Biggest open ball in invertible elements of a Banach algebra

D. Sukumar
Geethika
Indian Institute of Technology Hyderabad suku@iith.ac.in

Banach Algebras and Applications Workshop-2015
Fields Institute, Toronto, Canada.
August 4, 2015

Group of invertible elements in a Banach Algebra

Let A be a complex unital Banach Algebra and $G(A)$ denote the group of invertible elements of A.

Theorem

$G(A)$ is an open set in A.

$$
B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right) \subseteq G(A)
$$

Is this the biggest ball?
Does there exists a non-invertible $b \in A$ such that $\|b-a\|=\frac{1}{\left\|a^{-1}\right\|}$

Biggest Open Ball Property (BOBP)

Definition (An element has BOBP)

An element $a \in G(A)$ has BOBP if the boundary of the ball $B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right)$ intersects Sing (A).

Definition (BOBP)

A Banach algebra has BOBP if every element of $G(A)$ has BOBP.
Can we characterise all Banach Algebras which satisfy BOBP?
Can we characterise all the elements of a Banach Algebra, which do not satisfy BOBP?

Positive observations for BOBP

The Banach algebra of complex numbers C
Let $z \in \mathbb{C}$ be invertible. $\left|z^{-1}\right|=\frac{1}{|z|}$. Then $B\left(z, \frac{1}{\left|z^{-1}\right|}\right)=B(z,|z|)$. Here 0 is the singular element on the boundary.

Positive observations for BOBP

The Banach algebra of complex numbers C
Let $z \in \mathbb{C}$ be invertible. $\left|z^{-1}\right|=\frac{1}{|z|}$. Then $B\left(z, \frac{1}{\left|z^{-1}\right|}\right)=B(z,|z|)$. Here 0 is the singular element on the boundary.

Positive observations for BOBP

The Banach algebra of complex numbers C
Let $z \in \mathbb{C}$ be invertible. $\left|z^{-1}\right|=\frac{1}{\mid z}$. Then $B\left(z, \frac{1}{\mid z^{-1 \mid}}\right)=B(z,|z|)$. Here 0 is the singular element on the boundary.

Positive observations for BOBP

The uniform algebra $C(X), X$ compact Hausdorff Space
Let $f \in C(X)$ be invertible.

$$
\left\|f^{-1}\right\|_{\infty}=\sup _{x \in X}\left\{\frac{1}{|f(x)|}\right\}=\frac{1}{i \inf _{x \in X}\{|f(x)|\}}=\frac{1}{\left|f\left(x_{0}\right)\right|} \text { for some } x_{0} \in X
$$

Positive observations for BOBP

The uniform algebra $C(X), X$ compact Hausdorff Space
Let $f \in C(X)$ be invertible.

$$
\left\|f^{-1}\right\|_{\infty}=\sup _{x \in X}\left\{\frac{1}{|f(x)|}\right\}=\frac{1}{\inf _{x \in X}\{|f(x)|\}}=\frac{1}{\left|f\left(x_{0}\right)\right|} \text { for some } x_{0} \in X
$$

Consider $g(x)=f(x)-f\left(x_{0}\right)$. Then g is singular and

$$
\|f-g\|_{\infty}=\left|f\left(x_{0}\right)\right|=\frac{1}{\|f-1\|}
$$

Positive observations for BOBP

The uniform algebra $C(X), X$ compact Hausdorff Space Let $f \in C(X)$ be invertible.

$$
\left\|f^{-1}\right\|_{\infty}=\sup _{x \in X}\left\{\frac{1}{|f(x)|}\right\}=\frac{1}{\inf _{x \in X}\{|f(x)|\}}=\frac{1}{\left|f\left(x_{0}\right)\right|} \text { for some } x_{0} \in X
$$

Consider $g(x)=f(x)-f\left(x_{0}\right)$. Then g is singular and

$$
\|f-g\|_{\infty}=\left|f\left(x_{0}\right)\right|=\frac{1}{\left\|f^{-1}\right\|}
$$

Commutative unital C^{*} algebra

Since it is true for $C(X), X$ compact and Hausdorff, by representation theorem, any commutative unital C^{*} algebras has BOBP.
For general C^{*} algebra. If $x \in G(A)$ is normal, the x satisfies BOBP.

Positive observations for BOBP

Operator algebra $B(H)$

Condition number 1

Let $T \in B(H)$ be invertible such that $\|T\|\left\|T^{-1}\right\|=1$, then T has BOBP.

Positive observations for BOBP

Operator algebra $B(H)$

Condition number 1

Let $T \in B(H)$ be invertible such that $\|T\|\left\|T^{-1}\right\|=1$, then T has BOBP.
Norm attaining T^{-1}
Let $T \in B(H)$ be invertible and T^{-1} is norm attaining, then T has BOBP.

Positive observations for BOBP

Operator algebra $B(H)$

Condition number 1

Let $T \in B(H)$ be invertible such that $\|T\|\left\|T^{-1}\right\|=1$, then T has BOBP.
Norm attaining T^{-1}
Let $T \in B(H)$ be invertible and T^{-1} is norm attaining, then T has BOBP.

Example

The matrix algebra $\mathcal{M}_{n \times n}(\mathbb{C})$ has BOBP.

Positive observations for BOBP

Theorem
$B(H)$ has BOBP.

Positive observations for BOBP

Theorem
$B(H)$ has BOBP.

Proof.

Let T be invertible in $B(H)$.

Positive observations for BOBP

Theorem
 $B(H)$ has BOBP.

Proof.

Let T be invertible in $B(H)$. Let $T=V|T|$ be the polar decomposition. As T is invertible, V is unitary and $|T|$ also invertible.

Positive observations for BOBP

Theorem
 $B(H)$ has BOBP.

Proof.

Let T be invertible in $B(H)$. Let $T=V|T|$ be the polar decomposition. As T is invertible, V is unitary and $|T|$ also invertible. As $|T|$ is self-adjoint

$$
\left\|T^{-1}\right\|=\left\||T|^{-1}\right\|=\sup _{\lambda \in \sigma(|T|)}\left\{\frac{1}{|\lambda|}\right\}=\frac{1}{\left|\lambda_{0}\right|} \text { for some } \lambda_{0} \in \sigma(|T|)
$$

Positive observations for BOBP

Theorem
 $B(H)$ has BOBP.

Proof.

Let T be invertible in $B(H)$. Let $T=V|T|$ be the polar decomposition. As T is invertible, V is unitary and $|T|$ also invertible. As $|T|$ is self-adjoint

$$
\left\|T^{-1}\right\|=\left\||T|^{-1}\right\|=\sup _{\lambda \in \sigma(|T|)}\left\{\frac{1}{|\lambda|}\right\}=\frac{1}{\left|\lambda_{0}\right|} \text { for some } \lambda_{0} \in \sigma(|T|)
$$

Note that $|T|-\lambda_{0}$ is not invertible.

Positive observations for BOBP

Theorem
 $B(H)$ has $B O B P$.

Proof.

Let T be invertible in $B(H)$. Let $T=V|T|$ be the polar decomposition. As T is invertible, V is unitary and $|T|$ also invertible. As $|T|$ is self-adjoint

$$
\left\|T^{-1}\right\|=\left\||T|^{-1}\right\|=\sup _{\lambda \in \sigma(|T|)}\left\{\frac{1}{|\lambda|}\right\}=\frac{1}{\left|\lambda_{0}\right|} \text { for some } \lambda_{0} \in \sigma(|T|)
$$

Note that $|T|-\lambda_{0}$ is not invertible. Consider the operator

$$
S=V\left(|T|-\lambda_{0} I\right)=V|T|-\lambda_{0} V=T-\lambda_{0} V .
$$

Positive observations for BOBP

Theorem
 $B(H)$ has BOBP.

Proof.

Let T be invertible in $B(H)$. Let $T=V|T|$ be the polar decomposition. As T is invertible, V is unitary and $|T|$ also invertible. As $|T|$ is self-adjoint

$$
\left\|T^{-1}\right\|=\left\||T|^{-1}\right\|=\sup _{\lambda \in \sigma(|T|)}\left\{\frac{1}{|\lambda|}\right\}=\frac{1}{\left|\lambda_{0}\right|} \text { for some } \lambda_{0} \in \sigma(|T|)
$$

Note that $|T|-\lambda_{0}$ is not invertible. Consider the operator

$$
S=V\left(|T|-\lambda_{0} I\right)=V|T|-\lambda_{0} V=T-\lambda_{0} V .
$$

Then S is not invertible and $\|S-T\|=\left|\lambda_{0}\right|=\frac{1}{\left\|T^{-1}\right\|}$

Negative observations for BOBP

$B\left(a, \frac{1}{\left\|a^{-1}\right\|}\right)$ is not the biggest open ball around a contained in $G(A)$
There exists $a \in G(A)$ such that for every b singular

$$
\|a-b\|>\frac{1}{\left\|a^{-1}\right\|}
$$

Negative observations for BOBP

Banach function algebra $C^{1}[0,1]$
$C^{1}[0,1]$ equipped with the norm

$$
\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \forall f \in C^{1}[0,1] .
$$

Negative observations for BOBP

Banach function algebra $C^{1}[0,1]$
$C^{1}[0,1]$ equipped with the norm

$$
\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \forall f \in C^{1}[0,1] .
$$

Let $f(x)=e^{x}$ be an invertible element. Here

$$
\left\|f^{-1}\right\|=\left\|\frac{1}{e^{x}}\right\|_{\infty}+\left\|\frac{-1}{e^{x}}\right\|_{\infty}=2
$$

Negative observations for BOBP

Banach function algebra $C^{1}[0,1]$

$C^{1}[0,1]$ equipped with the norm

$$
\|f\|=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty} \forall f \in C^{1}[0,1] .
$$

Let $f(x)=e^{x}$ be an invertible element. Here

$$
\left\|f^{-1}\right\|=\left\|\frac{1}{e^{x}}\right\|_{\infty}+\left\|\frac{-1}{e^{x}}\right\|_{\infty}=2
$$

Let g be singular. That is $g\left(x_{0}\right)=0$ for some $x_{0} \in[0,1]$. Then
$\|f-g\|=\|f-g\|_{\infty}+\left\|f^{\prime}-g^{\prime}\right\|_{\infty} \geq\left|f\left(x_{0}\right)-g\left(x_{0}\right)\right|=e^{x_{0}}>\frac{1}{2}=\frac{1}{\|f-1\|}$

Negative observations for BOBP

The group algebra $\ell^{1}\left(\mathbb{Z}_{2}\right)$
Wiener algebra $A(\mathbb{T})$
The set of all complex valued functions on $[-\pi, \pi]$ with absolutely convergent Fourier series, that is, functions of the form

$$
f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n t}, t \in[-\pi, \pi]
$$

with $\|f\|=\sum_{n=-\infty}^{\infty}\left|c_{n}\right|<\infty$.

Summary

BOBP

- $C(X), X$ compact T_{2}
- Commutative C^{*} algebra
- $M_{n}(\mathbb{C})$
- $B(H)$

Does not have BOBP

- $C^{1}[0,1]$
- $\ell^{1}\left(\mathbb{Z}_{2}\right)$
- $A(\mathbb{T})$ - Wiener algebra

Thank you

