Almost multiplicative functions on a class of Banach algebras

D. Sukumar
Department of Mathematics
Indian Institute of Science, Bangalore

International Conference on Functional Analysis and its Applications, Scott Christian College, Nagercoil

Almost multiplicative function

A linear map $\phi: A \rightarrow \mathbb{C}$ is said to be multiplicative if

$$
\phi(a b)=\phi(a) \phi(b) \quad \text { for all } \quad a, b \in A
$$

Definition (almost multiplicative function)
A linear map $\phi: A \rightarrow \mathbb{C}$ is said to be amf if there exists a $\delta>0$ such that

$$
|\phi(a b)-\phi(a) \phi(b)| \leq \delta\|a\|\|b\| \quad \text { for all } \quad a, b \in A
$$

- Originated from perturbation theory.
- amf are continuous.
- AMNM Algebra

Condition spectrum

$$
\sigma(a):=\{\lambda \in \mathbb{C}: \lambda-a \in \operatorname{Sing}(A)\},
$$

Definition $(\epsilon$ - Condition spectrum $(0<\epsilon<1)$)

$$
\sigma_{\epsilon}(a):=\left\{\lambda \in \mathbb{C}:\|\lambda-a\|\left\|(\lambda-a)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

(1) $\sigma(a) \subseteq \sigma_{\epsilon}(a)$, for every $a \in A$ and for every $\epsilon>0$. The two spectrum coincides if and only if a is a scalar multiple of identity.
(2) If $\lambda \in \sigma_{\epsilon}(a)$ then $|\lambda| \leq \frac{1+\epsilon}{1-\epsilon}\|a\|$.
(0) If $\lambda \in \sigma_{\epsilon}(a)$ then there exists a $b \in \operatorname{Sing}(A)$ such that

$$
\|b\| \leq \epsilon\|\lambda-a\|, \quad \lambda \in \sigma(a+b) .
$$

Theorem
Let A be complex commutative Banach algebra with unit 1 and let ϕ be a δ-amf on A and $\phi(1)=1$. Then

$$
\phi(a) \in \sigma_{\delta}(a) \quad \forall a \in A .
$$

Assumption: The class of complex commutative Banach algebras with this property
$(*) \quad \forall a \in \operatorname{Inv}(A), \exists b \in \operatorname{Sing}(A)$ such that $\|a-b\|=\frac{1}{\left\|a^{-1}\right\|}$.

Example: Function algebras
Lemma
Let A be a complex commutative Banach algebra satisfying (*) and let $\lambda \in \sigma_{\epsilon}(a)$. Then,

$$
d(\lambda, \sigma(a)) \leq \frac{2 \epsilon}{1-\epsilon}\|a\| .
$$

Theorem
Let A be a complex commutative unital Banach algebra with the property given in $(*)$. Let $a \in A$ and $\lambda \in \sigma_{\epsilon}(a)$. Then, there exists an almost δ-amf ψ such that $\psi(1)=1$ and $\lambda=\psi(a)$, where

$$
\delta=\alpha(3+\alpha), \quad \alpha=\frac{2 \epsilon^{2}\|a\|}{(1-\epsilon) m}, \quad m=\inf \{\|z-a\|: z \in \mathbb{C}\}
$$

Theorem

Let A be a function algebra and $\phi: A \rightarrow \mathbb{C}$ be a linear function. If $\phi(a) \in \sigma_{\epsilon}(a)$ for every a in A. Then ϕ is δ-amf, where

$$
\delta=\log \left(\kappa^{-1}\right)^{-1} 2(2 \kappa+1) \quad \text { with } \quad \kappa=\frac{2 \epsilon}{1-\epsilon} .
$$

Theorem (GKŻ Theorem)
Let A be complex Banach algebra and $\phi: A \rightarrow \mathbb{C}$ be a linear map with $\phi(1)=1$. If, for every $a \in A$,

$$
\phi(a) \in \sigma(a)
$$

then ϕ is multiplicative.

Conclusion

(1) If ϕ is δ-amf, then $\phi(a) \in \sigma_{\delta}(a)$ for all a in A.
(2) If $\lambda \in \sigma_{\epsilon}(a)$, then $\lambda=\phi(a)$ for some $\delta(\epsilon)-\operatorname{amf} \phi$.
(3) If ϕ is linear and

$$
\phi(a) \in \sigma_{\epsilon}(a) \quad \forall a \in A
$$

then ϕ is δ-amf for some $\delta(\epsilon)$.

References

嗇 Krzysztof Jarosz, Almost multiplicative functionals, Studia Math. 124 (1997), no. 1, 37-58. MR MR1444808 (98d:46051)
B. E. Johnson, Approximately multiplicative functionals, J. London Math. Soc. (2) 34 (1986), no. 3, 489-510. MR MR864452 (87k:46105)
S. H. Kulkarni and D. Sukumar, Condition spectrum, To Appear in Acta Sci. Math. (Szeged).

