Banach algebras with natural optimal radius of open ball at each invertible element

D. Sukumar IIT Hyderabad

October 13, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A be a complex unital Banach algebra with unit e.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- G(A) Invertible elements of A
- Sing(A) Singular elements of A respectively.
 - $\sigma(a)$ The spectrum of $a \in A$
 - $\rho(a)$ The resolvent of $a \in A$.
 - r(a) Spectral radius of $a \in A$

Let $\phi: A \to \mathbb{C}$ is linear functional

 $\phi(a) \in \sigma(a) \Leftrightarrow \phi$ is multiplicative

Let $\phi: A \to \mathbb{C}$ is linear functional

 $\phi(a) \in \sigma(a) \Leftrightarrow \phi$ is multiplicative

$$\phi(a) \in \sigma_{\epsilon}(a) \Leftrightarrow \phi$$
 is δ -multiplicative

Let $\phi : A \to \mathbb{C}$ is linear functional

 $\phi(a) \in \sigma(a) \Leftrightarrow \phi$ is multiplicative

 $\phi(a)\in\sigma_{\epsilon}(a)\Leftrightarrow\phi\text{ is }\delta\text{-multiplicative}$ For $0<\epsilon<1$

$$\sigma_{\epsilon}(\mathbf{a}) = \left\{ \lambda \in \mathbb{C} : \|\mathbf{a} - \lambda\| \left\| (\mathbf{a} - \lambda)^{-1} \right\| \ge \frac{1}{\epsilon} \right\}$$

and ϕ is δ -multiplicative if

$$orall a, b \in A, \quad |\phi(ab) - \phi(a)\phi(b)| \leq \delta \left\|a\right\| \left\|b
ight|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

G(A) is an open set in A.

$$a \in G(A) \Rightarrow B\left(a, rac{1}{\|a^{-1}\|}
ight) \subseteq G(A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Is this the biggest ball?

Does there exists a $s \in Sing(A)$ such that $||s - a|| = \frac{1}{||a^{-1}||}$

Definition (B)

An element $a \in G(A)$ is said to satisfy condition (B) if the biggest open ball centered at a, contained in G(A), is of radius $\frac{1}{\|a^{-1}\|}$ i.e

$$\overline{B\left(\mathsf{a},\frac{1}{\|\mathsf{a}^{-1}\|}
ight)}\cap Sing(\mathsf{A})\neq\phi.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We say a Banach algebra A satisfies condition (B) if every $a \in G(A)$ satisfies condition (B).

- A Banach algebra A satisfying condition (B), every member of the σ_ε(a) is a spectral value of a perturbed a.
- Further if A is Banach algebra satisfying condition (B), and $a \in A$, then for every open set Ω containing $\sigma(a)$, there exists $0 < \epsilon < 1$ such that $\sigma_{\epsilon}(a) \subset \Omega$.

For any $a \in A$, r(a) = ||a|| if and only if $||a^2|| = ||a||^2$

Theorem (Sufficient condition)

Let $a \in G(A)$ such that $||(a^{-1})^2|| = ||a^{-1}||^2$, then a satisfies condition (B).

For any $a \in A$, r(a) = ||a|| if and only if $||a^2|| = ||a||^2$

Theorem (Sufficient condition)

Let $a \in G(A)$ such that $||(a^{-1})^2|| = ||a^{-1}||^2$, then a satisfies condition (B).

Proof.

Since $||(a^{-1})^2|| = ||a^{-1}||^2$, by the compactness of spectrum there exists $\lambda_0 \in \sigma(a)$ such that

$$\frac{1}{\|\mathbf{a}^{-1}\|} = \frac{1}{r(\mathbf{a}^{-1})} = \inf\{|\lambda| : \lambda \in \sigma(\mathbf{a})\} = |\lambda_0|.$$

The element $s = a - \lambda_0 \in A$ can be taken as a singular element in the boundary of $B\left(a, \frac{1}{\|a^{-1}\|}\right)$ with the required property.

Theorem

Let A be a commutative Banach algebra. Then $a \in G(A)$ satisfies condition (B) if and only if $||(a^{-1})^2|| = ||a^{-1}||^2$.

Proof.

If a satisfies (B), there exists $s \in Sing(A)$ such that

$$\|a^{-1}\|^{2} = \frac{1}{\|a - s\|^{2}}$$

$$\leq \frac{1}{\|(a - s)^{2}\|} = \frac{1}{\|a^{2} - (sa + as - s^{2})\|} \leq \|(a^{-1})^{2}\|,$$

where $sa + as - s^2 \in Sing(A)$ as A is commutative. Thus we have $\|a^{-1}\|^2 = \|(a^{-1})^2\|$.

Corollary

Let A be a finite dimensional Banach algebra that satisfies condition (B). Then A is commutative if and only if $||a^2|| = ||a||^2$ for every $a \in A$.

Proof.

Invertible elements are dense.

Example (The converse not true if A is non-commutative)

For this, we will see later that any invertible operator on a Hilbert space satisfies condition (B), If J is invertible matrix such that J^{-1} is a Jordan matrix with r(J) < 1, then

 $r(J^{-1}) \neq ||J^{-1}||.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example (Do not satisfy (B))

Let $C^{1}[0, 1]$ be the space of all complex valued functions on [0,1] with continuous derivative equipped with the norm

$$\|f\| = \|f\|_{\infty} + \|f'\|_{\infty}$$
 for all $f \in C^{1}[0, 1]$.

Then $(C^1[0, 1], \|.\|)$ is a commutative semi-simple Banach function algebra. Consider the function $f(x) = e^x$ for all $x \in [0, 1]$ and notice that

$$||(f^{-1})^2|| \neq ||f^{-1}||^2.$$

Theorem

Let A be a commutative Banach algebra that satisfies condition (B), then A is isomorphic to a uniform algebra.

Example (Converse not true)

Let $A = \mathbb{C}^2$. Then $(A, \|.\|_1)$ is isomorphic to $(A, \|.\|_{\infty})$, a uniform algebra. But $(A, \|.\|_1)$ does not satisfy condition (B), as $r(a, b) < \|(a, b)\|_1$ if and only if (a, b) is invertible.

Let $\phi: A \to B$ be an isometric Banach algebra isomorphism. Then ϕ preserves condition (B).

Example (Isometry cannot be dropped)

Let X be a locally compact Hausdorff space and X^{∞} denote the one point compactification of X.

- $C(X^{\infty})$, (being a uniform algebra) satisfies condition (B).
- Let $C_0(X)$. $C_0(X)$ is unital if and only if X compact.
- Let $C_0(X)^e$ denote the *unitization* of $C_0(X)$.
- In particular take $X = (1, \infty)$.
- $\left(\frac{1}{x^2},1\right)$ has the inverse $\left(\frac{-1}{1+x^2},1\right)$ in $C_0((1,\infty))^e$.
- $\left(\frac{1}{x^2}, 1\right)$ does not satisfy condition (B).
- Define the map $\psi : C_0((1,\infty))^e \to C((1,\infty)^\infty)$ by $\psi(f,\lambda) = f + \lambda e$, where e(x) = 1 for every $x \in (1,\infty)^\infty$ and each $f \in C_0((1,\infty))$ is extended by assigning zero to the point ∞ .
- ψ is a Banach algebra isomorphism, but not an isometry.

From the next example we see that finite dimensional Banach algebras may fail to satisfy condition (B).

Example

Consider $\ell^1(\mathbb{Z}_2) = \{f | f : \mathbb{Z}_2 \longrightarrow \mathbb{C}\}$ with the norm $\|f\| = |f(0)| + |f(1)|$ and multiplication defined by convolution as

$$(f * g)(0) = f(0)g(0) + f(1)g(1)$$

$$(f * g)(1) = f(0)g(1) + f(1)g(0).$$

Here the identity element being (e(0), e(1)) = (1, 0). It is easy to verify that f = (1, 0) and g = (0, i) satisfies condition (B) but f + g does not.

Now we use polar decomposition of invertible elements in a C^* -algebra to prove condition (B) in the same.

Theorem

Let A be any C*-algebra, then A satisfies condition (B).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Now we use polar decomposition of invertible elements in a C^* -algebra to prove condition (B) in the same.

Theorem

Let A be any C*-algebra, then A satisfies condition (B).

Corollary

If H is a Hilbert space then B(H) satisfies condition (B).

If we consider a Banach space instead of a Hilbert space, we have a sufficient condition. $T \in B(X)$ is called norm attaining if there exists an element $x \in X$ with ||x|| = 1, such that ||Tx|| = ||T||.

Theorem

Let $T \in G(B(X))$ such that T^{-1} is norm attaining, then T satisfies condition (B).

Corollary

If X is finite dimensional, then any $T \in B(X)$ attains its norm, and hence, B(X) satisfies condition (B).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example (Norm attaining is not necessary)

Let the Hilbert space $(\ell^2, \|.\|_2)$ and $\{e_n\}_{n \in \mathbb{N}}$ be the standard complete orthonormal basis. Consider $T \in B(H)$ defined by

$$T(e_n) = \left(1 + \frac{1}{(n+1)}\right)e_n \quad n \ge 1.$$

Then T is invertible and satisfies condition (B) as H is a Hilbert space, but T^{-1} is not norm attaining.

(B)

- C(X), X compact T_2
- *M*_n
- C* algebra
- B(H), H a Hilbert space

Does not have (B)

- $C^1[0,1]$
- $\ell^1(\mathbb{Z}_2)$
- B(X), X a Banach space

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- G.R. Allan and H.G. Dales. Introduction to Banach Spaces and Algebras. Introduction to Banach Spaces and Algebras. Oxford University Press, 2011.
- F.F. Bonsall and J. Duncan. Complete normed algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1973.
- S. H. Kulkarni and D. Sukumar. Almost multiplicative functions on commutative Banach algebras. Studia Math., 197(1):93-99, 2010.

S. Shkarin.

Norm attaining operators and pseudospectrum. Integral Equations Operator Theory, 64(1):115–136, 2009. ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Thank you

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣