a) := \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible}\}$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.

$$Spec(a) := \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible}\}$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.

$$\sigma(a) := \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible}\}$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra. Further, in the case of Unital Banach algebra \mathcal{A} we get $\sigma(a)$ be a non-empty compact subset of \mathbb{C} .

1 Part I

- Spectrum
- Broad themes

æ

-≣->

・日・ ・ ヨ・・

Variations and notions

For $a \in \mathcal{A}$

$\sigma(a) := \{\lambda \in \mathbb{C} : a - \lambda 1 \text{ is not invertible} \}$

D. Sukumar, IITH Progeny of spectrum

イロト イボト イヨト イヨト

э

Variations and notions

For $a \in \mathcal{A}$ and $Inv(\mathcal{A})$ denote the invertible elements of \mathcal{A} .

$$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathsf{Inv}(\mathcal{A})\}$$

< 🗇 🕨 < 🖃 🕨

Variations and notions

For $a \in \mathcal{A}$ and $Inv(\mathcal{A})$ denote the invertible elements of \mathcal{A} .

$$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathsf{Inv}(\mathcal{A})\}$$

• Understanding - Curiosity - exponential spectrum.

▲ 同 ▶ → 三 ▶

For $a \in \mathcal{A}$ and $Inv(\mathcal{A})$ denote the invertible elements of \mathcal{A} .

$$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathsf{Inv}(\mathcal{A})\}$$

- Understanding Curiosity exponential spectrum.
- Axiomatic (unifying) Abstraction- Ransford spectrum

Variations and notions

For $a \in \mathcal{A}$ and $Inv(\mathcal{A})$ denote the invertible elements of \mathcal{A} .

$$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathsf{Inv}(\mathcal{A})\}$$

- Understanding Curiosity exponential spectrum.
- Axiomatic (unifying) Abstraction- Ransford spectrum
- Application Approximation Pseudospectrum

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $Exp(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$\mathsf{Exp}(\mathcal{A}) := \{ e^{\mathsf{a}_1} \cdot e^{\mathsf{a}_2} \cdots e^{\mathsf{a}_n} : \mathsf{a}_1, \mathsf{a}_2, \dots, \mathsf{a}_n \in \mathcal{A}, n \geq 1 \}$$

・ 一 マ ト ・ 日 ト ・

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $Exp(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$\mathsf{Exp}(\mathcal{A}) := \{ e^{\mathsf{a}_1} \cdot e^{\mathsf{a}_2} \cdots e^{\mathsf{a}_n} : \mathsf{a}_1, \mathsf{a}_2, \dots, \mathsf{a}_n \in \mathcal{A}, n \geq 1 \}$$

• $Exp(\mathcal{A}) \subseteq Inv(\mathcal{A})$

・ 一 マ ト ・ 日 ト ・

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $Exp(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$Exp(\mathcal{A}) := \{e^{a_1} \cdot e^{a_2} \cdots e^{a_n} : a_1, a_2, \dots, a_n \in \mathcal{A}, n \geq 1\}$$

- $Exp(\mathcal{A}) \subseteq Inv(\mathcal{A})$
- Exp(A) is the principle component of Inv(A) containing 1.

< 🗇 🕨 < 🖃 🕨

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $Exp(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$Exp(\mathcal{A}) := \{e^{a_1} \cdot e^{a_2} \cdots e^{a_n} : a_1, a_2, \dots, a_n \in \mathcal{A}, n \geq 1\}$$

- $Exp(\mathcal{A}) \subseteq Inv(\mathcal{A})$
- *Exp*(A) is the principle component of *Inv*(A) containing 1.

$$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda \mathbf{1} \notin \mathsf{Inv}(\mathcal{A})\}.$$

$$\sigma_{exp}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda \mathbf{1} \notin \mathsf{Exp}(\mathcal{A})\}$$

▲ 同 ▶ → 三 ▶

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $Exp(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$Exp(\mathcal{A}) := \{e^{a_1} \cdot e^{a_2} \cdots e^{a_n} : a_1, a_2, \dots, a_n \in \mathcal{A}, n \geq 1\}$$

- $Exp(\mathcal{A}) \subseteq Inv(\mathcal{A})$
- *Exp*(A) is the principle component of *Inv*(A) containing 1.

$$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda \mathbf{1} \notin \mathsf{Inv}(\mathcal{A})\}.$$

$$\sigma_{exp}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda \mathbf{1} \notin \mathsf{Exp}(\mathcal{A})\}$$

• Called as exponential spectrum of a

$$\sigma(a) \subseteq \sigma_{exp}(a).$$

Spectrum Broad themes

Exponential spectrum

non commutativity of exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

 $\sigma(ab) = \sigma(ba)?$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Exponential spectrum

non commutativity of exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

 $\sigma(ab) = \sigma(ba)?$

In general not true (right and left shifts on $\ell^2(\mathbb{N})$),

▲ □ ▶ ▲ □ ▶ ▲

Exponential spectrum

non commutativity of exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

 $\sigma(ab) = \sigma(ba)?$

In general not true (right and left shifts on $\ell^2(\mathbb{N})$), but we have

 $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}.$

< 🗇 🕨 < 🖃 🕨

Part I Spe Part II Bro

Spectrum Broad themes

Exponential spectrum

non commutativity of exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

 $\sigma(ab) = \sigma(ba)?$

In general not true (right and left shifts on $\ell^2(\mathbb{N})$), but we have

 $\overline{\sigma(ab)}\setminus\{0\}=\sigma(ba)\setminus\{0\}.$

$$c(\lambda - ab) = (\lambda - ab)c = 1$$

▲ 伊 ▶ ▲ 王 ▶

Part I Spectrum Part II Broad themes

Exponential spectrum

non commutativity of exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

 $\sigma(ab) = \sigma(ba)?$

In general not true (right and left shifts on $\ell^2(\mathbb{N})$), but we have

 $\overline{\sigma(ab)\setminus\{0\}}=\sigma(ba)\setminus\{0\}.$

$$c(\lambda - ab) = (\lambda - ab)c = 1$$

$$rac{1}{\lambda}(1+bca)(\lambda-ba)=(\lambda-ba)rac{1}{\lambda}(1+bca)=1$$

▲ 伊 ▶ ▲ 王 ▶

Part I Spectrum Part II Broad themes

Exponential spectrum

non commutativity of exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

 $\sigma(ab) = \sigma(ba)?$

In general not true (right and left shifts on $\ell^2(\mathbb{N})$), but we have

 $\sigma(ab) \setminus \{0\} = \sigma(ba) \setminus \{0\}.$

$$c(\lambda - ab) = (\lambda - ab)c = 1$$

$$rac{1}{\lambda}(1+bca)(\lambda-ba)=(\lambda-ba)rac{1}{\lambda}(1+bca)=1$$

For $a, b \in A$, does the exponential spectrum commute

$$\sigma_{exp}(ab) \setminus \{0\}
eq \sigma_{exp}(ba) \setminus \{0\}$$

・ 一 マ ト ・ 日 ト ・

Spectrum Broad themes

Exponential spectrum

non commutativity of exponential spectrum

Theorem

```
There exists a, b \in C(\mathbb{S}^4, M_2(\mathbb{C}))
```

Spectrum Broad themes

Exponential spectrum

non commutativity of exponential spectrum

Theorem

There exists a, $b \in C(\mathbb{S}^4, M_2(\mathbb{C}))$ such that ^a

 $\sigma_{exp}(ab) \setminus \{0\} \neq \sigma_{exp}(ba) \setminus \{0\}$

where
$$\mathbb{S}^4 := \{(z_0, z_1, z_2) \in \mathbb{C}^3 : \sum_{i=0}^2 |z_i|^2 = 1, Imz_2 = 0\}$$

^aHubert Klaja and Thomas Ransford. Non-commutativity of the exponential spectrum. J. Funct. Anal., 272(10):4158–4164, 2017

▲ 同 ▶ ▲ 三

Spectrum Broad themes

Exponential spectrum

non commutativity of exponential spectrum

Theorem

There exists a, $b\in C(\mathbb{S}^4,M_2(\mathbb{C}))$ such that a

 $\sigma_{exp}(ab) \setminus \{0\} \neq \sigma_{exp}(ba) \setminus \{0\}$

where
$$\mathbb{S}^4 := \{(z_0, z_1, z_2) \in \mathbb{C}^3 : \sum_{i=0}^2 |z_i|^2 = 1, Imz_2 = 0\}$$

^aHubert Klaja and Thomas Ransford. Non-commutativity of the exponential spectrum. J. Funct. Anal., 272(10):4158–4164, 2017

Does there exist a Banach space E and operators S, T on E such that

$$\sigma_{exp}(ST) \setminus \{0\} \neq \sigma_{exp}(TS) \setminus \{0\}?$$

▲ 伊 ▶ ▲ 王 ▶

Part I Spectrum Part II Broad themes

Ransford spectrum

Axiomatic (unifying) Abstraction

$\sigma(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathsf{Inv}(\mathcal{A})\}$

¹T. J. Ransford. Generalised spectra and analytic multivalued functions.

J. London Math. Soc. (2), 29(2):306-322, 1984

< ロ > < 同 > < 三 > < 三 >

 Part I
 Spectrum

 Part II
 Broad themes

 Ransford spectrum

 Axiomatic (unifying) Abstraction

$$\sigma_{\mathbf{\Omega}}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathbf{\Omega}\}$$

Such a set should satisfy

< 口 > < 同 >

э.

¹T. J. Ransford. Generalised spectra and analytic multivalued functions.

J. London Math. Soc. (2), 29(2):306-322, 1984

Part I Part II Spectrum Broad themes Axiomatic (unifying) Abstraction

$$\sigma_{\mathbf{\Omega}}(\mathsf{a}) := \{\lambda \in \mathbb{C} : \mathsf{a} - \lambda 1 \notin \mathbf{\Omega}\}$$

Such a set should satisfy

• $0 \notin \Omega$

< 1 →

э

¹T. J. Ransford. Generalised spectra and analytic multivalued functions.

J. London Math. Soc. (2), 29(2):306-322, 1984

Part I Part II Spectrum Broad themes Axiomatic (unifying) Abstraction

$$\sigma_{\mathbf{\Omega}}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathbf{\Omega}\}$$

Such a set should satisfy

- $0 \notin \Omega$
- $\bullet \ 1 \in \Omega$

J. London Math. Soc. (2), 29(2):306-322, 1984

< 47 ▶

э

¹T. J. Ransford. Generalised spectra and analytic multivalued functions.

Part I Part II Broad themes
Ransford spectrum

Axiomatic (unifying) Abstraction

$$\sigma_{\mathbf{\Omega}}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda 1 \notin \mathbf{\Omega}\}\$$

Such a set should satisfy

- $0 \notin \Omega$
- $1 \in \Omega$
- $a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$

¹T. J. Ransford. Generalised spectra and analytic multivalued functions.

J. London Math. Soc. (2), 29(2):306-322, 1984

Part I Spectrum Part II Broad themes

Ransford spectrum

Axiomatic (unifying) Abstraction

$$\sigma_{\mathbf{\Omega}}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda \mathbf{1} \notin \mathbf{\Omega}\}\$$

Such a set should satisfy

- $\bullet \ 0 \notin \Omega$
- $1 \in \Omega$
- $a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$
- $\Omega \subseteq X$ where X is a norm linear space¹.

¹T. J. Ransford. Generalised spectra and analytic multivalued functions.

J. London Math. Soc. (2), 29(2):306-322, 1984

Part I Spectrum Part II Broad themes

Ransford spectrum

Axiomatic (unifying) Abstraction

$$\sigma_{\mathbf{\Omega}}(\mathbf{a}) := \{\lambda \in \mathbb{C} : \mathbf{a} - \lambda \mathbf{1} \notin \mathbf{\Omega}\}\$$

Such a set should satisfy

- $0 \notin \Omega$
- $1 \in \Omega$
- $a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$
- $\Omega \subseteq X$ where X is a norm linear space¹.
- Pseudoconvexity of Ω gives
 - non-empty, compactness
 - spectral radius formula

¹T. J. Ransford. Generalised spectra and analytic multivalued functions. J. London Math. Soc. (2), 29(2):306–322, 1984

Let ${\mathcal A}$ be a complex unital Banach algebra with unit.

Definition (
$$\epsilon$$
- pseudo spectrum ($\epsilon > 0$))

$$\Lambda_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|(\lambda - a)^{-1}\| \ge \frac{1}{\epsilon} \right\}$$

²Lloyd N. Trefethen and Mark Embree. *Spectra and pseudospectra*. Princeton University Press, Princeton, NJ, 2005

Let ${\mathcal A}$ be a complex unital Banach algebra with unit.

$$\begin{array}{l} \text{Definition } (\epsilon\text{-} \text{ pseudo spectrum } (\epsilon > 0)) \\ \\ \Lambda_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin \mathit{Inv}(\mathcal{A}) \text{ or } \| (\lambda - a)^{-1} \| \geq \frac{1}{\epsilon} \right\} \end{array}$$

• $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon > 0$.

Let ${\mathcal A}$ be a complex unital Banach algebra with unit.

Definition (
$$\epsilon$$
- pseudo spectrum ($\epsilon > 0$))

$$\Lambda_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|(\lambda - a)^{-1}\| \ge \frac{1}{\epsilon} \right\}$$

• $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon > 0$.

2 $\Lambda_{\epsilon}(a)$ is non-empty, compact subset of \mathbb{C} .

< A > <

²Lloyd N. Trefethen and Mark Embree. *Spectra and pseudospectra*. Princeton University Press, Princeton, NJ, 2005

Let ${\mathcal A}$ be a complex unital Banach algebra with unit.

Definition (
$$\epsilon$$
- pseudo spectrum ($\epsilon > 0$))

$$\Lambda_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|(\lambda - a)^{-1}\| \ge \frac{1}{\epsilon} \right\}$$

- $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon > 0$.
- **2** $\Lambda_{\epsilon}(a)$ is non-empty, compact subset of \mathbb{C} .
- S mainly used to study non-normal matrices.

²Lloyd N. Trefethen and Mark Embree. *Spectra and pseudospectra*. Princeton University Press, Princeton, NJ, 2005

Let ${\mathcal A}$ be a complex unital Banach algebra with unit.

Definition (
$$\epsilon$$
- pseudo spectrum ($\epsilon > 0$))

$$\Lambda_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|(\lambda - a)^{-1}\| \ge \frac{1}{\epsilon} \right\}$$

•
$$\sigma(a) \subseteq \Lambda_{\epsilon}(a)$$
, for every $a \in A$ and for every $\epsilon > 0$.

- **2** $\Lambda_{\epsilon}(a)$ is non-empty, compact subset of \mathbb{C} .
- Imainly used to study non-normal matrices.
- Inearest defective matrix ².

²Lloyd N. Trefethen and Mark Embree. *Spectra and pseudospectra*. Princeton University Press, Princeton, NJ, 2005

Part I Cor Part II Cor

Condition spectrum Continuity

2 Part II

- Condition spectrum
- Continuity

æ

3

・日・ ・ ヨ・・

Condition spectrum

$$\Omega = \left\{ \pmb{\mathsf{a}} \in \mathit{Inv}\mathcal{A} : \|\pmb{\mathsf{a}}^{-1}\| < rac{1}{\epsilon}
ight\}$$

This does not satisfy the condition

$$a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$$

æ

< 🗇 > <

∃ → ∢

Condition spectrum

$$\Omega = \left\{ \textbf{\textit{a}} \in \textit{Inv}\mathcal{A} : \| \textbf{\textit{a}}^{-1} \| < rac{1}{\epsilon}
ight\}$$

This does not satisfy the condition

$$a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$$

Redefining (a possible way)

$$\Omega = \{ a \in Inv\mathcal{A} : \|a\| \|a^{-1}\| < \epsilon \}$$

satisfies the axioms defined

Condition spectrum

$$\Omega = \left\{ \textbf{\textit{a}} \in \textit{Inv}\mathcal{A} : \| \textbf{\textit{a}}^{-1} \| < rac{1}{\epsilon}
ight\}$$

This does not satisfy the condition

$$a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$$

Redefining (a possible way)

$$\Omega = \{ \mathbf{a} \in \mathit{Inv}\mathcal{A} : \|\mathbf{a}\| \|\mathbf{a}^{-1}\| < \epsilon \}$$

satisfies the axioms defined. Also $||a|| ||a^{-1}||$ is called condition number of an element of a Banach algebra.

Condition spectrum

$$\Omega = \left\{ \textbf{\textit{a}} \in \textit{Inv}\mathcal{A} : \| \textbf{\textit{a}}^{-1} \| < rac{1}{\epsilon}
ight\}$$

This does not satisfy the condition

$$a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$$

Redefining (a possible way)

$$\Omega = \{ \mathbf{a} \in \mathit{Inv}\mathcal{A} : \|\mathbf{a}\| \|\mathbf{a}^{-1}\| < \epsilon \}$$

satisfies the axioms defined. Also $||a|| ||a^{-1}||$ is called condition number of an element of a Banach algebra.

$$1 = \|1\| = \|aa^{-1}\| \le \|a\|\|a^{-1}\|$$

Condition spectrum

$$\Omega = \left\{ \textbf{\textit{a}} \in \textit{Inv}\mathcal{A} : \| \textbf{\textit{a}}^{-1} \| < rac{1}{\epsilon}
ight\}$$

This does not satisfy the condition

$$a \in \Omega \Rightarrow za \in \Omega, z \in \mathbb{C}^*$$

Redefining (a possible way)

$$\Omega = \{ \mathbf{a} \in \mathit{Inv}\mathcal{A} : \|\mathbf{a}\| \|\mathbf{a}^{-1}\| < \epsilon \}$$

satisfies the axioms defined. Also $||a|| ||a^{-1}||$ is called condition number of an element of a Banach algebra.

$$1 = \|1\| = \|aa^{-1}\| \le \|a\| \|a^{-1}\|$$

For
$$0 < \epsilon < 1$$
, $\Omega = \left\{ a \in Inv\mathcal{A} : \|a\| \|a^{-1}\| < \frac{1}{\epsilon} \right\}$

Condition spectrum

Axiomatic, Approximation, Application

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum ($0 < \epsilon < 1$))

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|\lambda - a\| \|(\lambda - a)^{-1}\| \geq \frac{1}{\epsilon} \right\}$$

< □ > < 同 > < 回 >

³S. H. Kulkarni and D. Sukumar. The condition spectrum. Acta Sci. Math. (Szeged), 74(3-4):625–641, 2008

Part I Condit Part II Contin

Condition spectrum Continuity

Condition spectrum

Axiomatic, Approximation, Application

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum ($0 < \epsilon < 1$))

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|\lambda - a\| \|(\lambda - a)^{-1}\| \geq \frac{1}{\epsilon} \right\}$$

• $\sigma_{\epsilon}(a)$ is non-empty³, compact subset of \mathbb{C} .

Image: A image: A

³S. H. Kulkarni and D. Sukumar. The condition spectrum.

Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

Condition spectrum

Axiomatic, Approximation, Application

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum ($0 < \epsilon < 1$))

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|\lambda - a\| \|(\lambda - a)^{-1}\| \geq \frac{1}{\epsilon} \right\}$$

σ_ϵ(a) is non-empty³, compact subset of C.
 σ(a) ⊆ σ_ϵ(a), for every a ∈ A and for every ϵ > 0.

Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

Image: A = A = A

³S. H. Kulkarni and D. Sukumar. The condition spectrum.

Condition spectrum

Axiomatic, Approximation, Application

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum ($0 < \epsilon < 1$))

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin Inv(\mathcal{A}) \text{ or } \|\lambda - a\| \|(\lambda - a)^{-1}\| \geq \frac{1}{\epsilon} \right\}$$

- $\sigma_{\epsilon}(a)$ is non-empty³, compact subset of \mathbb{C} .
- 2 $\sigma(a) \subseteq \sigma_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon > 0$.
- σ_ϵ(a) has finite components and each component has a spectral value.

Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

Image: A = A = A

³S. H. Kulkarni and D. Sukumar. The condition spectrum.

Condition spectrum

Axiomatic, Approximation, Application

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum ($0 < \epsilon < 1$))

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \lambda - a \notin \mathit{Inv}(\mathcal{A}) \text{ or } \|\lambda - a\| \|(\lambda - a)^{-1}\| \geq \frac{1}{\epsilon} \right\}$$

- $\sigma_{\epsilon}(a)$ is non-empty³, compact subset of \mathbb{C} .
- 2 $\sigma(a) \subseteq \sigma_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon > 0$.
- σ_ϵ(a) has finite components and each component has a spectral value.

$$\ \ \, {\rm Oliver If} \ \ \, \lambda\in\sigma_\epsilon({\it a}) \ \, {\rm then} \ \ \, |\lambda|\leq \frac{1+\epsilon}{1-\epsilon}\|{\it a}\|.$$

³S. H. Kulkarni and D. Sukumar. The condition spectrum. Acta Sci. Math. (Szeged), 74(3-4):625–641, 2008

Image: A = A = A

2 Part II

- Condition spectrum
- Continuity

æ

3

・日・ ・ ヨ・・

Condition spectrum Continuity

Properties as a set valued map (correspondance)

Part I Part II

$$\sigma_\epsilon(\mathsf{a}) := \left\{\lambda \in \mathbb{C}: \|\mathsf{a} - \lambda\|\|(\mathsf{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\}$$

Condition spectrum Continuity

Properties as a set valued map (correspondance)

Part I Part II

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| \ge \frac{1}{\epsilon}
ight\}$$
 $L_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| = \frac{1}{\epsilon}
ight\}$

⁴Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263–287, 2017 < □ > (□) < (□) > (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

Properties as a set valued map (correspondance)

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| \ge \frac{1}{\epsilon}
ight\}$$
 $L_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| = \frac{1}{\epsilon}
ight\}$

The set valued maps (correspondence)

•
$$C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a)$$

Properties as a set valued map (correspondance)

$$egin{aligned} &\sigma_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| \geq rac{1}{\epsilon}
ight\} \ &L_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| = rac{1}{\epsilon}
ight\} \end{aligned}$$

The set valued maps (correspondence)

• $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a)$ $L_{\epsilon}: a \rightarrow L_{\epsilon}(a)$

Properties as a set valued map (correspondance)

$$\sigma_{\epsilon}(\mathbf{a}) := \left\{ \lambda \in \mathbb{C} : \|\mathbf{a} - \lambda\| \| (\mathbf{a} - \lambda)^{-1} \| \ge rac{1}{\epsilon}
ight\}$$
 $L_{\epsilon}(\mathbf{a}) := \left\{ \lambda \in \mathbb{C} : \|\mathbf{a} - \lambda\| \| (\mathbf{a} - \lambda)^{-1} \| = rac{1}{\epsilon}
ight\}$

The set valued maps (correspondence)

•
$$C_{\epsilon} : a \to \sigma_{\epsilon}(a)$$
 $L_{\epsilon} : a \to L_{\epsilon}(a)$
• $C_{a} : \epsilon \to \sigma_{\epsilon}(a)$ $L_{a} : \epsilon \to L_{\epsilon}(a)$

⁴Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. *Oper. Matrices*, 11(1):263–287, 2017 $\triangleleft \square \vdash \triangleleft \square \vdash \triangleleft \square \vdash \triangleleft \square$

Properties as a set valued map (correspondance)

$$\sigma_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| \ge rac{1}{\epsilon}
ight\}$$
 $L_{\epsilon}(a) := \left\{ \lambda \in \mathbb{C} : \|a - \lambda\| \| (a - \lambda)^{-1} \| = rac{1}{\epsilon}
ight\}$

The set valued maps (correspondence)

•
$$C_{\epsilon} : a \to \sigma_{\epsilon}(a)$$
 $L_{\epsilon} : a \to L_{\epsilon}(a)$
• $C_{a} : \epsilon \to \sigma_{\epsilon}(a)$ $L_{a} : \epsilon \to L_{\epsilon}(a)$
• $C : (a, \epsilon) \to \sigma_{\epsilon}(a)$ $L : (a, \epsilon) \to L_{\epsilon}(a)$

Properties as a set valued map (correspondance)

Part I

Part II

$$egin{aligned} &\sigma_\epsilon(oldsymbol{a}) := \left\{ \lambda \in \mathbb{C} : \|oldsymbol{a} - \lambda\| \|(oldsymbol{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\} \ & L_\epsilon(oldsymbol{a}) := \left\{ \lambda \in \mathbb{C} : \|oldsymbol{a} - \lambda\| \|(oldsymbol{a} - \lambda)^{-1}\| = rac{1}{\epsilon}
ight\} \end{aligned}$$

The set valued maps (correspondence)

•
$$C_{\epsilon}: a \to \sigma_{\epsilon}(a)$$
 $L_{\epsilon}: a \to L_{\epsilon}(a)$

•
$$C_a: \epsilon \to \sigma_\epsilon(a)$$
 $L_a: \epsilon \to L_\epsilon(a)$

•
$$C: (a, \epsilon) \to \sigma_{\epsilon}(a)$$
 $L: (a, \epsilon) \to L_{\epsilon}(a)$

Hemi-continuity of pseudospectrum⁴.

⁴Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263–287, 2017 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Set valued map

Definition (Upper and lower hemicontinuous)

A correspondence $\phi: X \twoheadrightarrow Y$ between topological space is upper hemicontinuous at the point $x \in X$ if every neighbourhood U of $\phi(x)$ there is a neighbourhood V of x such that

$$z \in V \Rightarrow \phi(z) \subseteq U$$

Definition (Upper and lower hemicontinuous)

A correspondence $\phi : X \twoheadrightarrow Y$ between topological space is upper hemicontinuous at the point $x \in X$ if every neighbourhood U of $\phi(x)$ there is a neighbourhood V of x such that

$$z \in V \Rightarrow \phi(z) \subseteq U$$

lower hemicontinuous at the point $x \in X$ if every neighbourhood U with $U \cap \phi(x) \neq \emptyset$, there is a neighbourhood V of x such that

$$z \in V \Rightarrow \phi(z) \cap U \neq \emptyset$$

Condition spectru Continuity

Set valued map

Definition (Upper and lower hemicontinuous)

A correspondence $\phi : X \twoheadrightarrow Y$ between topological space is upper hemicontinuous at the point $x \in X$ if every neighbourhood U of $\phi(x)$ there is a neighbourhood V of x such that

$$z \in V \Rightarrow \phi(z) \subseteq U$$

lower hemicontinuous at the point $x \in X$ if every neighbourhood U with $U \cap \phi(x) \neq \emptyset$, there is a neighbourhood V of x such that

$$z \in V \Rightarrow \phi(z) \cap U \neq \emptyset$$

continuous at $x \in X$ if it is both upper and lower hemicontinuous at x.

Continuity of condition spectrum

$$\sigma_\epsilon({\sf a}):=\left\{\lambda\in\mathbb{C}:\|{\sf a}-\lambda\|\|({\sf a}-\lambda)^{-1}\|\geqrac{1}{\epsilon}
ight\}$$

• $C_a: \epsilon \to \sigma_{\epsilon}(a)$ is upper hemicontinuous⁵.

Continuity of condition spectrum

$$\sigma_\epsilon({\sf a}):=\left\{\lambda\in\mathbb{C}:\|{\sf a}-\lambda\|\|({\sf a}-\lambda)^{-1}\|\geq rac{1}{\epsilon}
ight\}$$

• $C_a: \epsilon \to \sigma_{\epsilon}(a)$ is upper hemicontinuous⁵.

C_a: ε → σ_ε(a) is lower hemicontinuous iff the interior of L_ε(a) empty.

⁵D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets. J. Aust. Math. Soc., 108(3):412–430, 2020 $\triangleleft \square \square \square \square \square \square \square \square \square \square$

Continuity of condition spectrum

$$\sigma_\epsilon(\mathsf{a}) := \left\{\lambda \in \mathbb{C}: \|\mathsf{a} - \lambda\|\|(\mathsf{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\}$$

• $C_a: \epsilon \to \sigma_{\epsilon}(a)$ is upper hemicontinuous⁵.

C_a: ε → σ_ε(a) is lower hemicontinuous iff the interior of L_ε(a) empty.

•
$$C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a).$$

Continuity of condition spectrum

$$\sigma_\epsilon(\mathsf{a}) := \left\{\lambda \in \mathbb{C}: \|\mathsf{a} - \lambda\|\|(\mathsf{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\}$$

- $C_a: \epsilon \to \sigma_{\epsilon}(a)$ is upper hemicontinuous⁵.
- C_a: ε → σ_ε(a) is lower hemicontinuous iff the interior of L_ε(a) empty.
- $C_{\epsilon}: a \to \sigma_{\epsilon}(a).$
- $C: (a, \epsilon) \rightarrow \sigma_{\epsilon}(a).$

⁵D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets. J. Aust. Math. Soc., 108(3):412–430, 2020 $\triangleleft \square \square \square \square \square \square \square \square \square \square$

Continuity of condition spectrum

$$\sigma_\epsilon(\mathsf{a}) := \left\{\lambda \in \mathbb{C}: \|\mathsf{a} - \lambda\|\|(\mathsf{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\}$$

- $C_a: \epsilon \to \sigma_{\epsilon}(a)$ is upper hemicontinuous⁵.
- C_a: ε → σ_ε(a) is lower hemicontinuous iff the interior of L_ε(a) empty.
- $C_{\epsilon}: a \to \sigma_{\epsilon}(a).$
- $C: (a, \epsilon) \rightarrow \sigma_{\epsilon}(a).$
- Similarly results for L_{ϵ} using the sub-correspondence.

⁵D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets. J. Aust. Math. Soc., 108(3):412–430, 2020 $\langle \Box \rangle + \langle \overline{C} \rangle + \langle \overline$

Unavoidable assumption

Interior point of the boundary

Study of Shargarodsky problem ⁶

$$egin{aligned} & \Lambda_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|(a-\lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\} \end{aligned}$$

(日)

э

⁶E. Shargorodsky. On the definition of pseudospectra. Bull. Lond. Math. Soc., 41(3):524–534, 2009

Part II

Unavoidable assumption

Interior point of the boundary

Study of Shargarodsky problem ⁶

$$egin{aligned} & \Lambda_\epsilon(m{a}) := \left\{ \lambda \in \mathbb{C} : \|(m{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\} \end{aligned}$$

$$egin{aligned} & \wedge_\epsilon(m{a}) := \left\{ \lambda \in \mathbb{C} : \|(m{a} - \lambda)^{-1}\| > rac{1}{\epsilon}
ight\} \end{aligned}$$

(日)

э

⁶E. Shargorodsky. On the definition of pseudospectra. Bull. Lond. Math. Soc., 41(3):524–534, 2009

Part II

Unavoidable assumption

Interior point of the boundary

Study of Shargarodsky problem ⁶

$$egin{aligned} & \Lambda_\epsilon(m{a}) \coloneqq \left\{ \lambda \in \mathbb{C} : \|(m{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\} \end{aligned}$$

$$egin{aligned} & \Lambda_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|(a-\lambda)^{-1}\| > rac{1}{\epsilon}
ight\} \ & L \Lambda_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|(a-\lambda)^{-1}\| = rac{1}{\epsilon}
ight\} \end{aligned}$$

⁶E. Shargorodsky. On the definition of pseudospectra. Bull. Lond. Math. Soc., 41(3):524–534, 2009

イロト イヨト イヨト

Part I Part II

Unavoidable assumption

Interior point of the boundary

Study of Shargarodsky problem ⁶

$$egin{aligned} \mathsf{A}_{\epsilon}(\mathsf{a}) &:= \left\{ \lambda \in \mathbb{C} : \|(\mathsf{a} - \lambda)^{-1}\| \geq rac{1}{\epsilon}
ight\} \end{aligned}$$

$$egin{aligned} & \Lambda_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|(a-\lambda)^{-1}\| > rac{1}{\epsilon}
ight\} \ & L \Lambda_\epsilon(a) := \left\{ \lambda \in \mathbb{C} : \|(a-\lambda)^{-1}\| = rac{1}{\epsilon}
ight\} \end{aligned}$$

When is the interior of $L\Lambda_{\epsilon}(a)$ empty?.

| 4 同 ト 4 三 ト 4

⁶E. Shargorodsky. On the definition of pseudospectra. Bull. Lond. Math. Soc., 41(3):524–534, 2009

Thank you.

D. Sukumar, IITH Progeny of spectrum

æ

・日・ ・ ヨ・・