Improved bounds for the sunflower lemma [†]

Rogers Mathew Indian Institute of Technology Hyderabad

July 1, 2020

[†] Improved bounds for the sunflower lemma, Ryan Alweiss, Shachar Lovett, Kewen Wu, Jiapeng Zhang, STOC 2020.

Sunflower

Definition

A collection of sets S_1, S_2, \ldots, S_r is an *r*-sunflower if

$$S_i \cap S_j = S_1 \cap S_2 \cap \cdots \cap S_r, \ \forall i \neq j.$$

 $K := S_1 \cap S_2 \cap \cdots \cap S_r \text{ is the kernel/core.}$ $S_1 \setminus K, \dots, S_r \setminus K \text{ are the petals.}$

Sunflower

Definition

A collection of sets S_1, S_2, \ldots, S_r is an *r*-sunflower if

$$S_i \cap S_j = S_1 \cap S_2 \cap \cdots \cap S_r, \ \forall i \neq j.$$

 $K := S_1 \cap S_2 \cap \cdots \cap S_r \text{ is the kernel/core.}$ $S_1 \setminus K, \dots, S_r \setminus K \text{ are the petals.}$

Figure: Examples of 3-sunflowers

 $w\mathit{-set\ system}$: all the sets in the set system (or family) are of size at most w

Lemma (Erdos and Rado, 1960)

Let \mathcal{F} be a *w*-set system with $|\mathcal{F}| > w!(r-1)^w$. Then, \mathcal{F} contains an *r*-sunflower.

We know of a *w*-set system with $(r-1)^w$ sets that does not contain an *r*-sunflower.

Given: A *w*-set system \mathcal{F} with $|\mathcal{F}| > w!(r-1)^w$. Notation: for an element *x*, $\mathcal{F}_x = \{S \in \mathcal{F} : x \in S\}$.

Proof.

Proof by induction on w. True for w = 1.

Case 1 There are r pairwise disjoint sets in \mathcal{F} :

We are done.

Case 2 No. of pairwise disjoint sets is at most r - 1:

Given: A *w*-set system \mathcal{F} with $|\mathcal{F}| > w!(r-1)^w$. Notation: for an element *x*, $\mathcal{F}_x = \{S \in \mathcal{F} : x \in S\}$.

Proof.

Proof by induction on w. True for w = 1.

Case 1 There are r pairwise disjoint sets in \mathcal{F} :

We are done.

Case 2 No. of pairwise disjoint sets is at most r - 1:

Union of any subcollection of r-1 sets form a *hitting set* for \mathcal{F} . Let H denote this hitting set.

Given: A *w*-set system \mathcal{F} with $|\mathcal{F}| > w!(r-1)^w$. Notation: for an element *x*, $\mathcal{F}_x = \{S \in \mathcal{F} : x \in S\}$.

Proof.

Proof by induction on w. True for w = 1.

Case 1 There are r pairwise disjoint sets in \mathcal{F} :

We are done.

Case 2 No. of pairwise disjoint sets is at most r - 1:

Union of any subcollection of r-1 sets form a *hitting set* for \mathcal{F} . Let H denote this hitting set.

 $|\mathcal{H}| \leq (r-1)w$. Thus, by an averaging argument $\exists x \in \mathcal{H}$ such that $|\mathcal{F}_x| \geq \frac{|\mathcal{F}|}{(r-1)w} > (w-1)!(r-1)^{w-1}$.

Given: A *w*-set system \mathcal{F} with $|\mathcal{F}| > w!(r-1)^w$. Notation: for an element *x*, $\mathcal{F}_x = \{S \in \mathcal{F} : x \in S\}$.

Proof.

Proof by induction on w. True for w = 1.

Case 1 There are r pairwise disjoint sets in \mathcal{F} :

We are done.

Case 2 No. of pairwise disjoint sets is at most r - 1:

Union of any subcollection of r-1 sets form a *hitting set* for \mathcal{F} . Let H denote this hitting set.

 $|H| \leq (r-1)w$. Thus, by an averaging argument $\exists x \in H$ such that $|\mathcal{F}_x| \geq \frac{|\mathcal{F}|}{(r-1)w} > (w-1)!(r-1)^{w-1}$.

Remove x from every set in \mathcal{F}_x . By induction hypothesis, \mathcal{F}_x contains an *r*-sunflower.

Known results

General Bound	Fixed r	Citation
$w!(r-1)^w$	$w^{w(1+o(1))}$	[Erdos, Rado, 1960]
for $r = 3$ only \rightarrow	$w^{w(3/4+o(1))}$	[Fukuyama, 2018]
(cr ³ log w ⋅ loglog w) ^w ,	$(\log w)^{w(1+o(1))}$	[Alweiss et al., 2020]
$(cr \log(wr))^w$	$(\log w)^{w(1+o(1))}$	[Rao, 2020]

Table: Lower bounds for $|\mathcal{F}|$ that guarantee an *r*-sunflower. Here, o(1) depends on *r* and *c* is a constant.

Conjecture (Sunflower Conjecture, Erdos and Rado, 1960) For a fixed r, if $|\mathcal{F}| > c^w$, then \mathcal{F} contains an r-sunflower, where c = c(r).

 $\mathsf{Q}.$ Sunflower is named after the star 'sun'. Name another flower that is named after a star?

 $\mathsf{Q}.$ Sunflower is named after the star 'sun'. Name another flower that is named after a star?

ANSWER:

Q. Sunflower is named after the star 'sun'. Name another flower that is named after a star?

ANSWER:

Rajanikanth (Rajanigandha, Water Lilly) Kamal (Lotus) Revisiting the proof of sunflower lemma

Link of \mathcal{F} at T

Definition

Given a family \mathcal{F} and a set \mathcal{T} , the **link of** \mathcal{F} at \mathcal{T} , denoted by $\mathcal{F}_{\mathcal{T}}$, is defined as

$$\mathcal{F}_T = \{S \setminus T : S \in \mathcal{F}, T \subseteq S\}$$

Example

$$\begin{split} \mathcal{F} &= \{\{1,2,3,4\}, \{1,2,3,6,7\}, \{2,3\}, \{7,8,9\}, \{1,2,4,6,7\}\} \\ \mathcal{T} &= \{2,3\}, \ \mathcal{F}_{\mathcal{T}} &= \{\{1,4\}, \{1,6,7\}, \emptyset\} \\ \mathcal{T} &= \{1,2\}, \ \mathcal{F}_{\mathcal{T}} &= \{\{3,4\}, \{3,6,7\}, \{4,6,7\}\} \end{split}$$

Proof revisited

Given: A w-set system \mathcal{F} with $|\mathcal{F}| > w!(r-1)^w$.

Proof.

Proof by induction on w. True for w = 1.

Case 1 There are r pairwise disjoint sets in \mathcal{F} :

We are done.

Case 2 No. of pairwise disjoint sets is at most r - 1:

Any subcollection of r-1 sets form a *hitting set* for \mathcal{F} . Let H denote this hitting set.

 $|\mathcal{H}| \leq (r-1)w$. Thus, by an averaging argument $\exists x \in \mathcal{H}$ such that $|\mathcal{F}_x| \geq \frac{|\mathcal{F}|}{(r-1)w} > (w-1)!(r-1)^{w-1}$.

Remove x from every set in \mathcal{F}_x . By induction hypothesis, \mathcal{F}_x contains an *r*-sunflower.

Proof in the language of links

Given: A w-set system \mathcal{F} with $|\mathcal{F}| > w!(r-1)^w$.

Proof.

Proof by induction on w. True for w = 1. Case 1 For some x, $|\mathcal{F}_x| > (w-1)!(r-1)^{w-1}$: By induction hypothesis, \mathcal{F}_x contains an r-sunflower. Case 2 For every x, $|\mathcal{F}_x| \le (w-1)!(r-1)^{w-1}$: This implies no hitting set of size (r-1)w for \mathcal{F} . This implies there are r pairwise disjoint sets in \mathcal{F}

Generalizing the above approach

Let $w, r \in \mathbb{N}$. Let $\kappa = \kappa(r, w)$ be a monotone non-decreasing function over w for any fixed r.

Theorem

Let ${\mathcal F}$ be a w-set system with $|{\mathcal F}|>\kappa^w.$ Then, ${\mathcal F}$ contains an r-sunflower.

Generalizing the above approach

Let $w, r \in \mathbb{N}$. Let $\kappa = \kappa(r, w)$ be a monotone non-decreasing function over w for any fixed r.

Theorem

Let ${\mathcal F}$ be a w-set system with $|{\mathcal F}|>\kappa^w.$ Then, ${\mathcal F}$ contains an r-sunflower.

Proof.

Let X be the universe, i.e., every set in \mathcal{F} is a subset of X. Proof by induction on w.

Case 1 For some $T \subseteq X$, $1 \leq |T| < w$, $|\mathcal{F}_T| > \kappa^{w-|T|}$:

By induction hypothesis, $\mathcal{F}_{\mathcal{T}}$ contains an *r*-sunflower.

Case 2 For every $T \subseteq X$, $1 \leq |T| < w$, $|\mathcal{F}_T| \leq \kappa^{w-|T|}$:

To show: there are r pairwise disjoint sets in \mathcal{F}

κ -spread family

Bound in [Alweiss et al., 2020]: $|\mathcal{F}| > (cr^3 \log w \cdot \log \log w)^w$, then *r*-sunflower exists Bound we show: $|\mathcal{F}| > (\mathbf{64r^4} \log^4 w)^w$, then *r*-sunflower exists Throughout the talk, let $\kappa = \kappa(w, r) = 64r^4 \log^4 w$.

Definition

A *w*-set system \mathcal{F} is κ -**spread** if $|\mathcal{F}| > \kappa^{w}, \text{ and}$ for every set T with $|T| = t < w, |\mathcal{F}_{T}| \le \kappa^{w-t}.$

Outline of the proof

Theorem

Let $\kappa = 64r^4 \log^4 w$. Let \mathcal{F} be a *w*-set system with $|\mathcal{F}| > \kappa^w$. Then, \mathcal{F} contains an *r*-sunflower.

Outline of the proof

Theorem

```
Let \kappa = 64r^4 \log^4 w. Let \mathcal{F} be a w-set system with |\mathcal{F}| > \kappa^w.
Then, \mathcal{F} contains an r-sunflower.
```

Proof.

Proof by induction on w.

```
Case 1 \mathcal{F} is not \kappa-spread:
```

follows from induction hypothesis.

Case 2 \mathcal{F} is κ -spread:

To show: there are r pairwise disjoint sets in \mathcal{F}

(α,β) -satisfying family

p-biased distribution: $\mathcal{U}(X, p)$ is a distribution over subsets W of X where each element $x \in X$ is included in W independently with probability p.

(α,β) -satisfying family

p-biased distribution: $\mathcal{U}(X, p)$ is a distribution over subsets W of X where each element $x \in X$ is included in W independently with probability p.

Definition

Let $0 < \alpha, \beta < 1$. Let $W \sim U(X, \alpha)$. A family \mathcal{F} of subsets of X is (α, β) -satisfying if

$$Pr[\exists S \in \mathcal{F}, S \subseteq W] > 1 - \beta$$

(α,β) -satisfying family

p-biased distribution: $\mathcal{U}(X, p)$ is a distribution over subsets W of X where each element $x \in X$ is included in W independently with probability p.

Definition

Let $0 < \alpha, \beta < 1$. Let $W \sim U(X, \alpha)$. A family \mathcal{F} of subsets of X is (α, β) -satisfying if

$$\Pr[\exists S \in \mathcal{F}, S \subseteq W] > 1 - \beta$$

 $\mathcal{F} = \{\{1, 2, 3\}, \{1, 3, 4\}, \{3, 5\}\}.$ DNF formula corresponding to \mathcal{F} : $(x_1 \land x_2 \land x_3) \lor (x_1 \land x_3 \land x_4) \lor (x_3 \land x_5)$

Lemma

Let \mathcal{F} be a family of subsets of X that is (1/3, 1/3)-satisfying. Then, \mathcal{F} contains 3 pairwise disjoint sets.

Lemma

Let \mathcal{F} be a family of subsets of X that is (1/3, 1/3)-satisfying. Then, \mathcal{F} contains 3 pairwise disjoint sets.

Proof.

For each $x \in X$, independently and uniformly at random assign a color from the set {red, blue, green}.

Lemma

Let \mathcal{F} be a family of subsets of X that is (1/3, 1/3)-satisfying. Then, \mathcal{F} contains 3 pairwise disjoint sets.

Proof.

For each $x \in X$, independently and uniformly at random assign a color from the set {red, blue, green}.

Let E_R denote the event that \mathcal{F} contains a set all whose elements got red color. Similarly, E_B, E_G .

Lemma

Let \mathcal{F} be a family of subsets of X that is (1/3, 1/3)-satisfying. Then, \mathcal{F} contains 3 pairwise disjoint sets.

Proof.

For each $x \in X$, independently and uniformly at random assign a color from the set {red, blue, green}.

Let E_R denote the event that \mathcal{F} contains a set all whose elements got red color. Similarly, E_B, E_G .

Since \mathcal{F} is (1/3, 1/3)-satisfying, we have $Pr[E_R] > 2/3$. Same true for E_B, E_G .

Lemma

Let \mathcal{F} be a family of subsets of X that is (1/3, 1/3)-satisfying. Then, \mathcal{F} contains 3 pairwise disjoint sets.

Proof.

For each $x \in X$, independently and uniformly at random assign a color from the set {red, blue, green}.

Let E_R denote the event that \mathcal{F} contains a set all whose elements got red color. Similarly, E_B, E_G .

Since \mathcal{F} is (1/3, 1/3)-satisfying, we have $Pr[E_R] > 2/3$. Same true for E_B, E_G .

$$Pr[E_{R} \land E_{B} \land E_{G}] = 1 - Pr[\overline{E_{R}} \lor \overline{E_{B}} \lor \overline{E_{G}}]$$

$$\geq 1 - (Pr[\overline{E_{R}}] + Pr[\overline{E_{B}}] + Pr[\overline{E_{G}}])$$

$$> 1 - (\frac{1}{3} + \frac{1}{3} + \frac{1}{3}) = 0$$

Lemma

Let \mathcal{F} be a family of subsets of X that is (1/r, 1/r)-satisfying. Then, \mathcal{F} contains r pairwise disjoint sets.

Proof.

Same way as above.

Outline of the proof

Theorem

```
Let \kappa = 64r^4 \log^4 w. Let \mathcal{F} be a w-set system with |\mathcal{F}| > \kappa^w.
Then, \mathcal{F} contains an r-sunflower.
```

Proof.

Proof by induction on w.

```
Case 1 \mathcal{F} is not \kappa-spread:
```

follows from induction hypothesis.

Case 2 \mathcal{F} is κ -spread:

To show: \mathcal{F} is (1/r, 1/r)-satisfying.

Lemma Let $\kappa = 10wr \log r$. If \mathcal{F} is κ -spread, then \mathcal{F} is (1/r, 1/r)-satisfying.

Apply Janson's Inequality to get a weak bound similar to that in Sunflower Lemma:

Lemma Let $\kappa = 10wr \log r$. If \mathcal{F} is κ -spread, then \mathcal{F} is (1/r, 1/r)-satisfying.

Apply Janson's Inequality to get a weak bound similar to that in Sunflower Lemma:

Let $W \sim \mathcal{U}(X, 1/r)$.

For each set $S_i \in \mathcal{F}$, let Z_i be the indicator RV for $S_i \subseteq W$.

Lemma Let $\kappa = 10wr \log r$. If \mathcal{F} is κ -spread, then \mathcal{F} is (1/r, 1/r)-satisfying.

Apply Janson's Inequality to get a weak bound similar to that in Sunflower Lemma:

Let $W \sim \mathcal{U}(X, 1/r)$. For each set $S_i \in \mathcal{F}$, let Z_i be the indicator RV for $S_i \subseteq W$. Find $\mu = \sum_i E[Z_i]$ and $\Delta = \sum_{i \sim j} E[Z_iZ_j]$.

Lemma Let $\kappa = 10wr \log r$. If \mathcal{F} is κ -spread, then \mathcal{F} is (1/r, 1/r)-satisfying.

Apply Janson's Inequality to get a weak bound similar to that in Sunflower Lemma:

Let $W \sim \mathcal{U}(X, 1/r)$. For each set $S_i \in \mathcal{F}$, let Z_i be the indicator RV for $S_i \subseteq W$. Find $\mu = \sum_i E[Z_i]$ and $\Delta = \sum_{i \sim j} E[Z_iZ_j]$. By Janson's Inequality,

$$Pr[\forall i, Z_i = 0] \leq e^{-\frac{\mu^2}{2\Delta}}$$

Set $e^{-\frac{\mu^2}{2\Delta}} \leq 1/r$ and find an appropriate κ that satisfies it.

What is left to be proven

Lemma

Let $\kappa = 64r^4 \log^4 w$. If \mathcal{F} is κ -spread, then \mathcal{F} is (1/r, 1/r)-satisfying.

What is left to be proven

Lemma

Let $\kappa = 64r^4 \log^4 w$. If \mathcal{F} is κ -spread, then \mathcal{F} is (1/r, 1/r)-satisfying.

Recalling the definitions...

Definition

A *w*-set system \mathcal{F} is κ -spread if $|\mathcal{F}| > \kappa^{w}, \text{ and}$ for every set T with $|T| = t < w, |\mathcal{F}_{T}| \le \kappa^{w-t}.$

Definition

Let $0 < \alpha, \beta < 1$. A family \mathcal{F} of subsets of X is (α, β) -satisfying if

$$Pr_{W \sim \mathcal{U}(X,\alpha)}[\exists S \in \mathcal{F}, S \subseteq W] > 1 - \beta$$

Bad (W, S) pairs

 \mathcal{F} is a κ -spread w-set system of subsets of X. Let w' < w. Let $W \sim \mathcal{U}(X, p)$.

Definition

For an $S \in \mathcal{F}$, the pair (W, S) is **good** if there exists a set S' (could be equal to S) in \mathcal{F} that satisfies:

•
$$S' \subseteq S \cup W$$
, and

$$|S' \setminus W| \le w'$$

Otherwise, (W, S) is a **bad pair**.

Pseudo-spread set systems

Let $\kappa = 64r^4 \log^4 w$ (basically, a function that is monotone non-decreasing over w for a fixed r).

Definition

A w-set system \mathcal{F} is κ -spread if

• $|\mathcal{F}| > \kappa^w$, and

• for every set T with |T| = t < w, $|\mathcal{F}_T| \le \kappa^{w-t}$.

Pseudo-spread set systems

Let $\kappa = 64r^4 \log^4 w$ (basically, a function that is monotone non-decreasing over w for a fixed r).

Definition

A w-set system \mathcal{F} is κ -spread if

 $\blacksquare |\mathcal{F}| > \kappa^w \text{, and}$

for every set T with
$$|T| = t < w$$
, $|\mathcal{F}_T| \le \kappa^{w-t}$.

Definition

Let $w_1 \leq w, \ 0 < \delta$. A w_1 -set system \mathcal{F} is (κ, w, δ) -nearly-spread if

•
$$|\mathcal{F}| > (1 - \delta)\kappa^w$$
, and

• for every set T with $|T| = t < w_1$, $|\mathcal{F}_T| \le \kappa^{w-t}$.

A key lemma

Lemma 1

Let $w_2 < w_1 \le w$, $0 < \delta, \Delta$. Let \mathcal{F}_1 be a (κ, w, Δ) -nearly-spread w_1 -set system. If every $(\kappa, w, \Delta + \delta)$ -nearly-spread w_2 -set system is (α_2, β_2) -satisfying, then, for any $0 , <math>\mathcal{F}_1$ is (α_1, β_1) -satisfying, where

$$\alpha_1 = p + (1-p)\alpha_2, \quad \beta_1 = \beta_2 + \frac{(4/p)^{w_1}}{\delta(1-\Delta)\kappa^{w_2}}$$

Proof.

Given a $W \sim \mathcal{U}(X, p)$, we construct \mathcal{F}_2 from \mathcal{F}_1 in the following way:

- 1. Initialize $\mathcal{F}_2 = \{\}$.
- 2. For each $S \in \mathcal{F}_1$:

if (W, S) is **good**, then by definition $\exists S' \in \mathcal{F}_1$ with $S' \subseteq S \cup W$ such that $|S' \setminus W| \le w_2$. Set $\mathcal{F}_2 = \mathcal{F}_2 \cup \{S' \setminus W\}$.

A key lemma contd...

The lemma follows from the following claim:

$\begin{array}{l} \textbf{Claim 1:} \\ pr[\mathcal{F}_2 \text{ is not } (\kappa, w, \Delta + \delta) \text{-nearly-spread } w_2 \text{-set system}] \leq \\ \frac{(4/p)^{w_1}}{\delta(1-\Delta)\kappa^{w_2}} \end{array}$

Lemma (Lemma 1 restated)

Let $w_2 < w_1 \le w$, $0 < \delta, \Delta$. Let \mathcal{F}_1 be a (κ, w, Δ) -nearly-spread w_1 -set system. If every $(\kappa, w, \Delta + \delta)$ -nearly-spread w_2 -set system is (α_2, β_2) -satisfying, then, for any $0 , <math>\mathcal{F}_1$ is (α_1, β_1) -satisfying, where

$$\alpha_1 = \mathbf{p} + (1 - \mathbf{p})\alpha_2, \quad \beta_1 = \beta_2 + \frac{(4/\mathbf{p})^{w_1}}{\delta(1 - \Delta)\kappa^{w_2}}$$

Let |X| = n. Assume |W| is *pn*-sized subset of X chosen uniformly at random.

1 No. of choices for
$$W \cup S$$
: $\sum_{i=0}^{w_1} {n \choose pn+i} \leq p^{-w_1} {n \choose pn}$

Let |X| = n. Assume |W| is *pn*-sized subset of X chosen uniformly at random.

Claim 1.1: Let $B(W) = \{S \in \mathcal{F}_1 : (W, S) \text{ is bad}\}$. Then, $E_W[|B(W)|] \le (4/p)^{w_1} \kappa^{w-w_2}$.

1 No. of choices for
$$W \cup S$$
: $\sum_{i=0}^{w_1} {n \choose pn+i} \leq p^{-w_1} {n \choose pn}$

2 Let S' be the first set in \mathcal{F} such that $S' \subseteq W \cup S$. Let $A = S \cap S'$. No. of choices of A: 2^{w_1}

Let |X| = n. Assume |W| is *pn*-sized subset of X chosen uniformly at random.

1 No. of choices for
$$W \cup S$$
: $\sum_{i=0}^{w_1} {n \choose pn+i} \leq p^{-w_1} {n \choose pn}$

- 2 Let S' be the first set in \mathcal{F} such that $S' \subseteq W \cup S$. Let $A = S \cap S'$. No. of choices of A: 2^{w_1}
- 3 Since (W, S) bad, $|A| > w_2$. Further, $|\mathcal{F}_A| \le \kappa^{w-w_2}$. Thus, no. of choices of S given A: κ^{w-w_2}

Let |X| = n. Assume |W| is *pn*-sized subset of X chosen uniformly at random.

1 No. of choices for
$$W \cup S$$
: $\sum_{i=0}^{w_1} {n \choose pn+i} \leq p^{-w_1} {n \choose pn}$

- 2 Let S' be the first set in \mathcal{F} such that $S' \subseteq W \cup S$. Let $A = S \cap S'$. No. of choices of A: 2^{w_1}
- 3 Since (W, S) bad, $|A| > w_2$. Further, $|\mathcal{F}_A| \le \kappa^{w-w_2}$. Thus, no. of choices of S given A: κ^{w-w_2}
- 4 No. of choices of $S \cap W$: 2^{w_1}

Let |X| = n. Assume |W| is *pn*-sized subset of X chosen uniformly at random.

1 No. of choices for
$$W \cup S$$
: $\sum_{i=0}^{w_1} {n \choose pn+i} \leq p^{-w_1} {n \choose pn}$

- 2 Let S' be the first set in \mathcal{F} such that $S' \subseteq W \cup S$. Let $A = S \cap S'$. No. of choices of A: 2^{w_1}
- 3 Since (W, S) bad, $|A| > w_2$. Further, $|\mathcal{F}_A| \le \kappa^{w-w_2}$. Thus, no. of choices of S given A: κ^{w-w_2}
- 4 No. of choices of $S \cap W$: 2^{w_1}
- 5 Thus, the no. of bad pairs is: $(4/p)^{w_1} \kappa^{w-w_2} {n \choose pn}$

Proving Claim 1: W is δ -bad

Definition

For a $\delta > 0$, we say W is δ -bad for a w_1 -set system \mathcal{F}_1 if $|B(W)| > \delta |\mathcal{F}_1|$.

Proving Claim 1: W is δ -bad

Definition

For a $\delta > 0$, we say W is δ -bad for a w_1 -set system \mathcal{F}_1 if $|B(W)| > \delta |\mathcal{F}_1|$.

Applying Markov's Inequality and Claim 1.1, we get

$$\Pr[W \text{ is } \delta\text{-bad for}\mathcal{F}_1] \leq \frac{E_W[|B(W)|]}{\delta |\mathcal{F}_1|} \leq \frac{(4/p)^{w_1}}{\delta (1-\Delta)\kappa^{w_2}}$$

This gives Claim 1 (restated below)

Claim 1:

 $\begin{array}{l} \Pr[\mathcal{F}_2 \text{ is not } (\kappa, w, \Delta + \delta) \text{-nearly-spread } w_2 \text{-set system}] \leq \\ \frac{(4/p)^{w_1}}{\delta(1-\Delta)\kappa^{w_2}} \end{array}$

How Lemma 1 helps

Let
$$\mathcal{F}_0 := \mathcal{F}, w_0 = w, \Delta_0 = 0$$
. For $1 \le i \le \log w$,
 $w_i = w/2^i, \ \gamma_i = \frac{(4/p)^{w_{i-1}}}{\kappa^{w_i}}, \ \delta_i = \sqrt{\gamma_i}, \ p = \frac{1}{r \log w}, \ \Delta_i = \delta_1 + \dots + \delta_i < 1/2.$

Apply Lemma 1 repeatedly for log w times...

Lemma

Let \mathcal{F}_{i-1} be a $(\kappa, w, \Delta_{i-1})$ -nearly-spread w_{i-1} -set system. If every $(\kappa, w, \Delta_{i-1} + \delta_i)$ -nearly-spread w_i -set system is (α_i, β_i) -satisfying, then, for any $0 , <math>\mathcal{F}_{i-1}$ is $(\alpha_{i-1}, \beta_{i-1})$ -satisfying, where

$$\alpha_{i-1} = p + (1-p)\alpha_i \le p + \alpha_i$$

$$\begin{array}{lll} \beta_{i-1} &=& \beta_i + \frac{(4/p)^{w_{i-1}}}{\delta_i(1-\Delta_{i-1})\kappa^{w_i}} \\ &\leq& \beta_i + \frac{\sqrt{\gamma_i}}{(1-\Delta_{i-1})} \end{array}$$

How Lemma 1 helps...

Thus,

$$\begin{array}{rcl} \alpha_0 & \leq & p \log w \\ & = & 1/r \\ \beta_0 & \leq & \frac{\sqrt{\gamma_1}}{(1 - \Delta_0)} + \dots + \frac{\sqrt{\gamma_i}}{(1 - \Delta_{i-1})} + \dots \\ & \leq & 2 \log w \sqrt{\gamma_{\log w}} \\ & \leq & 1/r. \end{array}$$

We thus proved..

Theorem

Let \mathcal{F} be a *w*-set system. If $|\mathcal{F}| > (64r^4 \log^4 w)^w$, then *r*-sunflower exists.

Concluding remarks

■ The paper also shows construction of a *w*-set system of size $(\log w)^{w(1-o(1))}$, where o(1) is a function of *r*, which is not (1/r, 1/r)-satisfying.

Concluding remarks

- The paper also shows construction of a w-set system of size (log w)^{w(1-o(1))}, where o(1) is a function of r, which is not (1/r, 1/r)-satisfying.
- (Cavalar et al., 2020) Improves lower bound known for size of a monotone circuit computing an explicit *n*-variate monotone Boolean function from exp(n^{1/3-o(1)}) to exp(n^{1/2-o(1)}).

Concluding remarks

- The paper also shows construction of a w-set system of size (log w)^{w(1-o(1))}, where o(1) is a function of r, which is not (1/r, 1/r)-satisfying.
- (Cavalar et al., 2020) Improves lower bound known for size of a monotone circuit computing an explicit *n*-variate monotone Boolean function from exp(n^{1/3-o(1)}) to exp(n^{1/2-o(1)}).
- (Frankston et al., 2020) uses the technique here to solve a conjecture of Talagrand in random graphs

Thank You