Progeny of spectrum

D. Sukumar
 Department of Mathematics, IIT Hyderabad

Prof. P C Vaidya National Conference on Mathematical Science
Gujarat Ganit Mandal and Department of Mathematics, Sardar Patel University Gujarat.

March 16, 2022
(1) Part I

- Spectrum
- Broad themes
(2) Part II
- Condition spectrum
- Continuity
(1) Part I
- Spectrum
- Broad themes

(2) Part II

Spectrum

Eigenvalue - Finite dimensional spaces

Let $A \in M_{n \times n}(\mathbb{C})$.
$\operatorname{Eig}(A):=\left\{\lambda \in \mathbb{C}: A-\lambda I_{n}\right.$ is not invertible $\}$

Spectrum

Eigenvalue - Finite dimensional spaces

Let $A \in M_{n \times n}(\mathbb{C})$.
$\operatorname{Eig}(A):=\left\{\lambda \in \mathbb{C}: A-\lambda I_{n}\right.$ is not invertible $\}$

- This is a non-empty, finite subset of \mathbb{C} with atmost n elements.

Spectrum

Let $A \in M_{n \times n}(\mathbb{C})$.
$\operatorname{Eig}(A):=\left\{\lambda \in \mathbb{C}: A-\lambda I_{n}\right.$ is not invertible $\}$

- This is a non-empty, finite subset of \mathbb{C} with atmost n elements.
- Gershgorin discs give approximate location of these eigenvalues in terms of entries of the matrix A.

Spectrum

Let $A \in M_{n \times n}(\mathbb{C})$.
$\operatorname{Eig}(A):=\left\{\lambda \in \mathbb{C}: A-\lambda I_{n}\right.$ is not invertible $\}$

- This is a non-empty, finite subset of \mathbb{C} with atmost n elements.
- Gershgorin discs give approximate location of these eigenvalues in terms of entries of the matrix A.
- not invertible \sim not one-one \sim not onto.

$$
A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

Spectrum

Spectral value - infinite dimensional spaces
Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum ~ not bounded below.
- Compression spectrum \sim not having dense range.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum \sim not having dense range.
- Residual spectrum ~ not having dense range but one-one.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum ~not having dense range.
- Residual spectrum ~ not having dense range but one-one.
- Continuous spectrum. \sim not onto but having dense range and one-one.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum ~not having dense range.
- Residual spectrum ~ not having dense range but one-one.
- Continuous spectrum. \sim not onto but having dense range and one-one.

Spectrum

Let $T: \mathcal{X} \rightarrow \mathcal{X}$ be a linear map.

$$
\operatorname{Spec}(T):=\{\lambda \in \mathbb{C}: T-\lambda / \text { is not invertible }\}
$$

- not invertible \nsim not one-one \nsim not onto.
- Point spectrum \sim not one-one.
- Approximate spectrum \sim not bounded below.
- Compression spectrum ~not having dense range.
- Residual spectrum ~ not having dense range but one-one.
- Continuous spectrum. \sim not onto but having dense range and one-one.

Rich results are available for the case when \mathcal{X} is a Banach space or a Hilbert space \mathcal{H}. That is when $T \in B(\mathcal{X})$ or $T \in B(\mathcal{H})$

Spectrum

Let $a \in \mathcal{A}$.

$$
\operatorname{Spec}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \text { is not invertible }\}
$$

Spectrum

Let $a \in \mathcal{A}$.

$$
\operatorname{Spec}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \text { is not invertible }\}
$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.

Spectrum

Let $a \in \mathcal{A}$.

$$
\operatorname{Spec}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \text { is not invertible }\}
$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.

Spectrum

Let $a \in \mathcal{A}$.

$$
\operatorname{Spec}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \text { is not invertible }\}
$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.

Spectrum

Let $a \in \mathcal{A}$.

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \text { is not invertible }\}
$$

As we need scalar multiplication, addition, product/multiplication, we consider an unital algebra.
Further, in the case of Unital Banach algebra \mathcal{A} we get $\sigma(a)$ be a non-empty compact subset of \mathbb{C}.
(1) Part I

- Spectrum
- Broad themes

(2) Part II

Broad themes

For $a \in \mathcal{A}$

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \text { is not invertible }\}
$$

Broad themes

For $a \in \mathcal{A}$ and $\operatorname{Inv}(\mathcal{A})$ denote the invertible elements of \mathcal{A}.

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{Inv}(\mathcal{A})\}
$$

Broad themes

For $a \in \mathcal{A}$ and $\operatorname{Inv}(\mathcal{A})$ denote the invertible elements of \mathcal{A}.

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{Inv}(\mathcal{A})\}
$$

- Understanding - Curiosity - exponential spectrum.

Broad themes

For $a \in \mathcal{A}$ and $\operatorname{Inv}(\mathcal{A})$ denote the invertible elements of \mathcal{A}.

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \ln v(\mathcal{A})\}
$$

- Understanding - Curiosity - exponential spectrum.
- Axiomatic (unifying) Abstraction- Ransford spectrum

Broad themes

For $a \in \mathcal{A}$ and $\operatorname{Inv}(\mathcal{A})$ denote the invertible elements of \mathcal{A}.

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \ln v(\mathcal{A})\}
$$

- Understanding - Curiosity - exponential spectrum.
- Axiomatic (unifying) Abstraction- Ransford spectrum
- Application - Approximation -Pseudospectrum

Exponential spectrum

Let \mathcal{A} be a unital Banach algebra and $\operatorname{Exp}(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$
\operatorname{Exp}(\mathcal{A}):=\left\{e^{a_{1}} \cdot e^{a_{2}} \cdots e^{a_{n}}: a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}, n \geq 1\right\}
$$

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $\operatorname{Exp}(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$
\operatorname{Exp}(\mathcal{A}):=\left\{e^{a_{1}} \cdot e^{a_{2}} \cdots e^{a_{n}}: a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}, n \geq 1\right\}
$$

- $\operatorname{Exp}(\mathcal{A}) \subseteq \operatorname{Inv}(\mathcal{A})$

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $\operatorname{Exp}(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$
\operatorname{Exp}(\mathcal{A}):=\left\{e^{a_{1}} \cdot e^{a_{2}} \cdots e^{a_{n}}: a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}, n \geq 1\right\}
$$

- $\operatorname{Exp}(\mathcal{A}) \subseteq \operatorname{Inv}(\mathcal{A})$
- $\operatorname{Exp}(\mathcal{A})$ is the principle component of $\operatorname{Inv}(A)$ containing 1 .

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $\operatorname{Exp}(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$
\operatorname{Exp}(\mathcal{A}):=\left\{e^{a_{1}} \cdot e^{a_{2}} \cdots e^{a_{n}}: a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}, n \geq 1\right\}
$$

- $\operatorname{Exp}(\mathcal{A}) \subseteq \operatorname{Inv}(\mathcal{A})$
- $\operatorname{Exp}(\mathcal{A})$ is the principle component of $\operatorname{Inv}(A)$ containing 1 .
-

$$
\begin{gathered}
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{Inv}(\mathcal{A})\} \\
\sigma_{\exp }(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{Exp}(\mathcal{A})\}
\end{gathered}
$$

Exponential spectrum

Understanding - Math curiosity

Let \mathcal{A} be a unital Banach algebra and $\operatorname{Exp}(\mathcal{A})$ denote the set of exponential elements of the Banach algebra.

$$
\operatorname{Exp}(\mathcal{A}):=\left\{e^{a_{1}} \cdot e^{a_{2}} \cdots e^{a_{n}}: a_{1}, a_{2}, \ldots, a_{n} \in \mathcal{A}, n \geq 1\right\}
$$

- $\operatorname{Exp}(\mathcal{A}) \subseteq \operatorname{Inv}(\mathcal{A})$
- $\operatorname{Exp}(\mathcal{A})$ is the principle component of $\operatorname{Inv}(A)$ containing 1 .
-

$$
\begin{gathered}
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{Inv}(\mathcal{A})\} \\
\sigma_{\exp }(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{Exp}(\mathcal{A})\}
\end{gathered}
$$

- Called as exponential spectrum of a

$$
\sigma(a) \subseteq \sigma_{\exp }(a)
$$

Exponential spectrum

non commutativity of exponential spectrum
For $a, b \in \mathcal{A}$, does the spectrum commute

$$
\sigma(a b)=\sigma(b a) ?
$$

Exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

$$
\sigma(a b)=\sigma(b a) ?
$$

In general not true (right and left shifts on $\ell^{2}(\mathbb{N})$),

Exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

$$
\sigma(a b)=\sigma(b a) ?
$$

In general not true (right and left shifts on $\ell^{2}(\mathbb{N})$), but we have

$$
\sigma(a b) \backslash\{0\}=\sigma(b a) \backslash\{0\} .
$$

Exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

$$
\sigma(a b)=\sigma(b a) ?
$$

In general not true (right and left shifts on $\ell^{2}(\mathbb{N})$), but we have

$$
\sigma(a b) \backslash\{0\}=\sigma(b a) \backslash\{0\} .
$$

$$
c(\lambda-a b)=(\lambda-a b) c=1
$$

Exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

$$
\sigma(a b)=\sigma(b a) ?
$$

In general not true (right and left shifts on $\ell^{2}(\mathbb{N})$), but we have

$$
\sigma(a b) \backslash\{0\}=\sigma(b a) \backslash\{0\} .
$$

$$
\begin{aligned}
c(\lambda-a b) & =(\lambda-a b) c=1 \\
\frac{1}{\lambda}(1+b c a)(\lambda-b a) & =(\lambda-b a) \frac{1}{\lambda}(1+b c a)=1
\end{aligned}
$$

Exponential spectrum

For $a, b \in \mathcal{A}$, does the spectrum commute

$$
\sigma(a b)=\sigma(b a) ?
$$

In general not true (right and left shifts on $\ell^{2}(\mathbb{N})$), but we have
$\sigma(a b) \backslash\{0\}=\sigma(b a) \backslash\{0\}$.

$$
\begin{aligned}
c(\lambda-a b) & =(\lambda-a b) c=1 \\
\frac{1}{\lambda}(1+b c a)(\lambda-b a) & =(\lambda-b a) \frac{1}{\lambda}(1+b c a)=1
\end{aligned}
$$

For $a, b \in \mathcal{A}$, does the exponential spectrum commute

$$
\sigma_{\exp }(a b) \backslash\{0\} \neq \sigma_{\exp }(b a) \backslash\{0\}
$$

Exponential spectrum

Theorem

There exists $a, b \in C\left(\mathbb{S}^{4}, M_{2}(\mathbb{C})\right)$

Exponential spectrum

Theorem

There exists $a, b \in C\left(\mathbb{S}^{4}, M_{2}(\mathbb{C})\right)$ such that ${ }^{a}$

$$
\sigma_{\exp }(a b) \backslash\{0\} \neq \sigma_{\exp }(b a) \backslash\{0\}
$$

where $\mathbb{S}^{4}:=\left\{\left(z_{0}, z_{1}, z_{2}\right) \in \mathbb{C}^{3}: \sum_{i=0}^{2}\left|z_{i}\right|^{2}=1, I m z_{2}=0\right\}$

[^0]
Exponential spectrum

Theorem

There exists $a, b \in C\left(\mathbb{S}^{4}, M_{2}(\mathbb{C})\right)$ such that ${ }^{a}$

$$
\sigma_{\exp }(a b) \backslash\{0\} \neq \sigma_{\exp }(b a) \backslash\{0\}
$$

where $\mathbb{S}^{4}:=\left\{\left(z_{0}, z_{1}, z_{2}\right) \in \mathbb{C}^{3}: \sum_{i=0}^{2}\left|z_{i}\right|^{2}=1, I m z_{2}=0\right\}$

[^1]Does there exist a Banach space E and operators S, T on E such that

$$
\sigma_{\exp }(S T) \backslash\{0\} \neq \sigma_{\exp }(T S) \backslash\{0\} ?
$$

Ransford spectrum

Axiomatic (unifying) Abstraction

$$
\sigma(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \operatorname{lnv}(\mathcal{A})\}
$$

[^2]
Ransford spectrum

Axiomatic (unifying) Abstraction

$$
\sigma_{\Omega}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \Omega\}
$$

Such a set should satisfy

[^3]
Ransford spectrum

Axiomatic (unifying) Abstraction

$$
\sigma_{\Omega}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \Omega\}
$$

Such a set should satisfy

- $0 \notin \Omega$

[^4]
Ransford spectrum

Axiomatic (unifying) Abstraction

$$
\sigma_{\Omega}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \Omega\}
$$

Such a set should satisfy

- $0 \notin \Omega$
- $1 \in \Omega$

[^5]
Ransford spectrum

Axiomatic (unifying) Abstraction

$$
\sigma_{\Omega}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \Omega\}
$$

Such a set should satisfy

- $0 \notin \Omega$
- $1 \in \Omega$
- $a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}$

[^6]
Ransford spectrum

$$
\sigma_{\Omega}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \Omega\}
$$

Such a set should satisfy

- $0 \notin \Omega$
- $1 \in \Omega$
- $a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}$
- $\Omega \subseteq X$ where X is a norm linear space ${ }^{1}$.

[^7]
Ransford spectrum

$$
\sigma_{\Omega}(a):=\{\lambda \in \mathbb{C}: a-\lambda 1 \notin \Omega\}
$$

Such a set should satisfy

- $0 \notin \Omega$
- $1 \in \Omega$
- $a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}$
- $\Omega \subseteq X$ where X is a norm linear space ${ }^{1}$.
- Pseudoconvexity of Ω gives
(1) non-empty, compactness
(2) spectral radius formula

[^8]
Psuedospectrum

Let \mathcal{A} be a complex unital Banach algebra with unit.
Definition (ϵ - pseudo spectrum $(\epsilon>0)$)

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

[^9]
Psuedospectrum

Let \mathcal{A} be a complex unital Banach algebra with unit.
Definition (ϵ - pseudo spectrum $(\epsilon>0)$)

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.

[^10]
Psuedospectrum

Let \mathcal{A} be a complex unital Banach algebra with unit.
Definition (ϵ - pseudo spectrum $(\epsilon>0)$)

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.
(2) $\Lambda_{\epsilon}(a)$ is non-empty, compact subset of \mathbb{C}.

[^11]
Psuedospectrum

Let \mathcal{A} be a complex unital Banach algebra with unit.
Definition (ϵ - pseudo spectrum $(\epsilon>0)$)

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.
(2) $\Lambda_{\epsilon}(a)$ is non-empty, compact subset of \mathbb{C}.
(3) mainly used to study non-normal matrices.

[^12]
Psuedospectrum

Let \mathcal{A} be a complex unital Banach algebra with unit.
Definition (ϵ - pseudo spectrum $(\epsilon>0)$)

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma(a) \subseteq \Lambda_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.
(2) $\Lambda_{\epsilon}(a)$ is non-empty, compact subset of \mathbb{C}.
(3) mainly used to study non-normal matrices.
(9) nearest defective matrix ${ }^{2}$.

[^13]
(1) Part I

(2) Part II

- Condition spectrum
- Continuity

Condition spectrum

$$
\Omega=\left\{a \in \operatorname{Inv} \mathcal{A}:\left\|a^{-1}\right\|<\frac{1}{\epsilon}\right\}
$$

This does not satisfy the condition

$$
a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}
$$

Condition spectrum

$$
\Omega=\left\{a \in \operatorname{In} v \mathcal{A}:\left\|a^{-1}\right\|<\frac{1}{\epsilon}\right\}
$$

This does not satisfy the condition

$$
a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}
$$

Redefining (a possible way)

$$
\Omega=\left\{a \in \operatorname{Inv} \mathcal{A}:\|a\|\left\|a^{-1}\right\|<\epsilon\right\}
$$

satisfies the axioms defined

Condition spectrum

$$
\Omega=\left\{a \in \operatorname{In} v \mathcal{A}:\left\|a^{-1}\right\|<\frac{1}{\epsilon}\right\}
$$

This does not satisfy the condition

$$
a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}
$$

Redefining (a possible way)

$$
\Omega=\left\{a \in \operatorname{Inv} \mathcal{A}:\|a\|\left\|a^{-1}\right\|<\epsilon\right\}
$$

satisfies the axioms defined. Also $\|a\|\left\|a^{-1}\right\|$ is called condition number of an element of a Banach algebra.

Condition spectrum

$$
\Omega=\left\{a \in \operatorname{Inv} \mathcal{A}:\left\|a^{-1}\right\|<\frac{1}{\epsilon}\right\}
$$

This does not satisfy the condition

$$
a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}
$$

Redefining (a possible way)

$$
\Omega=\left\{a \in \operatorname{In} v \mathcal{A}:\|a\|\left\|a^{-1}\right\|<\epsilon\right\}
$$

satisfies the axioms defined. Also $\|a\|\left\|a^{-1}\right\|$ is called condition number of an element of a Banach algebra.

$$
1=\|1\|=\left\|a a^{-1}\right\| \leq\|a\|\left\|a^{-1}\right\|
$$

Condition spectrum

$$
\Omega=\left\{a \in \operatorname{In} v \mathcal{A}:\left\|a^{-1}\right\|<\frac{1}{\epsilon}\right\}
$$

This does not satisfy the condition

$$
a \in \Omega \Rightarrow z a \in \Omega, z \in \mathbb{C}^{*}
$$

Redefining (a possible way)

$$
\Omega=\left\{a \in \operatorname{Inv} \mathcal{A}:\|a\|\left\|a^{-1}\right\|<\epsilon\right\}
$$

satisfies the axioms defined. Also $\|a\|\left\|a^{-1}\right\|$ is called condition number of an element of a Banach algebra.

$$
\begin{gathered}
1=\|1\|=\left\|a a^{-1}\right\| \leq\|a\|\left\|a^{-1}\right\| \\
\text { For } 0<\epsilon<1, \quad \Omega=\left\{a \in \operatorname{In} v \mathcal{A}:\|a\|\left\|a^{-1}\right\|<\frac{1}{\epsilon}\right\}
\end{gathered}
$$

Condition spectrum

Axiomatic, Approximation, Application
Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum $(0<\epsilon<1)$)

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\|\lambda-a\|\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

[^14]
Condition spectrum

Axiomatic, Approximation, Application
Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum $(0<\epsilon<1)$)

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\|\lambda-a\|\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma_{\epsilon}(a)$ is non-empty ${ }^{3}$, compact subset of \mathbb{C}.

[^15]
Condition spectrum

Axiomatic, Approximation, Application
Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum $(0<\epsilon<1)$)

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\|\lambda-a\|\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma_{\epsilon}(a)$ is non-empty ${ }^{3}$, compact subset of \mathbb{C}.
(2) $\sigma(a) \subseteq \sigma_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.

[^16]
Condition spectrum

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum $(0<\epsilon<1$))

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\|\lambda-a\|\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma_{\epsilon}(a)$ is non-empty ${ }^{3}$, compact subset of \mathbb{C}.
(2) $\sigma(a) \subseteq \sigma_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.
(3) $\sigma_{\epsilon}(a)$ has finite components and each component has a spectral value.

[^17]
Condition spectrum

Let A be a complex unital Banach algebra with unit.

Definition (ϵ - Condition spectrum $(0<\epsilon<1$))

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}: \lambda-a \notin \operatorname{Inv}(\mathcal{A}) \text { or }\|\lambda-a\|\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma_{\epsilon}(a)$ is non-empty ${ }^{3}$, compact subset of \mathbb{C}.
(2) $\sigma(a) \subseteq \sigma_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$.
(3) $\sigma_{\epsilon}(a)$ has finite components and each component has a spectral value.
(9) If $\lambda \in \sigma_{\epsilon}(a)$ then $|\lambda| \leq \frac{1+\epsilon}{1-\epsilon}\|a\|$.

[^18]
(1) Part I

(2) Part II

- Condition spectrum
- Continuity

Properties as a set valued map (correspondance)

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

[^19]
Properties as a set valued map (correspondance)

$$
\begin{aligned}
& \sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& L_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

[^20]
Properties as a set valued map (correspondance)

$$
\begin{aligned}
\sigma_{\epsilon}(a) & :=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
L_{\epsilon}(a) & :=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

The set valued maps (correspondence)

- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a)$

[^21]
Properties as a set valued map (correspondance)

$$
\begin{aligned}
& \sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& L_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

The set valued maps (correspondence)

- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a) \quad L_{\epsilon}: a \rightarrow L_{\epsilon}(a)$

[^22]
Properties as a set valued map (correspondance)

$$
\begin{aligned}
& \sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& L_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

The set valued maps (correspondence)

- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a) \quad L_{\epsilon}: a \rightarrow L_{\epsilon}(a)$
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a) \quad L_{a}: \epsilon \rightarrow L_{\epsilon}(a)$

[^23]
Properties as a set valued map (correspondance)

$$
\begin{aligned}
& \sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& L_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

The set valued maps (correspondence)

- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a) \quad L_{\epsilon}: a \rightarrow L_{\epsilon}(a)$
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a) \quad L_{a}: \epsilon \rightarrow L_{\epsilon}(a)$
- $C:(a, \epsilon) \rightarrow \sigma_{\epsilon}(a) \quad L:(a, \epsilon) \rightarrow L_{\epsilon}(a)$

[^24]
Properties as a set valued map (correspondance)

$$
\begin{aligned}
& \sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& L_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

The set valued maps (correspondence)

- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a) \quad L_{\epsilon}: a \rightarrow L_{\epsilon}(a)$
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a) \quad L_{a}: \epsilon \rightarrow L_{\epsilon}(a)$
- $C:(a, \epsilon) \rightarrow \sigma_{\epsilon}(a) \quad L:(a, \epsilon) \rightarrow L_{\epsilon}(a)$

Hemi-continuity of pseudospectrum ${ }^{4}$.

[^25]
Set valued map

Definition (Upper and lower hemicontinuous)

A correspondence $\phi: X \rightarrow Y$ between topological space is upper hemicontinuous at the point $x \in X$ if every neighbourhood U of $\phi(x)$ there is a neighbourhood V of x such that

$$
z \in V \Rightarrow \phi(z) \subseteq U
$$

Set valued map

Definition (Upper and lower hemicontinuous)

A correspondence $\phi: X \rightarrow Y$ between topological space is upper hemicontinuous at the point $x \in X$ if every neighbourhood U of $\phi(x)$ there is a neighbourhood V of x such that

$$
z \in V \Rightarrow \phi(z) \subseteq U
$$

lower hemicontinuous at the point $x \in X$ if every neighbourhood U with $U \cap \phi(x) \neq \emptyset$, there is a neighbourhood V of x such that

$$
z \in V \Rightarrow \phi(z) \cap U \neq \emptyset
$$

Set valued map

Definition (Upper and lower hemicontinuous)

A correspondence $\phi: X \rightarrow Y$ between topological space is upper hemicontinuous at the point $x \in X$ if every neighbourhood U of $\phi(x)$ there is a neighbourhood V of x such that

$$
z \in V \Rightarrow \phi(z) \subseteq U
$$

lower hemicontinuous at the point $x \in X$ if every neighbourhood U with $U \cap \phi(x) \neq \emptyset$, there is a neighbourhood V of x such that

$$
z \in V \Rightarrow \phi(z) \cap U \neq \emptyset
$$

continuous at $x \in X$ if it is both upper and lower hemicontinuous at x.

Continuity of condition spectrum

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is upper hemicontinuous ${ }^{5}$.

[^26]
Continuity of condition spectrum

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is upper hemicontinuous ${ }^{5}$.
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is lower hemicontinuous iff the interior of $L_{\epsilon}(a)$ empty.

[^27] J. Aust. Math. Soc., 108(3):412-430, 2020

Continuity of condition spectrum

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is upper hemicontinuous ${ }^{5}$.
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is lower hemicontinuous iff the interior of $L_{\epsilon}(a)$ empty.
- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a)$.

[^28]
Continuity of condition spectrum

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is upper hemicontinuous ${ }^{5}$.
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is lower hemicontinuous iff the interior of $L_{\epsilon}(a)$ empty.
- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a)$.
- $C:(a, \epsilon) \rightarrow \sigma_{\epsilon}(a)$.

[^29]
Continuity of condition spectrum

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is upper hemicontinuous ${ }^{5}$.
- $C_{a}: \epsilon \rightarrow \sigma_{\epsilon}(a)$ is lower hemicontinuous iff the interior of $L_{\epsilon}(a)$ empty.
- $C_{\epsilon}: a \rightarrow \sigma_{\epsilon}(a)$.
- $C:(a, \epsilon) \rightarrow \sigma_{\epsilon}(a)$.
- Similarly results for L_{ϵ} using the sub-correspondence.

[^30]
Unavoidable assumption

Study of Shargarodsky problem ${ }^{6}$

$$
\Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

[^31]
Unavoidable assumption

Study of Shargarodsky problem ${ }^{6}$

$$
\begin{aligned}
& \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\|>\frac{1}{\epsilon}\right\}
\end{aligned}
$$

[^32]
Unavoidable assumption

Study of Shargarodsky problem ${ }^{6}$

$$
\begin{aligned}
& \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\|>\frac{1}{\epsilon}\right\} \\
& L \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

[^33]
Unavoidable assumption

Study of Shargarodsky problem ${ }^{6}$

$$
\begin{aligned}
& \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\} \\
& \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\|>\frac{1}{\epsilon}\right\} \\
& L \Lambda_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\left\|(a-\lambda)^{-1}\right\|=\frac{1}{\epsilon}\right\}
\end{aligned}
$$

When is the interior of $L \Lambda_{\epsilon}(a)$ empty?.

[^34]
Questions

Thank you.

[^0]: ${ }^{a}$ Hubert Klaja and Thomas Ransford. Non-commutativity of the exponential spectrum. J. Funct. Anal., 272(10):4158-4164, 2017

[^1]: ${ }^{a}$ Hubert Klaja and Thomas Ransford. Non-commutativity of the exponential spectrum. J. Funct. Anal., 272(10):4158-4164, 2017

[^2]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^3]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^4]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^5]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^6]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^7]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^8]: ${ }^{1}$ T. J. Ransford. Generalised spectra and analytic multivalued functions.
 J. London Math. Soc. (2), 29(2):306-322, 1984

[^9]: ${ }^{2}$ Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra.
 Princeton University Press, Princeton, NJ, 2005

[^10]: ${ }^{2}$ Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra.
 Princeton University Press, Princeton, NJ, 2005

[^11]: ${ }^{2}$ Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra.
 Princeton University Press, Princeton, NJ, 2005

[^12]: ${ }^{2}$ Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra.
 Princeton University Press, Princeton, NJ, 2005

[^13]: ${ }^{2}$ Lloyd N. Trefethen and Mark Embree. Spectra and pseudospectra.
 Princeton University Press, Princeton, NJ, 2005

[^14]: ${ }^{3}$ S. H. Kulkarni and D. Sukumar. The condition spectrum.
 Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

[^15]: ${ }^{3}$ S. H. Kulkarni and D. Sukumar. The condition spectrum.
 Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

[^16]: ${ }^{3}$ S. H. Kulkarni and D. Sukumar. The condition spectrum.
 Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

[^17]: ${ }^{3}$ S. H. Kulkarni and D. Sukumar. The condition spectrum.
 Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

[^18]: ${ }^{3}$ S. H. Kulkarni and D. Sukumar. The condition spectrum. Acta Sci. Math. (Szeged), 74(3-4):625-641, 2008

[^19]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^20]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^21]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^22]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^23]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^24]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^25]: ${ }^{4}$ Arundhathi Krishnan and S. H. Kulkarni. Pseudospectrum of an element of a Banach algebra. Oper. Matrices, 11(1):263-287, 2017

[^26]: ${ }^{5}$ D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets.

[^27]: ${ }^{5}$ D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets.

[^28]: ${ }^{5}$ D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets. J. Aust. Math. Soc., 108(3):412-430, 2020

[^29]: ${ }^{5}$ D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets. J. Aust. Math. Soc., 108(3):412-430, 2020

[^30]: ${ }^{5}$ D. Sukumar and S. Veeramani. Continuity of a condition spectrum and its level sets. J. Aust. Math. Soc., 108(3):412-430, 2020

[^31]: ${ }^{6}$ E. Shargorodsky. On the definition of pseudospectra.
 Bull. Lond. Math. Soc., 41(3):524-534, 2009

[^32]: ${ }^{6} \mathrm{E}$. Shargorodsky. On the definition of pseudospectra.
 Bull. Lond. Math. Soc., 41(3):524-534, 2009

[^33]: ${ }^{6} \mathrm{E}$. Shargorodsky. On the definition of pseudospectra.
 Bull. Lond. Math. Soc., 41(3):524-534, 2009

[^34]: ${ }^{6} \mathrm{E}$. Shargorodsky. On the definition of pseudospectra.
 Bull. Lond. Math. Soc., 41(3):524-534, 2009

