Banach algebras with natural optimal radius of open ball at each invertible element

D. Sukumar
IIT Hyderabad

October 13, 2017
A be a complex unital Banach algebra with unit e.
$G(A)$ Invertible elements of A
$\operatorname{Sing}(A)$ Singular elements of A respectively.
$\sigma(a)$ The spectrum of $a \in A$
$\rho(a)$ The resolvent of $a \in A$.
$r(a)$ Spectral radius of $a \in A$

Let $\phi: A \rightarrow \mathbb{C}$ is linear functional

$$
\phi(a) \in \sigma(a) \Leftrightarrow \phi \text { is multiplicative }
$$

Let $\phi: A \rightarrow \mathbb{C}$ is linear functional

$$
\phi(a) \in \sigma(a) \Leftrightarrow \phi \text { is multiplicative }
$$

$$
\phi(a) \in \sigma_{\epsilon}(a) \Leftrightarrow \phi \text { is } \delta \text {-multiplicative }
$$

Let $\phi: A \rightarrow \mathbb{C}$ is linear functional

$$
\phi(a) \in \sigma(a) \Leftrightarrow \phi \text { is multiplicative }
$$

$$
\phi(a) \in \sigma_{\epsilon}(a) \Leftrightarrow \phi \text { is } \delta \text {-multiplicative }
$$

For $0<\epsilon<1$

$$
\sigma_{\epsilon}(a)=\left\{\lambda \in \mathbb{C}:\|a-\lambda\|\left\|(a-\lambda)^{-1}\right\| \geq \frac{1}{\epsilon}\right\}
$$

and ϕ is δ-multiplicative if

$$
\forall a, b \in A, \quad|\phi(a b)-\phi(a) \phi(b)| \leq \delta\|a\|\|b\|
$$

Theorem
$G(A)$ is an open set in A.

$$
a \in G(A) \Rightarrow B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right) \subseteq G(A)
$$

Is this the biggest ball?
Does there exists a $s \in \operatorname{Sing}(A)$ such that $\|s-a\|=\frac{1}{\left\|a^{-1}\right\|}$

Definition (B)

An element $a \in G(A)$ is said to satisfy condition (B) if the biggest open ball centered at a, contained in $G(A)$, is of radius $\frac{1}{\left\|a^{-1}\right\|}$ i.e

$$
\overline{B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right)} \cap \operatorname{Sing}(A) \neq \phi
$$

We say a Banach algebra A satisfies condition (B) if every $a \in G(A)$ satisfies condition (B).

- A Banach algebra A satisfying condition (B), every member of the $\sigma_{\epsilon}(a)$ is a spectral value of a perturbed a.
- Further if A is Banach algebra satisfying condition (B), and $a \in A$, then for every open set Ω containing $\sigma(a)$, there exists $0<\epsilon<1$ such that $\sigma_{\epsilon}(a) \subset \Omega$.

For any $a \in A, r(a)=\|a\|$ if and only if $\left\|a^{2}\right\|=\|a\|^{2}$
Theorem (Sufficient condition)
Let $a \in G(A)$ such that $\left\|\left(a^{-1}\right)^{2}\right\|=\left\|a^{-1}\right\|^{2}$, then a satisfies condition (B).

For any $a \in A, r(a)=\|a\|$ if and only if $\left\|a^{2}\right\|=\|a\|^{2}$

Theorem (Sufficient condition)

Let $a \in G(A)$ such that $\left\|\left(a^{-1}\right)^{2}\right\|=\left\|a^{-1}\right\|^{2}$, then a satisfies condition (B).

Proof.

Since $\left\|\left(a^{-1}\right)^{2}\right\|=\left\|a^{-1}\right\|^{2}$, by the compactness of spectrum there exists $\lambda_{0} \in \sigma(a)$ such that

$$
\frac{1}{\left\|a^{-1}\right\|}=\frac{1}{r\left(a^{-1}\right)}=\inf \{|\lambda|: \lambda \in \sigma(a)\}=\left|\lambda_{0}\right|
$$

The element $s=a-\lambda_{0} \in A$ can be taken as a singular element in the boundary of $B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right)$ with the required property.

Theorem

Let A be a commutative Banach algebra. Then $a \in G(A)$ satisfies condition (B) if and only if $\left\|\left(a^{-1}\right)^{2}\right\|=\left\|a^{-1}\right\|^{2}$.

Proof.

If a satisfies (B), there exists $s \in \operatorname{Sing}(A)$ such that

$$
\begin{aligned}
\left\|a^{-1}\right\|^{2} & =\frac{1}{\|a-s\|^{2}} \\
& \leq \frac{1}{\left\|(a-s)^{2}\right\|}=\frac{1}{\left\|a^{2}-\left(s a+a s-s^{2}\right)\right\|} \leq\left\|\left(a^{-1}\right)^{2}\right\|
\end{aligned}
$$

where sa $+a s-s^{2} \in \operatorname{Sing}(A)$ as A is commutative. Thus we have $\left\|a^{-1}\right\|^{2}=\left\|\left(a^{-1}\right)^{2}\right\|$.

Corollary

Let A be a finite dimensional Banach algebra that satisfies condition (B). Then A is commutative if and only if $\left\|a^{2}\right\|=\|a\|^{2}$ for every $a \in A$.

Proof.

Invertible elements are dense.

Example (The converse not true if A is non-commutative)
For this, we will see later that any invertible operator on a Hilbert space satisfies condition (B),
If J is invertible matrix such that J^{-1} is a Jordan matrix with $r(J)<1$, then

$$
r\left(J^{-1}\right) \neq\left\|J^{-1}\right\|
$$

Example (Do not satisfy (B))

Let $C^{1}[0,1]$ be the space of all complex valued functions on $[0,1]$ with continuous derivative equipped with the norm

$$
\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \quad \text { for all } f \in C^{1}[0,1]
$$

Then $\left(C^{1}[0,1],\|\|.\right)$ is a commutative semi-simple Banach function algebra. Consider the function $f(x)=e^{x}$ for all $x \in[0,1]$ and notice that

$$
\left\|\left(f^{-1}\right)^{2}\right\| \neq\left\|f^{-1}\right\|^{2}
$$

Theorem

Let A be a commutative Banach algebra that satisfies condition (B), then A is isomorphic to a uniform algebra.

Example (Converse not true)

Let $A=\mathbb{C}^{2}$. Then $\left(A,\|\cdot\|_{1}\right)$ is isomorphic to $\left(A,\|\cdot\|_{\infty}\right)$, a uniform algebra. But $\left(A,\|\cdot\|_{1}\right)$ does not satisfy condition (B), as $r(a, b)<\|(a, b)\|_{1}$ if and only if (a, b) is invertible.

Let $\phi: A \rightarrow B$ be an isometric Banach algebra isomorphism. Then ϕ preserves condition (B).

Example (Isometry cannot be dropped)

Let X be a locally compact Hausdorff space and X^{∞} denote the one point compactification of X.

- $C\left(X^{\infty}\right)$, (being a uniform algebra) satisfies condition (B).
- Let $C_{0}(X) . C_{0}(X)$ is unital if and only if X compact.
- Let $C_{0}(X)^{e}$ denote the unitization of $C_{0}(X)$.
- In particular take $X=(1, \infty)$.
- $\left(\frac{1}{x^{2}}, 1\right)$ has the inverse $\left(\frac{-1}{1+x^{2}}, 1\right)$ in $C_{0}((1, \infty))^{e}$.
- $\left(\frac{1}{x^{2}}, 1\right)$ does not satisfy condition (B).
- Define the map $\psi: C_{0}((1, \infty))^{e} \rightarrow C\left((1, \infty)^{\infty}\right)$ by $\psi(f, \lambda)=f+\lambda e$, where $e(x)=1$ for every $x \in(1, \infty)^{\infty}$ and each $f \in C_{0}((1, \infty))$ is extended by assigning zero to the point ∞.
- ψ is a Banach algebra isomorphism, but not an isometry.

From the next example we see that finite dimensional Banach algebras may fail to satisfy condition (B).

Example

Consider $\ell^{1}\left(\mathbb{Z}_{2}\right)=\left\{f \mid f: \mathbb{Z}_{2} \longrightarrow \mathbb{C}\right\}$ with the norm $\|f\|=|f(0)|+|f(1)|$ and multiplication defined by convolution as

$$
\begin{aligned}
& (f * g)(0)=f(0) g(0)+f(1) g(1) \\
& (f * g)(1)=f(0) g(1)+f(1) g(0) .
\end{aligned}
$$

Here the identity element being $(e(0), e(1))=(1,0)$. It is easy to verify that $f=(1,0)$ and $g=(0, i)$ satisfies condition (B) but $f+g$ does not.

Now we use polar decomposition of invertible elements in a C^{*}-algebra to prove condition (B) in the same.

Theorem
Let A be any C^{*}-algebra, then A satisfies condition (B).

Now we use polar decomposition of invertible elements in a C^{*}-algebra to prove condition (B) in the same.

Theorem

Let A be any C^{*}-algebra, then A satisfies condition (B).

Corollary

If H is a Hilbert space then $B(H)$ satisfies condition (B).
If we consider a Banach space instead of a Hilbert space, we have a sufficient condition. $T \in B(X)$ is called norm attaining if there exists an element $x \in X$ with $\|x\|=1$, such that $\|T x\|=\|T\|$.

Theorem

Let $T \in G(B(X))$ such that T^{-1} is norm attaining, then T satisfies condition (B).

Corollary

If X is finite dimensional, then any $T \in B(X)$ attains its norm, and hence, $B(X)$ satisfies condition (B).

Example (Norm attaining is not necessary)

Let the Hilbert space ($\ell^{2},\|.\|_{2}$) and $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be the standard complete orthonormal basis. Consider $T \in B(H)$ defined by

$$
T\left(e_{n}\right)=\left(1+\frac{1}{(n+1)}\right) e_{n} \quad n \geq 1 .
$$

Then T is invertible and satisfies condition (B) as H is a Hilbert space, but T^{-1} is not norm attaining.
(B)

- $C(X), X$ compact T_{2}
- M_{n}
- C^{*} algebra
- $B(H), H$ a Hilbert space

Does not have (B)

- $C^{1}[0,1]$
- $\ell^{1}\left(\mathbb{Z}_{2}\right)$
- $B(X), X$ a Banach space

囯 G．R．Allan and H．G．Dales．
Introduction to Banach Spaces and Algebras．
Introduction to Banach Spaces and Algebras．Oxford University Press， 2011.

F．F．Bonsall and J．Duncan．
Complete normed algebras．
Ergebnisse der Mathematik und ihrer Grenzgebiete．
Springer－Verlag， 1973.
國 S．H．Kulkarni and D．Sukumar．
Almost multiplicative functions on commutative Banach algebras．
Studia Math．，197（1）：93－99， 2010.
國 S．Shkarin．
Norm attaining operators and pseudospectrum．
Integral Equations Operator Theory，64（1）：115－136， 2009.

Thank you

