The Sensitivity Conjecture and its Resolution

Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering Indian Institute of Technology Hyderabad

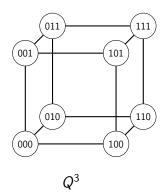
Online CS Theory Seminar Series 27 May 2020

Hao Huang

"Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture". Annals of Mathematics. 190 (3) Nov 2019: pp. 949–955.

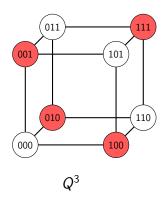
Some slides are adapted from Huang's TCS+ talk slides.

A Combinatorial Question



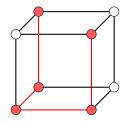
- The boolean hypercube Q^n has vertex set $\{0,1\}^n$.
- Two vertices are adjacent iff they differ in exactly one coordinate.
- ► The 2² red points in Q³ form an independent set
- In Qⁿ, we can select 2ⁿ⁻¹ points that form an independent set.
- We are interested in the max degree of the graph induced by $2^{n-1} + 1$ selected points.

A Combinatorial Question



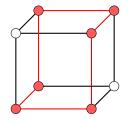
- The boolean hypercube Q^n has vertex set $\{0,1\}^n$.
- ► Two vertices are adjacent iff they differ in exactly one coordinate.
- ► The 2² red points in Q³ form an independent set.
- In Qⁿ, we can select 2ⁿ⁻¹ points that form an independent set.
- We are interested in the max degree of the graph induced by 2^{n−1} + 1 selected points.

$2^{n-1} + 1$ points of Q^3



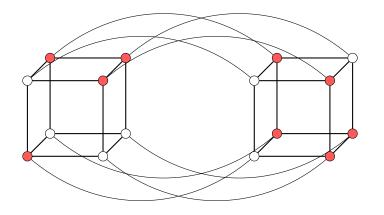
- ▶ The red vertices give an induced path on 5 vertices.
- We can even form an induced cycle on 6 vertices.
- In any combination of 5 vertices, there exists a vertex of degree ≥ 2.

$2^{n-1}+1$ points of Q^3



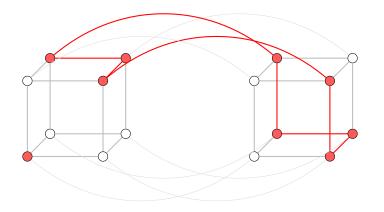
- ▶ The red vertices give an induced path on 5 vertices.
- ▶ We can even form an induced cycle on 6 vertices.
- In any combination of 5 vertices, there exists a vertex of degree ≥ 2.

$2^{n-1} + 1$ points of Q^4



- ► The nine red vertices give an induced graph with maximum degree 2.
- In any combination of 9 vertices, there exists a vertex of degree ≥ 2.

$2^{n-1} + 1$ points of Q^4



- ► The nine red vertices give an induced graph with maximum degree 2.
- In any combination of 9 vertices, there exists a vertex of degree ≥ 2.

What is the smallest possible value of the maximum degree of H, where H is an induced subgraph of Q^n , with $|V(H)| = 2^{n-1} + 1$?

In other words

We want to determine the following:

$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v \in V(H)\}} \deg_H v.$$

What is
$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v\in V(H)\}} \deg_H v$$
? (*)

Theorem (Chung, Füredi, Graham, Seymour 1988)

- Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n has maximum degree at least $(1/2-o(1))\log n$. Ans of $(\star)=\Omega(\log n)$.
- ▶ Q^n has a $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree $\lceil \sqrt{n} \rceil$. Ans of $(\star) \leq \sqrt{n}$.

What is
$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v\in V(H)\}} \deg_H v$$
? (**)

Theorem (Chung, Füredi, Graham, Seymour 1988)

- Every $(2^{n-1} + 1)$ -vertex induced subgraph of Q^n has maximum degree at least $(1/2 o(1)) \log n$. Ans of $(\star) = \Omega(\log n)$.
- ▶ Q^n has a $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree $\lceil \sqrt{n} \rceil$. Ans of $(\star) \leq \sqrt{n}$.

What is
$$\min_{\{H:|V(H)|=2^{n-1}+1\}}\max_{\{v\in V(H)\}}\deg_H v? \qquad \textcolor{red}{(\star)}$$

Theorem (Chung, Füredi, Graham, Seymour 1988)

- Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n has maximum degree at least $(1/2-o(1))\log n$. Ans of $(\star)=\Omega(\log n)$.
- ▶ Q^n has a $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree $\lceil \sqrt{n} \rceil$. Ans of $(\star) \leq \sqrt{n}$.

Upper Bound: Let $[n] = F_1 \cup F_2 \cup ... \cup F_{\sqrt{n}}$, with each $|F_i| = \sqrt{n}$. Let X be defined as the following set of points of $\{0,1\}^n$.

{even sets that contain some F_i } \cup {odd sets that don't contain any F_i }. It can be verified that $|X| = 2^{n-1} \pm 1$ while $\Delta(X) = \Delta(X^C) = \sqrt{n}$.

What is
$$\min_{\{H:|V(H)|=2^{n-1}+1\}} \max_{\{v\in V(H)\}} \deg_H v$$
? (*)

Theorem (Chung, Füredi, Graham, Seymour 1988)

- Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n has maximum degree at least $(1/2-o(1))\log n$. Ans of $(\star)=\Omega(\log n)$.
- ▶ Q^n has a $(2^{n-1} + 1)$ -vertex induced subgraph of maximum degree $\lceil \sqrt{n} \rceil$. Ans of $(\star) \leq \sqrt{n}$.

Theorem (Huang 2019)

Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n contains a vertex of degree at least \sqrt{n} . Ans of $(\star) = \sqrt{n}$.

Proof of Huang's Result

Theorem (Huang 2019)

Every $(2^{n-1} + 1)$ -vertex induced subgraph of Q^n contains a vertex of degree at least \sqrt{n} .

Lemma

Let G be a graph. Let λ_1 be the largest eigenvalue of A, the adjacency matrix of G. Then

$$\lambda_1 \leq \Delta(G)$$
.

Proof: Let \mathbf{v} be an eigenvector corresponding to λ_1 . Let v_i be the entry of \mathbf{v} with the largest absolute value. Then

$$|\lambda_1 v_i| = |(A\mathbf{v})_i| = |\sum_{i \sim i} v_j| \le \Delta(G) \cdot |v_i|.$$

Proof of Huang's Result

Theorem (Huang 2019)

Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n contains a vertex of degree at least \sqrt{n} .

Lemma

Let G be a graph. Let λ_1 be the largest eigenvalue of A, the adjacency matrix of G. Then

$$\lambda_1 \leq \Delta(G)$$
.

Proof: Let \mathbf{v} be an eigenvector corresponding to λ_1 . Let v_i be the entry of \mathbf{v} with the largest absolute value. Then

$$|\lambda_1 v_i| = |(A\mathbf{v})_i| = |\sum_{i \sim i} v_i| \leq \Delta(G) \cdot |v_i|.$$

Elgenvalue Interlacing

Cauchy's Interlacing Theorem

Let A be a symmetric matrix of size n, and B is a principal submatrix of A of size $m \le n$. Suppose the eigenvalues of A are

$$\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$$
,

and the eigenvalues of B are

$$\mu_1 \geq \mu_2 \geq \ldots \geq \mu_m$$
.

Then for $1 \le i \le m$, we have

$$\lambda_{i+n-m} \leq \mu_i \leq \lambda_i$$
.

The *i*th largest eigenvalue of B is at most the *i*th largest eigenvalue of A, and the *j*th smallest eigenvalue of B is at least the *j*th smallest eigenvalue of A.

Applying Interlacing on Q^n

- ▶ Let H be an induced subgraph of Q^n on $2^{n-1} + 1$ vertices.
- ▶ Then $\lambda_1(H) \geq \lambda_{2^{n-1}}(Q^n)$.
- ▶ The eigenvalues of Q^n are

$$n^{\binom{n}{0}}, (n-2)^{\binom{n}{1}}, \ldots, (n-2i)^{\binom{n}{i}}, \ldots, (-n)^{\binom{n}{n}}.$$

Depending on the parity of n, we get $\Delta(H) \ge \lambda_1(H) \ge 0$ or $\Delta(H) \ge \lambda_1(H) \ge 1$.

Applying Interlacing on Q^n

- ▶ Let H be an induced subgraph of Q^n on $2^{n-1} + 1$ vertices.
- ▶ Then $\lambda_1(H) \geq \lambda_{2^{n-1}}(Q^n)$.
- ightharpoonup The eigenvalues of Q^n are

$$n^{\binom{n}{0}}, (n-2)^{\binom{n}{1}}, \ldots, (n-2i)^{\binom{n}{i}}, \ldots, (-n)^{\binom{n}{n}}.$$

Depending on the parity of n, we get $\Delta(H) \ge \lambda_1(H) \ge 0$ or $\Delta(H) \ge \lambda_1(H) \ge 1$.

Signed Adjacency Matrix

Lemma

For every graph, and M is a symmetric signed adjacency matrix of G with largest eigenvalue λ_1 ,

$$\lambda_1 \leq \Delta(G)$$
.

The proof is exactly the same as before.

If we can find such an M, whose 2^{n-1} th largest eigenvalue is \sqrt{n} , then we are done!

The matrix M

We can view the adjacency matrix of Q^n as follows:

$$Q^{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad Q^{n} = \begin{bmatrix} Q^{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & Q^{n-1} \end{bmatrix}.$$

- ▶ There are two copies of Q^{n-1} and the identity matrix denotes the edges that connect the corresponding vertices.
- Huang considers the following matrix for obtaining the bound.

$$M_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad M_n = \begin{bmatrix} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{bmatrix}$$

The matrix M

We can view the adjacency matrix of Q^n as follows:

$$Q^{1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad Q^{n} = \begin{bmatrix} Q^{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & Q^{n-1} \end{bmatrix}.$$

- ▶ There are two copies of Q^{n-1} and the identity matrix denotes the edges that connect the corresponding vertices.
- Huang considers the following matrix for obtaining the bound.

$$M_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad M_n = \begin{bmatrix} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{bmatrix}.$$

Eigenvalues of M_n

$$\begin{split} M_{n}^{2} &= \left[\begin{array}{cc} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{array} \right] \left[\begin{array}{cc} M_{n-1} & I_{2^{n-1}} \\ I_{2^{n-1}} & -M_{n-1} \end{array} \right] \\ &= \left[\begin{array}{cc} M_{n-1}^{2} + I_{2^{n-1}} & 0 \\ 0 & M_{n-1}^{2} + I_{2^{n-1}} \end{array} \right] = nI_{2^{n}}. \end{split}$$

- ▶ By induction, $M_n^2 = nI$.
- ▶ This means that all the eigenvalues of M_n are $\pm \sqrt{n}$.
- ▶ M_n is a signed adjacency matrix of Q^n , hence trace $(M_n) = 0$.
- ▶ The eigenvalues are \sqrt{n} and $-\sqrt{n}$, each with multiplicty 2^{n-1} .
- ▶ In particular, the 2^{n-1} -th largest eigenvalue is \sqrt{n} , completing the proof!

Avoiding the Interlacing Theorem

- ▶ M_n has eigenvalue \sqrt{n} with multiplicity 2^{n-1} .
- Let B be the $2^n \times 2^{n-1}$ matrix where each column is an eigenvector with eigenvalue \sqrt{n} . That is, $M_n B = \sqrt{n} B$.
- ▶ Let B^* be a $2^{n-1} 1 \times 2^{n-1}$ matrix consisting of the $2^{n-1} 1$ rows of B that correspond to vertices that **don't** belong to H.
- ▶ \exists a $2^{n-1} \times 1$ vector $x \neq 0$ such that $B^*x = 0$.
- ▶ Then y = Bx is a $2^n \times 1$ vector that is zero outside H.
- ▶ $M_n y = \sqrt{n} y$, since y is a linear combination of columns of B.
- ▶ Then $A(H)y = \sqrt{ny}$ since y is zero outside H.
- ▶ Therefore $\Delta(H) \ge \lambda_1(H) \ge \sqrt{n}$.

Exposition by Don Knuth of a comment by Shalev Ben-David on Scott Aaronson's blog.

Avoiding the Interlacing Theorem

- ▶ M_n has eigenvalue \sqrt{n} with multiplicity 2^{n-1} .
- ▶ Let *B* be the $2^n \times 2^{n-1}$ matrix where each column is an eigenvector with eigenvalue \sqrt{n} . That is, $M_n B = \sqrt{n}B$.
- ▶ Let B^* be a $2^{n-1} 1 \times 2^{n-1}$ matrix consisting of the $2^{n-1} 1$ rows of B that correspond to vertices that **don't** belong to H.
- ▶ \exists a $2^{n-1} \times 1$ vector $x \neq 0$ such that $B^*x = 0$.
- ▶ Then y = Bx is a $2^n \times 1$ vector that is zero outside H.
- ▶ $M_n y = \sqrt{n} y$, since y is a linear combination of columns of B.
- ▶ Then $A(H)y = \sqrt{ny}$ since y is zero outside H.
- ▶ Therefore $\Delta(H) \ge \lambda_1(H) \ge \sqrt{n}$.

Exposition by Don Knuth of a comment by Shalev Ben-David on Scott Aaronson's blog.

Theorem (Hadamard's Inequality)

For an $m \times m$ matrix M with row vectors \mathbf{v}_i ,

$$|\det(M)| \leq \prod_{i=1}^m ||\mathbf{v}_i||.$$

Equality is achieved if and only if all the row vectors are orthogonal.

- Since M_n is a signed adjacency matrix of Q^n , Hadamard's Inequality implies $|\det(M_n)| \leq (\sqrt{n})^{2^n}$.
- ► The 2^{n-1} -th largest eigenvalue of M_n is at least \sqrt{n} . Since the matrix is the adjacency matrix of a bipartite graph, the eigenvalues are symmetric about 0. Thus $|\det(M_n)| \ge (\sqrt{n})^{2^n}$.

So we need that all rows are orthogonal: i.e., $M_n^T M_n = nI$

Theorem (Hadamard's Inequality)

For an $m \times m$ matrix M with row vectors \mathbf{v}_i ,

$$|\det(M)| \leq \prod_{i=1}^m ||\mathbf{v}_i||.$$

Equality is achieved if and only if all the row vectors are orthogonal.

- ▶ Since M_n is a signed adjacency matrix of Q^n , Hadamard's Inequality implies $|\det(M_n)| \le (\sqrt{n})^{2^n}$.
- ▶ The 2^{n-1} -th largest eigenvalue of M_n is at least \sqrt{n} . Since the matrix is the adjacency matrix of a bipartite graph, the eigenvalues are symmetric about 0. Thus $|\det(M_n)| \ge (\sqrt{n})^{2^n}$.

So we need that all rows are orthogonal: i.e., $M_n^T M_n = n I$.

Theorem (Hadamard's Inequality)

For an $m \times m$ matrix M with row vectors \mathbf{v}_i ,

$$|\det(M)| \leq \prod_{i=1}^m ||\mathbf{v}_i||.$$

Equality is achieved if and only if all the row vectors are orthogonal.

- Since M_n is a signed adjacency matrix of Q^n , Hadamard's Inequality implies $|\det(M_n)| \leq (\sqrt{n})^{2^n}$.
- ▶ The 2^{n-1} -th largest eigenvalue of M_n is at least \sqrt{n} . Since the matrix is the adjacency matrix of a bipartite graph, the eigenvalues are symmetric about 0. Thus $|\det(M_n)| \ge (\sqrt{n})^{2^n}$.

So we need that all rows are orthogonal: i.e., $M_n^T M_n = nI$.

We need $M_n^T M_n = nI$. Let $M_n = \begin{bmatrix} B & K \\ K & C \end{bmatrix}$.

Here B and C are signed adjacency matrices of Q^{n-1} and K is a diagonal matrix with ± 1 entries.

$$M_n^2 = \begin{bmatrix} B^2 + K^2 & BK + KC \\ KB + CK & C^2 + K^2 \end{bmatrix} = \begin{bmatrix} B^2 + I & BK + KC \\ KB + CK & C^2 + I \end{bmatrix}.$$

- ▶ $B^2 = C^2 = (n-1)I$. So we have $B^2 + I = C^2 + I = nI$.
- ▶ We want BK + KC = 0, hence C = -KBK.
- ▶ If we let K = I, we get

$$M_n = \left[\begin{array}{cc} M_{n-1} & I \\ I & -M_{n-1} \end{array} \right].$$

A boolean function $f:\{0,1\}^n \to \{0,1\}$ is an assignment of $\{0,1\}$ values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_x s(f,x)$. The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

- ► *AND* function over *n* bits.
- ▶ *OR* function over *n* bits.
- XOR function over n bits.
- ▶ $f(x) = x_1$.

A boolean function $f: \{0,1\}^n \to \{0,1\}$ is an assignment of $\{0,1\}$ values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_x s(f,x)$. The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

- ► *AND* function over *n* bits.
- OR function over n bits.
- XOR function over n bits.
- $f(x) = x_1$.

A boolean function $f:\{0,1\}^n \to \{0,1\}$ is an assignment of $\{0,1\}$ values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_x s(f,x)$. The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

The vector $x^{ij} \in \{0,1\}''$ is the same as x, with bit i flipped

AND function over n bits.

s(AND) = n

- OR function over n bits.
- XOR function over n bits.
- $f(x) = x_1.$

A boolean function $f:\{0,1\}^n \to \{0,1\}$ is an assignment of $\{0,1\}$ values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_{x} s(f,x)$.

The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

AND function over n bits.

s(AND) = n

▶ *OR* function over *n* bits.

s(OR) = n

- ▶ *XOR* function over *n* bits.
- $f(x) = x_1$.

A boolean function $f:\{0,1\}^n \to \{0,1\}$ is an assignment of $\{0,1\}$ values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_{x} s(f,x)$.

The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

$$s(AND) = n$$

$$s(OR) = n$$

$$s(XOR) = n$$

$$f(x) = x_1.$$

A boolean function $f:\{0,1\}^n \to \{0,1\}$ is an assignment of $\{0,1\}$ values to the vertices of the boolean hypercube.

Sensitivity

Given a boolean function f, the local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_x s(f,x)$. The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

The vector $x^{(i)} \in \{0,1\}^n$ is the same as x, with bit i hipped.

► AND function over
$$n$$
 bits. $s(AND) = n$
► OR function over n bits. $s(OR) = n$
► XOR function over n bits. $s(XOR) = n$
► $f(x) = x_1$. $s(f) = 1$

Sensitivity

Given a boolean function $f: \{0,1\}^n \to \{0,1\}$. The local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_x s(f,x)$. The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

Block Sensitivity

Given a boolean function $f:\{0,1\}^n \to \{0,1\}$. The local block sensitivity $\mathsf{bs}(f,x)$ on the input x is defined as the maximum number of disjoint blocks B_1,\ldots,B_k of [n], such that for each B_i $f(x) \neq f(x^{B_i})$. The block sensitivity $\mathsf{bs}(f)$ of f is $\mathsf{max}_x \, \mathsf{bs}(f,x)$. The vector $x^{B_i} \in \{0,1\}^n$ is the same as x, with bits in B_i flipped.

Sensitivity

Given a boolean function $f: \{0,1\}^n \to \{0,1\}$. The local sensitivity s(f,x) on the input x is defined as the number of indices i, such that $f(x) \neq f(x^{\{i\}})$. The sensitivity s(f) of f is $\max_x s(f,x)$. The vector $x^{\{i\}} \in \{0,1\}^n$ is the same as x, with bit i flipped.

Block Sensitivity

Given a boolean function $f: \{0,1\}^n \to \{0,1\}$. The local block sensitivity $\mathsf{bs}(f,x)$ on the input x is defined as the maximum number of disjoint blocks B_1,\ldots,B_k of [n], such that for each B_i , $f(x) \neq f(x^{B_i})$. The block sensitivity $\mathsf{bs}(f)$ of f is $\mathsf{max}_x \, \mathsf{bs}(f,x)$. The vector $x^{B_i} \in \{0,1\}^n$ is the same as x, with bits in B_i flipped.

Block Sensitivity of Boolean Functions

Block Sensitivity

Given a boolean function $f: \{0,1\}^n \to \{0,1\}$. The local block sensitivity bs(f,x) on the input x is defined as the maximum number of disjoint blocks B_1, \ldots, B_k of [n], such that for each B_i , $f(x) \neq f(x^{B_i})$. The block sensitivity bs(f) of f is max $_x$ bs(f,x).

- ▶ For any non constant f, $1 \le s(f) \le bs(f) \le n$.
- This is because block sensitivity is a generalization of sensitivity.
- ▶ Hence bs(AND) = bs(OR) = bs(XOR) = n
- ▶ Can we upper bound bs(f) in terms of s(f)?

Block Sensitivity of Boolean Functions

Block Sensitivity

Given a boolean function $f: \{0,1\}^n \to \{0,1\}$. The local block sensitivity bs(f,x) on the input x is defined as the maximum number of disjoint blocks B_1, \ldots, B_k of [n], such that for each B_i , $f(x) \neq f(x^{B_i})$. The block sensitivity bs(f) of f is $max_x bs(f,x)$.

- ▶ For any non constant f, $1 \le s(f) \le bs(f) \le n$.
- This is because block sensitivity is a generalization of sensitivity.
- ▶ Hence bs(AND) = bs(OR) = bs(XOR) = n
- ▶ Can we upper bound bs(f) in terms of s(f)?

Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

$$bs(f) \leq poly(s(f)).$$

In other words,

$$\exists$$
 a constant c such that $bs(f) = O(s(f)^c)$.

• We know $s(f) \leq bs(f)$.

Relevance & History

- ► The study of sensitivity started from the works of Cook, Dwork and Reischuk (1986).
- ▶ They showed the lower bound $CREW(f) = \Omega(\log s(f))$
- CREW(f) is the minimum number of steps required to compute f on a CREW PRAM – Consecutive Read Exclusive Write Parallel RAM
- ▶ Later, Nisan (1989) showed $CREW(f) = \Theta(\log bs(f))$
- ▶ Nisan (1989) and Nisan and Szegedy (1992) showed the relations between many other parameters.

Relevance & History

Two complexity measures s_1 and s_2 of boolean functions are polynomially related if $\exists C_1, C_2 > 0$, such that for every boolean f:

$$s_2(f)^{C_1} \le s_1(f) \le s_2(f)^{C_2}$$
.

Polynomially related parameters

Block sensitivity
Degree (as a real polynomial)

Randomized query complexity

Decision tree complexity

Certificate complexity Approximate degree Quantum query complexity

Sensitivity Conjecture

Relevance & History

Two complexity measures s_1 and s_2 of boolean functions are polynomially related if $\exists C_1, C_2 > 0$, such that for every boolean f:

$$s_2(f)^{C_1} \le s_1(f) \le s_2(f)^{C_2}$$
.

Polynomially related parameters

Block sensitivity
Degree (as a real polynomial)

Randomized query complexity

Decision tree complexity

Certificate complexity
Approximate degree
Quantum query complexity
Sensitivity

Sensitivity Conjecture

Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

$$bs(f) \leq poly(s(f)).$$

In other words,

$$\exists$$
 a constant c such that $bs(f) = O(s(f)^c)$.

▶ We will now see a function f where $bs(f) = \Omega(s(f)^2)$.

Sensitivity Conjecture

Sensitivity Conjecture (Nisan, Szegedy 1992)

For every boolean function f,

$$bs(f) \leq poly(s(f)).$$

In other words.

$$\exists$$
 a constant c such that $bs(f) = O(s(f)^c)$.

• We will now see a function f where $bs(f) = \Omega(s(f)^2)$.

Define $f: \{0,1\}^{n^2} \to \{0,1\}$ as

$$f(x_{11},\ldots,x_{nn})=\bigvee_{i=1}^n g(x_{i1},\ldots,x_{in}),$$

$$\mathsf{bs}(f) \ge \mathsf{bs}(f, \vec{0}) = \Omega(n^2).$$

Define $f: \{0,1\}^{n^2} \to \{0,1\}$ as

$$f(x_{11},...,x_{nn}) = \bigvee_{i=1}^{n} g(x_{i1},...,x_{in}),$$

$$bs(f) \ge bs(f, \vec{0}) = \Omega(n^2).$$

Define $f: \{0,1\}^{n^2} \to \{0,1\}$ as

$$f(x_{11},...,x_{nn}) = \bigvee_{i=1}^{n} g(x_{i1},...,x_{in}),$$

$$bs(f) \ge bs(f, \vec{0}) = \Omega(n^2).$$

Define $f: \{0,1\}^{n^2} \to \{0,1\}$ as

$$f(x_{11},...,x_{nn}) = \bigvee_{i=1}^{n} g(x_{i1},...,x_{in}),$$

$$bs(f) \ge bs(f, \vec{0}) = \Omega(n^2).$$

Define $f: \{0,1\}^{n^2} \to \{0,1\}$ as

$$f(x_{11},...,x_{nn}) = \bigvee_{i=1}^{n} g(x_{i1},...,x_{in}),$$

$$\mathsf{bs}(f) \ge \mathsf{bs}(f, \vec{0}) = \Omega(n^2).$$

Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

Case 1:
$$f(x) = 0$$
.

Every row must output 0. In such a case, each row has at most two sensitive coordinates, when the row looks like

$$0...010...0$$
 or $0...111...0$

So
$$s(f, x) \leq 2n$$
.

Case 2:
$$f(x) = 1$$
.

- ▶ If at least two rows output 1, s(f,x) = 0.
- ▶ If only one row outputs 1, $s(f,x) \le n$.

Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

Case 1:
$$f(x) = 0$$
.

Every row must output 0. In such a case, each row has at most two sensitive coordinates, when the row looks like

$$0 \dots 010 \dots 0$$
 or $0 \dots 111 \dots 0$.

So
$$s(f, x) \leq 2n$$
.

Case 2:
$$f(x) = 1$$
.

- ▶ If at least two rows output 1, s(f,x) = 0.
- ▶ If only one row outputs 1, $s(f,x) \le n$.

Sensitivity of Rubinstein Function

We will see that s(f) = O(n).

Case 1:
$$f(x) = 0$$
.

Every row must output 0. In such a case, each row has at most two sensitive coordinates, when the row looks like

$$0 \dots 010 \dots 0$$
 or $0 \dots 111 \dots 0$.

So
$$s(f, x) \leq 2n$$
.

Case 2:
$$f(x) = 1$$
.

- ▶ If at least two rows output 1, s(f,x) = 0.
- ▶ If only one row outputs 1, $s(f,x) \le n$.

Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

▶
$$bs(f) = O(s(f)4^{s(f)}).$$
 (Simon 1983)

▶
$$bs(f) \le (e/\sqrt{2\pi})e^{S(f)}\sqrt{s(f)}$$
. (Kenyon, Kutin 2004)

▶ $bs(f) \le 2^{S(f)-1}s(f)$. (Ambainis, Gao, Mao, Sun, Zuo 2013)

Gaps between bs(f) and s(f):

▶
$$bs(f) = \frac{1}{2}s(f)^2$$
. (Rubinstein 1995)
▶ $bs(f) = \frac{1}{2}s(f)^2 + s(f)$. (Virza 2011)

▶
$$bs(f) = \frac{2}{3}s(f)^2 - \frac{1}{2}s(f)$$
. (Ambainis, Sun 2011)

All upper bounds are exponential, and lower bounds are quadratic.

Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

▶
$$bs(f) = O(s(f)4^{S(f)}).$$
 (Simon 1983)

▶
$$bs(f) \le (e/\sqrt{2\pi})e^{S(f)}\sqrt{s(f)}$$
. (Kenyon, Kutin 2004)

▶ $bs(f) \le 2^{s(f)-1}s(f)$. (Ambainis, Gao, Mao, Sun, Zuo 2013)

Gaps between bs(f) and s(f):

$$bs(f) = \frac{1}{2}s(f)^2.$$
 (Rubinstein 1995)

►
$$bs(f) = \frac{1}{2}s(f)^2 + s(f)$$
. (Virza 2011)

▶
$$bs(f) = \frac{2}{3}s(f)^2 - \frac{1}{2}s(f)$$
. (Ambainis, Sun 2011)

All upper bounds are exponential, and lower bounds are quadratic.

Back to sensitivity and block sensitivity

Upper bounds for bs(f) in terms of s(f):

▶
$$bs(f) = O(s(f)4^{S(f)}).$$
 (Simon 1983)

▶
$$bs(f) \le (e/\sqrt{2\pi})e^{S(f)}\sqrt{s(f)}$$
. (Kenyon, Kutin 2004)

▶ $bs(f) \le 2^{s(f)-1}s(f)$. (Ambainis, Gao, Mao, Sun, Zuo 2013)

Gaps between bs(f) and s(f):

- $bs(f) = \frac{1}{2}s(f)^2.$ (Rubinstein 1995)
- ► $bs(f) = \frac{1}{2}s(f)^2 + s(f)$. (Virza 2011)
- ▶ $bs(f) = \frac{2}{3}s(f)^2 \frac{1}{2}s(f)$. (Ambainis, Sun 2011)

All upper bounds are exponential, and lower bounds are quadratic.

Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H),\Delta(Q^n\setminus H)\}\geq h(n).$$

- ▶ For any boolean function f, we have $s(f) \ge h(\deg(f))$.
- ▶ $bs(f) \le 2 deg(f)^2$. (Nisan, Szegedy 1992)
- ▶ Hence if we show the above statement in red, this implies that $bs(f) \le 2(h^{-1}(s(f)))^2$.

Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H), \Delta(Q^n \setminus H)\} \ge h(n).$$

- ▶ For any boolean function f, we have $s(f) \ge h(\deg(f))$.
- ▶ $bs(f) \le 2 deg(f)^2$. (Nisan, Szegedy 1992)
- ▶ Hence if we show the above statement in red, this implies that $bs(f) \le 2(h^{-1}(s(f)))^2$.

Theorem (Gotsman, Linial 1992)

The following are equivalent for any monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H),\Delta(Q^n\setminus H)\}\geq h(n).$$

- ▶ For any boolean function f, we have $s(f) \ge h(\deg(f))$.
- ▶ $bs(f) \le 2 deg(f)^2$. (Nisan, Szegedy 1992)
- ▶ Hence if we show the above statement in red, this implies that $bs(f) \le 2(h^{-1}(s(f)))^2$.

Huang's Result

Theorem (Huang 2019)

Every $(2^{n-1} + 1)$ -vertex induced subgraph of Q^n contains a vertex of degree at least \sqrt{n} .

With the Gotsman-Linial equivalence, we get:

Corollary

For every boolean function f, $\mathsf{s}(f) \geq \sqrt{\mathsf{deg}(f)}$

Tight!

Using $bs(f) \le 2 deg(f)^2$, we get:

Corollary

For every boolean function f, $bs(f) \le 2s(f)^4$, proving the sensitivity conjecture!

Huang's Result

Theorem (Huang 2019)

Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n contains a vertex of degree at least \sqrt{n} .

With the Gotsman-Linial equivalence, we get:

Corollary

For every boolean function f, $s(f) \ge \sqrt{\deg(f)}$.

Tight!

Using $bs(f) \le 2 deg(f)^2$, we get:

Corollary

For every boolean function f, $bs(f) \le 2s(f)^4$, proving the sensitivity conjecture!

Huang's Result

Theorem (Huang 2019)

Every $(2^{n-1}+1)$ -vertex induced subgraph of Q^n contains a vertex of degree at least \sqrt{n} .

With the Gotsman-Linial equivalence, we get:

Corollary

For every boolean function f, $s(f) \ge \sqrt{\deg(f)}$.

Tight!

Using $bs(f) \le 2 deg(f)^2$, we get:

Corollary

For every boolean function f, $bs(f) \le 2s(f)^4$, proving the sensitivity conjecture!

Consider a monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H),\Delta(Q^n\setminus H)\}\geq h(n).$$

- 2. For any boolean function f, we have $s(f) \ge h(\deg(f))$.
- **3**. For any boolean function g with deg(g) = n, $s(g) \ge h(n)$.
 - ▶ Gotsman, Linial showed that 1 and 2 are equivalent.
- ▶ We only need the direction that $1 \Rightarrow 2$.
- ightharpoonup We show $1 \Rightarrow 3 \Rightarrow 2$.
- ▶ 3 \Rightarrow 2 follows by letting g be a restriction of f to the support of a max degree monomial.

Consider a monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H), \Delta(Q^n \setminus H)\} \ge h(n).$$

- 2. For any boolean function f, we have $s(f) \ge h(\deg(f))$.
- **3.** For any boolean function g with deg(g) = n, $s(g) \ge h(n)$.
 - ▶ Gotsman, Linial showed that 1 and 2 are equivalent.
- ▶ We only need the direction that $1 \Rightarrow 2$.
- ightharpoonup We show $1 \Rightarrow 3 \Rightarrow 2$.
- ▶ 3 \Rightarrow 2 follows by letting g be a restriction of f to the support of a max degree monomial.

Consider a monotone function $h : \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H),\Delta(Q^n\setminus H)\}\geq h(n).$$

- 2. For any boolean function f, we have $s(f) \ge h(\deg(f))$.
- 3. For any boolean function g with deg(g) = n, $s(g) \ge h(n)$.
 - ▶ Gotsman, Linial showed that 1 and 2 are equivalent.
- ▶ We only need the direction that $1 \Rightarrow 2$.
- We show $1 \Rightarrow 3 \Rightarrow 2$.
- ▶ 3 \Rightarrow 2 follows by letting g be a restriction of f to the support of a max degree monomial.

Consider a monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H),\Delta(Q^n\setminus H)\}\geq h(n).$$

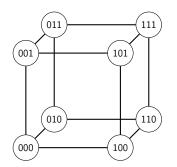
- 3. For any boolean function g with deg(g) = n, $s(g) \ge h(n)$.
- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- ▶ We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$

Consider a monotone function $h: \mathbb{N} \to \mathbb{R}$.

$$\max\{\Delta(H),\Delta(Q^n\setminus H)\}\geq h(n).$$

- 3. For any boolean function g with deg(g) = n, $s(g) \ge h(n)$.
- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- ▶ We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$



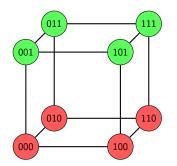
$$ightharpoonup g(x) = x_3.$$

$$g(x) = x_1 + x_3.$$

$$g(x) = x_1 + x_2 + x_3.$$

► Flipping the value of odd parity *x*.

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$



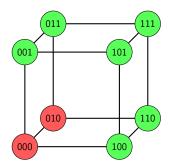
•
$$g(x) = x_3$$
.

$$g(x) = x_1 + x_3.$$

$$g(x) = x_1 + x_2 + x_3.$$

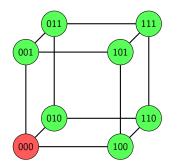
► Flipping the value of odd parity *x*.

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$



- $ightharpoonup g(x) = x_3.$
- $p(x) = x_1 + x_3.$
- $g(x) = x_1 + x_2 + x_3.$
- ► Flipping the value of odd parity *x*.

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$



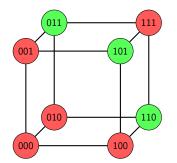
$$ightharpoonup g(x) = x_3.$$

$$g(x) = x_1 + x_3.$$

$$g(x) = x_1 + x_2 + x_3.$$

► Flipping the value of odd parity *x*.

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ▶ Consider the function g'(x) where we start with g(x) and flip the function value for all odd parity x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- We have $s(g) = \max\{\Delta(H), \Delta(Q^n \setminus H)\}.$



$$ightharpoonup g(x) = x_3.$$

$$g(x) = x_1 + x_3.$$

$$g(x) = x_1 + x_2 + x_3.$$

► Flipping the value of odd parity *x*.

Note: For this slide alone, we consider $g: \{0,1\}^n \to \{+1,-1\}$.

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) = g(x)p(x), where $p(x): \{0,1\}^n \to \{+1,-1\}$ indicates the parity of x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- ▶ We have $\max\{\Delta(H), \Delta(Q^n \setminus H)\} = \mathsf{s}(g) < h(n)$.
- $|V(H)| |V(Q^n \setminus H)| = \mathbb{E}[g(x)p(x)] = \langle g, p \rangle = \hat{g}([n]).$
- ▶ Since deg(g) = n, we have $\hat{g}([n]) \neq 0$.
- ▶ Hence $|V(H)| \neq |V(Q^n \setminus H)|$. Contradiction.

Note: For this slide alone, we consider $g: \{0,1\}^n \to \{+1,-1\}$.

- ▶ Suppose there exists g such that s(g) < h(n) and deg(g) = n.
- ► Consider the function g'(x) = g(x)p(x), where $p(x): \{0,1\}^n \to \{+1,-1\}$ indicates the parity of x.
- ► Consider the induced subgraph H of Q^n with vertex set $V(H) = \{x : g'(x) = 1\}.$
- ▶ We have $\max\{\Delta(H), \Delta(Q^n \setminus H)\} = \mathsf{s}(g) < h(n)$.
- $|V(H)| |V(Q^n \setminus H)| = \mathbb{E}[g(x)p(x)] = \langle g, p \rangle = \hat{g}([n]).$
- ▶ Since deg(g) = n, we have $\hat{g}([n]) \neq 0$.
- ▶ Hence $|V(H)| \neq |V(Q^n \setminus H)|$. Contradiction.

How did he come up with this proof? In Huang's words

Nov 2012: I was introduced to this problem by Michael Saks when I was a postdoc at the IAS, and got immediately attracted by the induced subgraph reformulation. And of course, in the next few weeks, I exhausted all the combinatorial techniques that I am aware of, yet I could not even improve the constant factor from the Chung-Füredi-Graham-Seymour paper.

Around mid-year 2013: I started to believe that the maximum eigenvalue is a better parameter to look at, actually it is polynomially related to the max degree, i.e $\sqrt{\Delta(G)} \leq \lambda(G) \leq \Delta(G)$.

2013-2018: I revisited this conjecture every time when I learn a new tool, without any success though. But at least thinking about it helps me quickly fall asleep many nights.

Excerpts from Huang's comment in Scott Aaronson's blog: https://www.scottaaronson.com/blog/?p=4229#comment-1813116

How did he come up with this proof? In Huang's words

Late 2018: After working on a project and several semesters of teaching a graduate combinatorics course, I started to have a better understanding of eigenvalue interlacing, and believe that it might help this problem.

June 2019: In a Madrid hotel when I was painfully writing a proposal and trying to make the approaches sound more convincing, I finally realized that the maximum eigenvalue of any pseudo-adjacency matrix of a graph provides lower bound on the maximum degree. The rest is just a bit of trial-and-error and linear algebra.

Excerpts from Huang's comment in Scott Aaronson's blog: https://www.scottaaronson.com/blog/?p=4229#comment-1813116

Open Questions

- ▶ We saw that $bs(f) = O(s(f)^4)$. We saw an f where $bs(f) = \Omega(s(f)^2)$. It will be interesting to find the best bound possible.
- Let c > 1/2. What is the smallest t such that every t-vertex induced subgraph of Q^n has maximum degree at least n^c ?
- ▶ For a given graph G, can we get similar bounds on the degrees of $(\alpha(G) + 1)$ -vertex induced subgraphs of G?

Hao Huang@Emory:

Ex.1: ∃edge-signing of n-cube with 2^{n-1} eigs each of +/-sqrt(n)

Interlacing=>Any induced subgraph with >2 $^{n-1}$ vtcs has max eig >= sqrt(n)

Ex.2: In subgraph, max eig <= max valency, even with signs

Hence [GL92] the Sensitivity Conj, $s(f) \ge sqrt(deg(f))$

5:02 AM · Jul 2, 2019 · Twitter Web Client

Thank You