
Part I
Part II

D. Sukumar, IITH Progeny of spectrum



Part I
Part II

Progeny of spectrum

D. Sukumar
Department of Mathematics, IIT Hyderabad

Prof. P C Vaidya National Conference on Mathematical Science
Gujarat Ganit Mandal and Department of Mathematics, Sardar Patel University

Gujarat.

March 16, 2022

D. Sukumar, IITH Progeny of spectrum



Part I
Part II

1 Part I
Spectrum
Broad themes

2 Part II
Condition spectrum
Continuity

D. Sukumar, IITH Progeny of spectrum



Part I
Part II

Spectrum
Broad themes

1 Part I
Spectrum
Broad themes

2 Part II

D. Sukumar, IITH Progeny of spectrum



Part I
Part II

Spectrum
Broad themes

Spectrum
Eigenvalue - Finite dimensional spaces

Let A ∈ Mn×n(C).

Eig(A) := {λ ∈ C : A− λIn is not invertible}

This is a non-empty, finite subset of C with atmost n
elements.

Gershgorin discs give approximate location of these
eigenvalues in terms of entries of the matrix A.

not invertible ∼ not one-one ∼ not onto.

A : Cn → Cn
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Spectrum
Spectral value - infinite dimensional spaces

Let T : X → X be a linear map.

Spec(T ) := {λ ∈ C : T − λI is not invertible}

not invertible � not one-one � not onto.

Point spectrum ∼ not one-one.

Approximate spectrum ∼ not bounded below.

Compression spectrum ∼ not having dense range.

Residual spectrum ∼ not having dense range but one-one.

Continuous spectrum.∼ not onto but having dense range and
one-one.

Rich results are available for the case when X is a Banach space or
a Hilbert space H. That is when T ∈ B(X ) or T ∈ B(H)
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Spectrum
Spectral value - more general setup

Let a ∈ A.

Spec(a) := {λ ∈ C : a− λ1 is not invertible}

As we need scalar multiplication, addition, product/multiplication,
we consider an unital algebra.
Further, in the case of Unital Banach algebra A we get σ(a) be a
non-empty compact subset of C.
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Variations and notions

For a ∈ A

σ(a) := {λ ∈ C : a− λ1 is not invertible}

Understanding - Curiosity - exponential spectrum.

Axiomatic (unifying) Abstraction- Ransford spectrum

Application - Approximation -Pseudospectrum
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Exponential spectrum
Understanding - Math curiosity

Let A be a unital Banach algebra and Exp(A) denote the set of
exponential elements of the Banach algebra.

Exp(A) := {ea1 · ea2 · · · ean : a1, a2, . . . , an ∈ A, n ≥ 1}

Exp(A) ⊆ Inv(A)

Exp(A) is the principle component of Inv(A) containing 1.

σ(a) := {λ ∈ C : a− λ1}.
σexp(a) := {λ ∈ C : a− λ1}

Called as exponential spectrum of a

σ(a) ⊆ σexp(a).
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Exponential spectrum
non commutativity of exponential spectrum

For a, b ∈ A, does the spectrum commute

σ(ab) = σ(ba)?

In general not true (right and left shifts on `2(N)), but we have

σ(ab) \ {0} = σ(ba) \ {0}.

c(λ− ab) = (λ− ab)c = 1

1

λ
(1 + bca)(λ− ba) = (λ− ba)

1

λ
(1 + bca) = 1

For a, b ∈ A, does the exponential spectrum commute

σexp(ab) \ {0} 6= σexp(ba) \ {0}
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Exponential spectrum
non commutativity of exponential spectrum

Theorem

There exists a, b ∈ C (S4,M2(C))

such that a

σexp(ab) \ {0} 6= σexp(ba) \ {0}

where S4 := {(z0, z1, z2) ∈ C3 :
∑2

i=0 |zi |2 = 1, Imz2 = 0}

aHubert Klaja and Thomas Ransford. Non-commutativity of the exponential spectrum.
J. Funct. Anal., 272(10):4158–4164, 2017

Does there exist a Banach space E and operators S , T on E such
that

σexp(ST ) \ {0} 6= σexp(TS) \ {0}?
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Ransford spectrum
Axiomatic (unifying) Abstraction

σ(a) := {λ ∈ C : a− λ1 /∈ Inv(A)}

Such a set should satisfy

0 /∈ Ω

1 ∈ Ω

a ∈ Ω⇒ za ∈ Ω, z ∈ C∗

Ω ⊆ X where X is a norm linear space1.

Pseudoconvexity of Ω gives
1 non-empty, compactness
2 spectral radius formula

1T. J. Ransford. Generalised spectra and analytic multivalued functions.
J. London Math. Soc. (2), 29(2):306–322, 1984
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Psuedospectrum
Application - Approximation

Let A be a complex unital Banach algebra with unit.

Definition (ε- pseudo spectrum (ε > 0))

Λε(a) :=

{
λ ∈ C : λ− a /∈ Inv(A) or ‖(λ− a)−1‖ ≥ 1

ε

}

1 σ(a) ⊆ Λε(a), for every a ∈ A and for every ε > 0.

2 Λε(a) is non-empty, compact subset of C.

3 mainly used to study non-normal matrices.

4 nearest defective matrix 2.

2Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra.
Princeton University Press, Princeton, NJ, 2005
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Continuity

Condition spectrum

Ω =

{
a ∈ InvA : ‖a−1‖ < 1

ε

}
This does not satisfy the condition

a ∈ Ω⇒ za ∈ Ω, z ∈ C∗

Redefining (a possible way)

Ω = {a ∈ InvA : ‖a‖‖a−1‖ < ε}

satisfies the axioms defined. Also ‖a‖‖a−1‖ is called condition
number of an element of a Banach algebra.

1 = ‖1‖ = ‖aa−1‖ ≤ ‖a‖‖a−1‖

For 0 < ε < 1, Ω =

{
a ∈ InvA : ‖a‖‖a−1‖ < 1

ε

}
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Condition spectrum
Axiomatic, Approximation, Application

Let A be a complex unital Banach algebra with unit.

Definition (ε- Condition spectrum (0 < ε < 1))

σε(a) :=

{
λ ∈ C : λ− a /∈ Inv(A) or ‖λ− a‖‖(λ− a)−1‖ ≥ 1

ε

}

1 σε(a) is non-empty3, compact subset of C.

2 σ(a) ⊆ σε(a), for every a ∈ A and for every ε > 0.

3 σε(a) has finite components and each component has a
spectral value.

4 If λ ∈ σε(a) then |λ| ≤ 1 + ε

1− ε
‖a‖.

3S. H. Kulkarni and D. Sukumar. The condition spectrum.
Acta Sci. Math. (Szeged), 74(3-4):625–641, 2008
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Properties as a set valued map (correspondance)

σε(a) :=

{
λ ∈ C : ‖a− λ‖‖(a− λ)−1‖ ≥ 1

ε

}

Lε(a) :=

{
λ ∈ C : ‖a− λ‖‖(a− λ)−1‖ =

1

ε

}
The set valued maps (correspondence)

Cε : a→ σε(a) Lε : a→ Lε(a)

Ca : ε→ σε(a) La : ε→ Lε(a)

C : (a, ε)→ σε(a) L : (a, ε)→ Lε(a)

Hemi-continuity of pseudospectrum4.

4Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra.
Oper. Matrices, 11(1):263–287, 2017
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Set valued map

Definition (Upper and lower hemicontinuous)

A correspondence φ : X � Y between topological space is
upper hemicontinuous at the point x ∈ X if every neighbourhood
U of φ(x) there is a neighbourhood V of x such that

z ∈ V ⇒ φ(z) ⊆ U

lower hemicontinuous at the point x ∈ X if every neighbourhood U
with U ∩ φ(x) 6= ∅, there is a neighbourhood V of x such that

z ∈ V ⇒ φ(z) ∩ U 6= ∅

continuous at x ∈ X if it is both upper and lower hemicontinuous
at x .
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Continuity of condition spectrum

σε(a) :=

{
λ ∈ C : ‖a− λ‖‖(a− λ)−1‖ ≥ 1

ε

}

Ca : ε→ σε(a) is upper hemicontinuous5.

Ca : ε→ σε(a) is lower hemicontinuous iff the interior of Lε(a)
empty.

Cε : a→ σε(a).

C : (a, ε)→ σε(a).

Similarly results for Lε using the sub-correspondence.

5D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets.
J. Aust. Math. Soc., 108(3):412–430, 2020
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Unavoidable assumption
Interior point of the boundary

Study of Shargarodsky problem 6

Λε(a) :=

{
λ ∈ C : ‖(a− λ)−1‖ ≥ 1

ε

}

Λε(a) :=

{
λ ∈ C : ‖(a− λ)−1‖ > 1

ε

}

LΛε(a) :=

{
λ ∈ C : ‖(a− λ)−1‖ =

1

ε

}
When is the interior of LΛε(a) empty?.

6E. Shargorodsky. On the definition of pseudospectra.
Bull. Lond. Math. Soc., 41(3):524–534, 2009
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6E. Shargorodsky. On the definition of pseudospectra.
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Thank you.
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