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S. H. KULKARNI AND D. SUKUMAR

Abstract. We define a new type of spectrum, called the ε-condition
spectrum, of an element a in a complex unital Banach algebra A as

σε(a) :=

{
λ ∈ C : λ− a is not invertible or ‖λ− a‖

∥∥(λ− a)−1
∥∥ ≥ 1

ε

}
.

This is expected to be useful in solving operator equations. We show
that this is a particular case of the generalized spectrum defined by
Ransford [10]. This ε-condition spectrum shares some properties of the
usual spectrum such as non emptiness and compactness. But at the
same time it has many properties that are different from the properties
of the usual spectrum. For example, the ε-condition spectrum always
has only a finite number of components. Also if a is not a scalar multiple
of 1 then σε(a) has no isolated points. Several examples are given to
illustrate the main ideas.

1. Introduction

Let A be a complex algebra with unit 1. We shall identify λ · 1 with λ.
The spectrum of an element a in an algebra A is defined as

σ(a) := {λ ∈ C : a− λ /∈ Inv(A)}
where Inv(A) is the set of invertible elements in A. There are several exten-
sions and generalizations of the idea of the spectrum. Most notable among
these are Ransford’s generalized spectrum [10] and pseudospectra [6].

In this note we consider one more such extension in terms of the condition
number. Let A be a complex Banach algebra with unit 1. The condition
number of an invertible element a is defined as ‖a‖

∥∥a−1
∥∥ and denoted by

κ(a). It is convenient to make a convention that κ(a) = ∞ if a is not
invertible. We shall use this convention throughout. The condition number
is a very useful concept and arises naturally in solving systems of equations.
Specifically it is a measure of the sensitivity of the answer to a problem
to small changes in the initial data of the problem. (See [4], [8] for more
information on condition number.) For a fixed 0 < ε < 1, define

Ωε =
{
a ∈ Inv(A) : κ(a) <

1
ε

}
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and define the ε-condition spectrum for that fixed ε by

σε(a) := {λ ∈ C : a− λ /∈ Ωε} .

Suppose X is a Banach space, T : X → X is a bounded linear map and
y ∈ X. Consider the operator equation

(1) Tx− λx = y.

Then
• λ /∈ σ(T ) implies equation (1) is solvable;
• λ /∈ σε(T ) implies equation (1) has a stable solution.

In view of this, the ε-condition spectrum is expected to be a useful tool in
the numerical solution of operator equations.

Another well-known extension of the concept of spectrum is the idea of
pseudospectrum, Λε(a), defined as

Λε(a) :=
{
λ ∈ C :

∥∥(λ− a)−1
∥∥ ≥ 1

ε

}
,

with the convention that
∥∥(λ− a)−1

∥∥ =∞ if λ− a is not invertible. This is
found to be a very useful concept in numerical computations, especially in
those involving non-normal matrices. See [1], [5] and [11] for details. Also
the website [6] contains a lot of information about pseudospectra.

In section 2, we consider some examples and prove some basic properties
of the ε-condition spectrum and compare these properties with those of the
usual spectrum. In particular, we prove that the ε-condition spectrum σε(a)
of a is a non empty compact set containing the spectrum σ(a) (Theorem 2.7).
We may note that since the ε-condition spectrum is a geometric concept
as against the spectrum which is a purely algebraic concept, we should
expect these two sets to have some different properties. In the final section
3, we prove some of these interesting geometric properties, namely that
the ε-condition spectrum has no isolated points except in trivial situations
(Theorem 3.1) and that the ε-condition spectrum always has only a finite
number of components and moreover every component contains an element
of the spectrum (Theorem 3.6).

Several questions still remain unanswered. Some of these are:
(1) Is there an analogue of the spectral radius formula and spectral map-

ping theorem?
(2) What is the relation between the ε-condition spectrum, pseudospec-

trum and numerical range?
(3) How can we compute the ε-condition spectrum?

We hope to deal with some of these questions in the future.

2. Basic properties

In this section, we prove some basic properties of the ε-condition spec-
trum. Assume that A is a complex Banach algebra with unit 1. First we
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review the Ransford’s spectrum, generalization of the idea of the spectrum
(in fact to normed linear spaces), as in [10].

Definition 2.1 (Ransford set). An open subset Ω of A satisfying the fol-
lowing properties is called a Ransford set.

(1) 1 ∈ Ω,
(2) 0 /∈ Ω,
(3) zΩ ⊆ Ω for all z ∈ C \ {0}.

Definition 2.2 (Ransford spectrum). Let Ω be a Ransford set in A and let
a be in A. Then the Ransford spectrum of a with respect to the Ransford
set Ω is defined as follows:

σΩ(a) := {λ ∈ C : a− λ /∈ Ω} .

Note that Inv(A) is a Ransford set and the usual spectrum σ(a) is nothing
but σInv(A)(a), that is, the Ransford spectrum with respect to the Ransford
set Inv(A), in this notation. For this spectrum, Ransford proved:

Theorem 2.3. Let Ω be a Ransford set in A. Then the following holds.
(1) σΩ(0) = {0} and σΩ(1) = {1}
(2) If for a ∈ A, then σΩ(a) is compact
(3) Let E := {a ∈ A : σΩ(a) 6= ∅}. Then the map a→ σΩ(a) is an upper

semicontinuous function from E to compact subsets of C.

We refer [10] for a proof of this theorem as well as for several properties
of Ransford spectrum. For subsequent studies on Ransford spectrum see [2]
and [9].

Definition 2.4. For a fixed 0 < ε < 1, define

Ωε :=
{
a ∈ Inv(A) : κ(a) <

1
ε

}
.

As 0 is not invertible, 0 /∈ Ωε, also 1 ∈ Ωε, since ‖1‖
∥∥1−1

∥∥=1. Note that

‖a‖
∥∥a−1

∥∥ = ‖za‖
∥∥(za)−1

∥∥ , ∀z ∈ C \ {0}

and this proves zΩ ⊆ Ω for z ∈ C \ {0}. The map a → ‖a‖
∥∥a−1

∥∥ is
continuous and hence Ωε is an open set. These observations prove that Ωε

is a Ransford set.

Definition 2.5 (ε-condition spectrum). Let 0 < ε < 1 and a ∈ A. The
ε-condition spectrum of a for this ε is defined by

σε(a) := {λ ∈ C : λ− a /∈ Ωε} =
{
λ ∈ C : κ(λ− a) ≥ 1

ε

}
with the convention that κ(λ − a) = ∞ when λ − a is not invertible. The
ε-condition spectral radius rε(a) is defined as

rε(a) := sup{|z| : z ∈ σε(a)}.



4 S. H. KULKARNI AND D. SUKUMAR

Recall that the usual spectral radius r(a) is defined by

r(a) := sup{|z| : z ∈ σ(a)}.

We use the following well known result often.

Lemma 2.6. Let a ∈ A and |λ| > ‖a‖; then λ− a is invertible,

(λ− a)−1 =
∞∑
n=0

an

λn+1
and

∥∥(λ− a)−1
∥∥ ≤ 1
|λ| − ‖a‖

.

In the next theorem, we give some properties of the ε-condition spectrum
that follow in a straightforward manner from Definition 2.5 and by the fact
that Ωε is a Ransford set.

Theorem 2.7. (1) σε(0) = {0} and σε(1) = {1}.
(2) If 0 < ε1 < ε2 < 1 then σε1(a) ⊆ σε2(a) for every a ∈ A
(3) σ(a) ⊆ σε(a) for every a ∈ A. In fact

σ(a) =
⋂

0<ε<1

σε(a)

(4) σε(a) is a nonempty compact subset of C for every a ∈ A
(5) The map a→ σε(a) is an upper semicontinuous function from A to

compact subsets of C.
(6) Suppose a = sbs−1 for some a, b, s ∈ A; then σε(a) ⊆ σκ(s)2 ε(b)
(7) σε(α+ βa) = α+ βσε(a) for all α, β ∈ C

Proof. 1, 2 and 3 follow from the definition of ε-condition spectrum. Since
σ(a) is nonempty 3 implies that σε(a) is nonempty. Now 4 and 5 follow from
Theorem 2.3 in this section. 6 follows from the inequality

κ(λ− a) ≤ κ(s)2κ(λ− b)

and 7 follows from

κ (z − (α+ βa)) = κ

(
β

(z − α)
β

− βa
)

= κ

(
(z − α)
β

− a
)
.

�

Remark 2.8. We have proved in (3) of the above theorem that σ(a) ⊆ σε(a).
The reverse inclusion (and hence equality) holds only in a very special case,
when a is a scalar multiple of 1. This is proved in Corollary 3.5.

In the next theorem, we give some properties of the condition spectral radius
rε(a).

Theorem 2.9. (1) r(a) ≤ rε(a) ≤ 1 + ε

1− ε
‖a‖

(2) If ‖an‖ ≤M < 1
ε for all n ≥ 0, then rε(a) ≤ 1 +M2ε

1−M2ε
.
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Proof of 1. Since σ(a) ⊆ σε(a), we have r(a) ≤ rε(a). To prove the remain-
ing part of the inequality consider λ ∈ σε(a). If |λ| ≤ ‖a‖, then clearly

|λ| ≤ 1 + ε

1− ε
‖a‖.

Suppose |λ| > ‖a‖ then λ− a is invertible and
∥∥(λ− a)−1

∥∥ ≤ 1
|λ| − ‖a‖

.

Hence

1 ≤ ε
∥∥(λ− a)−1

∥∥ ‖λ− a‖ ≤ ε |λ|+ ‖a‖
|λ| − ‖a‖

.

On simplification,

|λ| ≤ 1 + ε

1− ε
‖a‖ .

Proof of 2. First note that

r(a) = lim
n→∞

‖an‖
1
n ≤ lim

n→∞
M

1
n = 1.

Let λ ∈ σε(a). If |λ| ≤ 1 then clearly |λ| ≤ 1 +M2

1−Mε
. If |λ| > 1, then

λ /∈ σ(a). Hence λ− a ∈ Inv(A) and

(λ− a)−1 =
∞∑
n=0

an

λn+1
.

Thus

∥∥(λ− a)−1
∥∥ ≤ 1
|λ|

∞∑
k=0

∥∥ak∥∥
|λ|k

≤ M

|λ|

∞∑
k=0

1

|λ|k
=
M

|λ|

 1

1− 1
|λ|

 =
M

|λ| − 1
.

Next since λ ∈ σε(a), we have

1
ε
≤ ‖λ− a‖

∥∥(λ− a)−1
∥∥ ≤ (|λ|+M)

M

|λ| − 1
.

On simplification this becomes

|λ| ≤ 1 +M2ε

1−Mε
provided M <

1
ε
.

Hence

rε(a) ≤ 1 +M2ε

1−Mε
�

The following example shows that inequality (1) of Theorem 2.9 can be-
come equality.

Example 2.10. For the function f ∈ C
(
[−1, 1]

)
defined by f(x) = x in

[−1, 1] this bound is attained. That is
(

1 + ε

1− ε

)
‖f‖ ∈ σε(f).
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Proof. Let λ =
(

1 + ε

1− ε

)
‖f‖ =

(
1 + ε

1− ε

)
; then

‖f − λ‖ =
2

1− ε
and

∥∥(f − λ)−1
∥∥ =

1− ε
2ε

�

Example 2.11 (A diagonal matrix). Let λ1, λ2 ∈ C with λ1 6= λ2 and let

P =
(
λ1 0
0 λ2

)
. Then

‖P − λ‖ = max{|λ− λ1| , |λ− λ2|},∥∥(P − λ)−1
∥∥ = max

{
1

|λ− λ1|
,

1
|λ− λ2|

}
.

Hence

σε(P ) =
{
λ :
|λ− λ1|
|λ− λ2|

≥ 1
ε

}
∪
{
λ :
|λ− λ2|
|λ− λ1|

≥ 1
ε

}
.

Example 2.12 (A triangular matrix). Let R : C2 → C2 defined as R(x, y) =
(0, x) for all (x, y) in C2 (truncation of right shift operator). Considering R
as an operator on C2 we get

‖R− λ‖1 = ‖R− λ‖∞ = 1 + |λ| ,∥∥(R− λ)−1
∥∥

1
=
∥∥(R− λ)−1

∥∥
∞ =

1
|λ|

+
1
|λ|2

.

Hence in both (C2, ‖ ‖1) and (C2, ‖ ‖∞)

σε(R) =
{
λ : |λ| ≤

√
ε

1−
√
ε

}
.

Whereas in (C2, ‖ ‖2)

σε(R) =

λ :

(
1 +

√
4 |λ|2 + 1

)2

2 |λ|2
≥ 1
ε

 .

Example 2.13 (Bilateral Shift). Let v : l2(Z)→ l2(Z) defined as

v(ei) = ei+1, ∀i ∈ Z

where the ei’s form the standard orthonormal basis. Let λ be a complex
number. Consider v − λ, its defining function, (see [7])

a(t) = −λ+ eit.

It is known that ‖v − λ‖ = ‖a(t)‖∞. Hence ‖v − λ‖ = |λ|+ 1.
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When |λ| 6= 1, v− λ is invertible and the defining function of (v− 1)−1 is
1
a(t)

. So,

∥∥(v − λ)−1
∥∥ =

∥∥∥∥ 1
a(t)

∥∥∥∥
∞

=
1

inf0≤t≤2π |a(t)|
=


1

|λ| − 1
for |λ| > 1

1
1− |λ|

for |λ| < 1
.

On combining them we get

κ(v − λ) = ‖v − λ‖
∥∥(v − λ)−1

∥∥ =


|λ|+ 1
|λ| − 1

for |λ| > 1

1 + |λ|
1− |λ|

for |λ| < 1
.

With this, ‖v − λ‖
∥∥(v − λ)−1

∥∥ ≥ 1
ε

if and only if either
1− ε
1 + ε

≤ |λ| < 1 or

1 < |λ| ≤ 1 + ε

1− ε
. It is known that σ(a) = {λ : |λ| = 1}. Hence we have

σε(v) =
{
λ :

1− ε
1 + ε

≤ |λ| ≤ 1 + ε

1− ε

}
.

Example 2.14 (Shift Operators). Let R and L be respectively the right
and left shift operators on lp where p = 1 or ∞. One can get

‖R− λ‖1 = ‖R− λ‖∞ = ‖L− λ‖1 = ‖L− λ‖∞ = |λ|+ 1.

For |λ| > 1 both (R− λ)−1 and (L− λ)−1 exist and∥∥(R− λ)−1
∥∥

1
=
∥∥(R− λ)−1

∥∥
∞ =

∥∥(L− λ)−1
∥∥

1
=
∥∥(L− λ)−1

∥∥
∞ =

1
|λ| − 1

.

With this, for |λ| ≥ 1 and p = 1 or ∞,
∥∥(L− λ)−1

∥∥
p
‖(L− λ)‖p ≥

1
ε

if and

only if |λ| ≤ 1 + ε

1− ε
. It is known that σ(R) = σ(L) = {λ : |λ| ≤ 1} (see [7]).

Hence we get

σε(R) = σε(L) =
{
λ : |λ| ≤ 1 + ε

1− ε

}
.

Example 2.15. Let T : l2 → l2 be defined by

T (x1, x2, . . . , xn, . . . ) =
(
x1,

1
2
x2, . . . ,

1
n
xn, . . .

)
.

It is known that σ(T ) = {0}∪
{

1
n : n ∈ N

}
(see [7]). Let λ = x+ iy ∈ C. As

‖λ− T‖ = sup
n∈N

∣∣∣∣λ− 1
n

∣∣∣∣ , ∥∥(λ− T )−1
∥∥ =

1
infn∈N

∣∣λ− 1
n

∣∣ ,
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we can see that

‖λ− T‖ = sup
n∈N

∣∣∣∣λ− 1
n

∣∣∣∣ =

{
|λ− 1| if x ≤ 1

2

|λ| if x ≥ 1
2

.

But
∥∥(λ− T )−1

∥∥ depends on the distance between λ and the nearest element
to it in σ(a), so we consider λ = x+iy, and compute the ε-condition spectrum
by dividing the real part of λ into a number of parts, that is, dividing the
complex plane into a number of strips. In each strip we estimate ‖λ− T‖
and

∥∥(λ− T )−1
∥∥ and give those elements in the strip which are in the ε-

condition spectrum.
Case: x ≤ 0{

x+ iy :
(
x+

ε

(1− ε)

)2

+ y2 ≤ ε

(1− ε)2

}
⊆ σε(T )

Case: 1
n+1 ≤ x ≤

2n+1
2n(n+1) , n ≥ 2{

x+ iy :
(
x− 1− ε(n+ 1)

(n+ 1)(1− ε)

)2

+ y2 ≤ εn2

(n+ 1)(1− ε)2

}
⊆ σε(T ).

Case: 2n+1
2n(n+1) ≤ x ≤

1
n , n ≥ 2{

x+ iy :
(
x− 1− nε

n(1− ε)

)2

+ y2 ≤ ε(n− 1)2

(n)(1− ε)2

}
⊆ σε(T ).

Case: 1
2 ≤ x ≤

3
4{

x+ iy :
(
x− 1

2(1− ε)

)2

+ y2 ≤ ε

2(1− ε)2

}
⊆ σε(T ).

Case: 3
4 ≤ x ≤ 1{

x+ iy :
(
x− 1

1− ε

)2

+ y2 ≤ ε

(1− ε)2

}
⊆ σε(T ).

Case:x ≥ 1{
x+ iy :

(
x− 1

(1− ε)

)2

+ y2 ≤ ε

(1− ε)2

}
⊆ σε(T ).

And hence σε(T ) contains these sets and nothing more. Note that, when n
is such that 2n2− 1 ≥ 1

ε then all those elements in the ε-condition spectrum
with real part less than 1

n belong to a single component.

Next we consider some other ways of describing the ε-condition spectrum.
Let A be a complex Banach algebra with unit 1. Let Sing(A) = A\Inv(A).



CONDITION SPECTRUM 9

Suppose a ∈ A and r > 0. We use the notation D(a, r) for the open disc
with center at a and radius r. Suppose a ∈ Inv(A), then, since

D

(
a,

1
‖a−1‖

)
⊆ Inv(A),

d(a, Sing(A)) := inf
{
‖a− b‖ : b ∈ Sing(A)

}
≥ 1
‖a−1‖

.

Using this observation, we show that if b is sufficiently small and λ ∈ σ(a+b),
then λ ∈ σε(a). The converse also holds if the Banach algebra A has an
additional property.

Theorem 2.16. Let A be a complex Banach algebra with 1. Let 0 < ε < 1
and a ∈ A be such that a is not a scalar multiple of the identity. Suppose
λ ∈ σ(a+ b) where b ∈ A and ‖b‖ ≤ ε ‖λ− a‖. Then λ ∈ σε(a).

Proof. If λ ∈ σ(a) then the conclusion follows trivially as σ(a) ⊆ σε(a).
Suppose λ /∈ σ(a), then λ − a is invertible and λ − a − b is not invertible.
Hence

‖b‖ = ‖(λ− a− b)− (λ− a)‖ ≥ 1
‖(λ− a)−1‖

.

That is,
1

‖(λ− a)−1‖
≤ ‖b‖ ≤ ε ‖λ− a‖ .

Thus
1
ε
≤ ‖λ− a‖

∥∥(λ− a)−1
∥∥ .

Hence λ ∈ σε(a). �

Lemma 2.17. Suppose A is a complex Banach algebra with the following
property:

∀a ∈ Inv(A),∃b ∈ Sing(A) such that ‖a− b‖ =
1

‖a−1‖
.

Then for every a ∈ A such that a is not a scalar multiple of the identity and
λ ∈ σε(a), there exists an element b ∈ Sing(A) such that

‖b‖ ≤ ε ‖λ− a‖ and λ ∈ σ(a+ b).

Proof. If λ ∈ σ(a), we can take b = 0.
Suppose λ ∈ σε(a) \ σ(a). Then λ− a ∈ Inv(A). Hence, by assumption,

there exists an element c ∈ Sing(A) such that

‖λ− a− c‖ =
1

‖(λ− a)−1‖
.

Let b = λ− a− c. Then

‖b‖ =
1

‖(λ− a)−1‖
≤ ε ‖λ− a‖ .

Also c = λ− a− b ∈ Sing(A), that is λ ∈ σ(a+ b). �
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Example 2.18. The Banach algebra C(X), X, a compact Hausdorff space,
satisfies the above property. Suppose f ∈ C(X) is invertible. Then there
exists an x0 ∈ X, such that

0 < |f(x0)| ≤ |f(x)| , ∀x ∈ X.

Then |f(x0)| = 1
‖f−1‖

. Consider g(x) = f(x0) for all x ∈ X. Then

‖f − (f − g)‖ = ‖g‖ = |f(x0)| = 1
‖f−1‖

.

Also (f − g)(x0) = 0, hence f − g is not invertible.

Example 2.19. Let A = B(H) and T ∈ Inv(A). Suppose there exists
x, y ∈ H such that ‖x‖ = 1 = ‖y‖ and∥∥T−1

∥∥ =
∣∣〈T−1x, y〉

∣∣ = 〈T−1x, y〉.

In particular, T−1x 6= 0. (This will always happen ifH is finite dimensional).
Define P : H → H by

P (u) =
1

‖T−1‖
〈u, y〉x.

Then ‖P‖ =
1

‖T−1‖
. Also

(T − P )(T−1x) = x− 1
‖T−1‖

〈T−1x, y〉x = 0.

Hence T − P is not invertible. This shows that

d(T, Sing(A)) ≤ ‖P‖ =
1

‖T−1‖

and this proves d(T, Sing(A)) =
1

‖T−1‖
. Thus, in particular, if H is finite

dimensional, then B(H) satisfies the hypothesis of Theorem 2.17.

Example 2.20. The matrix algebra Cn×n has this property.

Corollary 2.21. Let A be a complex Banach algebra satisfying the hypothe-
sis of Lemma 2.17 and a ∈ A such that a is not a scalar multiple of the iden-
tity. Then λ ∈ σε(a)⇔ ∃b ∈ A with ‖b‖ ≤ ε ‖λ− a‖ such that λ ∈ σ(a+ b).

Proof. Proof follows from Theorem 2.16 and Lemma 2.17. �

3. Geometric properties

In this section. we prove some results that give a better geometric picture
of the ε-condition spectrum and show that the ε-condition spectrum has
several properties that are different from those of the usual spectrum. These
results imply that except for a very special case, when a is a scalar multiple
of 1, the ε-condition spectrum of a has no isolated points and it is strictly
bigger than the usual spectrum.
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Theorem 3.1. Let A be a complex unital Banach algebra and a ∈ A such
that a 6= λ for every λ ∈ C. Then σε(a) has no isolated points.

Proof. Suppose λ0 ∈ σε(a) is an isolated point of σε(a). Then there exists
r > 0 such that for all λ with 0 < |λ− λ0| < r,∥∥(λ− a)−1

∥∥ ‖λ− a‖ < ε−1.

Case 1 : Suppose λ0 ∈ σε(a) \ σ(a). By the Hahn Banach Theorem there
exists φ, ψ ∈ A′(the dual space of A) such that

φ(λ0 − a) = ‖λ0 − a‖ , ‖φ‖ = 1,

ψ((λ0 − a)−1) =
∥∥(λ0 − a)−1

∥∥ and ‖ψ‖ = 1.

Define f : C \ σ(a)→ C by

f(z) = φ(z − a)ψ((z − a)−1).

Then f is analytic in D(λ0, r) Also, for all λ ∈ D(λ0, r) with λ 6= λ0,

|f(λ)| ≤
∥∥(λ− a)−1

∥∥ ‖λ− a‖ < ε−1

and

f(λ0) = φ(λ0 − a)ψ((λ0 − a)−1)

=
∥∥(λ0 − a)−1

∥∥ ‖λ0 − a‖
≥ ε−1.

This contradicts the maximum modulus principle.
Case 2 : Suppose λ0 ∈ σ(a)

Since λ0 6= a, ‖λ0 − a‖ > 0. Since ‖λ− a‖ → ‖λ0 − a‖ as λ → λ0, there
exists 0 < δ1 such that

|λ− λ0| < δ1 ⇒ ‖λ− a‖ >
‖λ0 − a‖

2
.

Also
∥∥(λ− a)−1

∥∥→∞ as λ→ λ0 (see [3]).
Hence there exists 0 < δ2 < r such that

|λ− λ0| < δ2 ⇒
∥∥(λ− a)−1

∥∥ > 2
ε ‖λ0 − a‖

.

Consider λ satisfying

0 < |λ− λ0| < min{δ1, δ2, r}

Then for this λ, we have
∥∥(λ− a)−1

∥∥ ‖λ− a‖ > ‖λ0 − a‖
2

2
ε ‖λ0 − a‖

> ε−1,

a contradiction again. �

Corollary 3.2. If σε(a) = {λ0} for some λ0 ∈ C, then a = λ0.

Proof. By Theorem 3.1, a = λ for some λ ∈ C. Since ∅ 6= σ(a) ⊆ σε(a) =
{λ0} implies σ(a) = {λ0}, it is easy to see that λ = λ0. �
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Remark 3.3. A very well known classical problem in operator theory,
known as the “T = I?” problem, asks the following question. Let T be
an operator on a Banach space. Suppose σ(T ) = {1}. Under what addi-
tional conditions can we conclude T = I? A survey article [12] contains
details of many classical results about this problem. From the previous
corollary it follows that if σε(T ) = {1} then T = I. In other words if we
replace the spectrum by the ε-condition spectrum in the “T = I” problem,
then no additional conditions are required.

Corollary 3.4. If a is not a scalar multiple of the identity, then for each
λ0 ∈ σ(a), there exists r > 0 such that D(λ0, r) ⊆ σε(a). In particular, σε(a)
contains properly an open neighbourhood of σ(a).

Proof. Suppose for every r > 0, D(λ0, r) * σε(a) then there exists λn → λ0

such that λn /∈ σε(a). Since m = infλ∈C ‖a− λ‖ > 0 and λn /∈ σε(a), it
follows that

∥∥(a− λn)−1
∥∥ ≤ 1

mε . On the other hand, since λ0 ∈ σ(a), we
must have

∥∥(a− λn)−1
∥∥→∞. A contradiction.

The last conclusion follows by taking λ0 in the boundary of σ(a). �

Corollary 3.5. If for some a ∈ A, σε(a) = σ(a) then a = λ0 for some
λ0 ∈ C.

Proof. This follows from Corollary 3.4. �

The next theorem proves a special property of the ε-condition spectrum
which is not true for the usual spectrum.

Theorem 3.6. Let a ∈ A and 0 < ε < 1. Then σε(a) has a finite number of
components and every component of σε(a) contains an element from σ(a).

Proof. First we prove that σ(a) is covered by a finite number of components
of σε(a). This is trivial if σ(a) is a singleton set. Otherwise, by corollary
3.4, for each λ ∈ σ(a) there exists rλ > 0 such that D(λ, rλ) ⊆ σε(a). Hence
{D(λ, rλ) : λ ∈ σ(a)} is an open cover for σ(a). Since σ(a) is compact,

σ(a) ⊆ ∪ni=1D(λi, ri).

Since each D(λi, ri) is connected, it must be contained in some component
Ci of σε(a). Thus we get closed components C1, . . . , Cm of σε(a) such that

σ(a) ⊆ ∪mi=1Ci.

Claim: σε(a) = ∪mi=1Ci.

Suppose z0 ∈ σε(a) \ ∪ni=1Ci; then κ(z0 − a) ≥ 1
ε . Let r >

1 + ε

1− ε
‖a‖; then

by part (1) of Theorem 2.9, σ(a) ⊆ σε(a) ⊆ D(0, r). Let S := D(0, r) \
∪ni=1Ci. Clearly S is an open set and z0 ∈ S. Let S0 be the component of S
containing z0. Note that S0 is also an open set. Define f : S0 ⊆ ρ(a) → R
as f(z) = κ(z−a). By the Hahn-Banach Theorem, there exist φ and ψ such
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that

φ(z0 − a) = ‖z0 − a‖ , ‖φ‖ = 1,

ψ
(
(z0 − a)−1

)
=
∥∥(z0 − a)−1

∥∥ , ‖ψ‖ = 1

and define g : S → C by

g(z) = φ(z − a)ψ((z − a)−1) z ∈ S.

Observe that g is a holomorphic function on S0 and

|g(z)| =
∣∣φ(z − a)ψ

(
(z − a)−1

)∣∣ ≤ ‖z − a‖ ∥∥(z − a)−1
∥∥ = f(z)

for all z ∈ S0 ⊆ ρ(a). Moreover, for all z ∈ ∂D(0, r), f(z) < 1
ε and for all

z ∈ ∪mi=1∂Ci, f(z) = 1
ε and hence

(2) |g(z)| ≤ 1
ε
, z ∈ ∂S0

as

∂S0 ⊆ ∂D(0, r)
⋃
∪ni=1∂Ci.

We know S0 is an open connected set and g is a holomorphic function on
S0 and satisfying inequality in (2) and z0 is an interior point with g(z0) =
f(z0) ≥ 1

ε . Hence g must be constant by the maximum modulus principle
so that for all z ∈ S0,

f(z) ≥ |g(z)| = g(z0) ≥ 1
ε
.

Hence S0 ⊆ σε(a). Also by the continuity of g we get

|g(z)| ≥ 1
ε
, ∀z ∈ S̄0.

If ∂S0 ∩ ∂D(0, r) 6= ∅ then this leads to a contradiction as

|g(z)| ≤ f(z) <
1
ε
, ∀z ∈ ∂D(0, r).

If ∂S0∩∂Ci 6= ∅ for some Ci then S0∪Ci is a connected subset of σε(a). Hence
S0 ∪ Ci = Ci as Ci is a component. But then S0 ⊆ Ci a contradiction. �

Corollary 3.7. If M ∈ Cn×n and σε(M) has n components, then M is
diagonalizable.

Proof. By Theorem 3.6 each of the n distinct components contains an eigen-
value. Thus M has n distinct eigenvalues. �

Note that for the matrix M in Example 2.12, σε(M) has only one com-
ponent. On the other hand for the matrix R of Example 2.11, σε(R) has 2
components.
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