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Attribution

This talk is primarily based on the following paper: 

Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

By: Fiorini, Massar, Pokutta, Tiwary, de Wolf

Appeared in STOC, 2012.
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Polytopes, Extension Complexity and 
Combinatorial optimization



Polytopes: Two views

• Convex Hull of vertices in ℝ𝑑

• 𝑃 = conv( 𝑣1, 𝑣2, … , 𝑣𝑁 )

• Intersection of Finite Number of 
halfspaces in ℝ𝑑

• 𝑃 = 𝑥 𝐴𝑥 ≤ 𝑏} where 𝐴 ∈ ℝ𝑚×𝑑 ,
𝑏 ∈ ℝ𝑚



Vertices and Halfspaces

• Number of vertices may be exponential in the number of halfspaces
• E.g. The hypercube in ℝ𝑑

• Broad question for this talk: Can some polytopes that have an exponential
number of vertices be expressed with a polynomial number of inequalities?

0 ≤ 𝑥1 ≤ 1
0 ≤ 𝑥2 ≤ 1

⋮
0 ≤ 𝑥𝑑 ≤ 1

𝐻𝑑= conv( 0,1 𝑑)



A non-trivial example

• The Parity Polytope 𝑃𝑃 = conv 𝑥 ∈ {0,1 𝑑: σ𝑖 𝑥𝑖 = odd)

• Above is still an exponential-sized description; can we get a polysized 
description?

An exponential-sized halfspace description:

෍

𝑖∈𝑆

𝑥𝑖 −෍

𝑖∉𝑆

𝑥𝑖 ≤ 𝑆 − 1 ∀𝑆 ⊆

[𝑑]: even−sized sets
0 ≤ 𝑥𝑖 ≤ 1

Check: Above is violated for even-weighted 𝑥. 

Animation from: Anup Rao, UWash. Link

https://homes.cs.washington.edu/~anuprao/pubs/parityfunctiontope.mp4


A polynomial-sized description of 𝑃𝑃𝑑

• The Parity Polytope 𝑃𝑃 = conv 𝑥 ∈ {0,1 𝑑: σ𝑖 𝑥𝑖 = odd)

• The above polytope lies in higher dimension (ℝ𝑂 𝑑2 ), the projection onto the 𝑥
variables gives us our desired polytope.

෍

𝑘:𝑜𝑑𝑑

𝛼𝑘 = 1

෍

𝑘:𝑜𝑑𝑑

𝑧𝑖𝑘 = 𝑥𝑖 ∀𝑖 ∈ [𝑑]

1

𝑘
෍

𝑖

𝑧𝑖𝑘 = 𝛼𝑘 ∀𝑘 ∈ 𝑑 , 𝑜𝑑𝑑

Intuition:
• 𝛼𝑘 selects which 𝑘 we are 

looking at
• 𝑧𝑖𝑘 is 1, if  𝑥𝑖 is 1 and σ𝑖 𝑥𝑖 = 𝑘

Key point: Introduction of auxiliary 
variables 𝑧, 𝛼. 



Extension Complexity and Projections

We will mainly deal with coordinate projections, but the theory 
holds for general linear maps.

• The polytope P is a projection of a 
polytope Q along a subset of the 
dimensions.

• The description of Q in terms of 
halfspaces is called an extended 
formulation of the polytope P

• As we have seen, the extended 
formulation may have fewer 
facets/faces.

𝑃 = 𝜋 𝑄

𝑄

𝜋

Question: Is it always possible to find such compact extended formulations?

Figure courtesy: Fiorini-Rothvoss-Tiwary,  Extended Formulations for Polygons, In Discrete and Computational Geometry, 
2012.



Extension Complexity: Definition and a result

• Rothvoss[2011]: There exist polytopes in ℝ𝑑 that require 2Ω(
𝑑

2
)

inequalities to describe.
• Shown using a probabilistic counting argument

• But why should we (as computer scientists) care?

Definition of Extension Complexity:   xc 𝑃 is the minimum number of 
inequalities required to describe 𝑃, even when allowed to use auxiliary 
variables/extended formulations.



Linear Programming (LP) Relaxations

• Express a combinatorial optimization problem as a linear optimization problem
• E.g. Consider the maximum independent-set problem on a graph 𝐺 = (𝑉, 𝐸):

• max σ𝑖 𝑥𝑖
s. t. 𝑥𝑖 + 𝑥𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝐸(𝐺)

0 ≤ 𝑥𝑖 ≤ 1 ∀𝑖 ∈ 𝑉

• If the variables were restricted to 𝑥𝑖 ∈ {0,1}, then clearly, any feasible solution to the 
above is an independent set.

• The relaxation of each 𝑥𝑖 to the real interval introduces spurious solutions.
• E.g. setting all 𝑥𝑖 =

1

2
is a feasible solution! Doesn’t mean anything. 

• Question: When would a relaxation be useful/ideal?

https://www.google.com/imgres?imgurl=http%3A%2F%2Fyaroslavvb.com%2Fblog%2Fblog-lp%2Findsets.png&imgrefurl=http%3A%2F%2Fyaroslavvb.blogspot.com%2F2011%2F03%2Flinear-programming-for-maximum.html&tbnid=VhhFtFumBYVMjM&vet=12ahUKEwieiMyTm6_pAhUWGrcAHS32B28QMygEegUIARDwAQ..i&docid=yqRu1XcftOxmgM&w=593&h=201&q=maximum%20independent%20set%20problem&client=firefox-b-d&ved=2ahUKEwieiMyTm6_pAhUWGrcAHS32B28QMygEegUIARDwAQ


An Ideal Relaxation

An ideal relaxation for the independent set problem: the feasible polytope is 
exactly the convex hull of the independent sets in 𝐺.

• We may still get convex-combinations of the 
vertices as fractional solutions, but that is fine
• Optimal value will be attained at some vertex 

always.

LPs have found widespread use in the design of algorithms. Can we hope to 
capture all problems using LPs?



NP-Hard problems and Extension Complexity

• Objective: Prove P=NP / Conquer the world

• Method: Pick a favourite NP-Hard problem, say the Travelling Salesperson 
Problem (TSP).

• Come up with an extremely clever Polynomial-sized LP formulation, using 
auxiliary variables.

• Show that the vertices of the feasible region are exactly Hamiltonian cycles in 
the input instance

• Congratulations, you’ve have just released the NP-genie; infinite riches await!

• If the world is sane (P≠NP), the above should not work.



The Travelling Salesperson Problem (TSP)

• Given 𝑛 cities and distances 𝑤𝑖𝑗 between them, find the shortest tour that 
visits all cities and returns back to the starting city.

• Input can be viewed as a weighted complete graph 𝐾𝑛. Select edges that 
form a Hamiltonian cycle of minimum weight.

Figure courtesy: Wikipedia, TSP page.



The TSP Polytope, and a relaxation formulation

• Use variables 𝑥𝑖𝑗 for each distinct pair 𝑖, 𝑗 ∈ 𝑉. Thus, 𝑥 ∈ ℝ
𝑛
2 .

min
෍

𝑖𝑗

𝑤𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. 𝑥 is a HamCycle in 𝐾_𝑛

min
෍

𝑖𝑗

𝑤𝑖𝑗𝑥𝑖𝑗

𝑠. 𝑡. 𝑥(𝛿(𝑆)) ≥ 2 ∀𝑆 ≠ ∅, 𝑉

𝑥 𝛿 𝑖 = 2 ∀𝑖 ∈ 𝑉

𝑥 ≥ 0

• Above, 𝛿(𝑆) denotes the edges crossing 𝑆.

• The above LP has a conjectured gap of 4/3 to the optimum integer solution.



The TSP story

• In 1986, Swart came up with a claimed polynomial-sized EF for the TSP 
polytope (in a draft titled “P=NP”)

• With some effort, researchers found bugs in the LP

• Swart claimed to fix these in a new draft; but more bugs were found, which 
were again fixed… and this went on.

• Yannakakis came up with an ingenious method that showed that any
symmetric extended formulation that captures the TSP Polytope is 
necessarily exponential-sized, disproving Swart’s approach.

• However, symmetry can be powerful:
• [Kaibel-Pashkovich-Theis 2011]: There are explicit polytopes with exponential 

symmetric extension complexity, but polynomial asymmetric extension complexity.

M. Yannakakis



Settling the TSP story

• 20 years after Yannakakis’ result, Fiorini-Massar-Pokutta-Tiwary-deWolf
(2012) showed that any extended formulation for the TSP polytope has size 
2Ω( 𝑛), answering the open question.

• [Rothvoss-2013] showed that this can be improved to 2Ω(𝑛).

• Yannakakis’ result has lead to a number of other breakthroughs, tying in 
diverse fields
• Communication complexity, quantum computation, Fourier analysis, etc.

• Many interesting questions remain open (we will see a few at the end)



Today’s Result

Theorem: [Fiorini et al., 2012] 

xc(𝑇𝑆𝑃𝑛) ≥ 2Ω( 𝑛)

• Step 1: Yannakakis’ Factorization Theorem
• Step 2: The Correlation Polytope and its Extension Complexity
• Step 3: From the Correlation Polytope to TSP



Why prove lower bounds for NP-hard problems?

• Bounds are independent of complexity-theoretic assumptions (P≠NP).

• Can view LPs as a computational model/proof system. This gives lower 
bounds in this particular proof system.

• Yields insights into the computational difficulty of the problem at hand
• Bounds in the LP (or SDP) world have been translated to lower bounds using hardness 

assumptions [Raghavendra 08].



Step 1: Yannakakis’ Factorization Theorem



The Slack Matrix of  a Polytope

• Consider a polytope given by 
𝑀 inequalities:  𝐴𝑥 ≤ 𝑏

• Suppose its vertices are 
𝑢1, … , 𝑢𝑁

• The Slack matrix 𝑆 is defined as:

𝑆 𝑖, 𝑗 = 𝑏𝑖 − ⟨𝐴𝑖 , 𝑢𝑗⟩

• 𝑆 ∈ ℝ𝑀×𝑁 (𝐴𝑖 is 𝑖𝑡ℎ row of 𝐴)

• Every entry is non-negative

• Slack of the 𝑗𝑡ℎ vertex on 𝑖𝑡ℎ

constraint 

𝑆 𝑖, 𝑗



Slack Matrix: Non-Negative Rank

Definition: Non-negative rank 𝑟𝑘+ 𝑆 of 𝑆 is the smallest 𝑟 for which  𝑆 is the 
product of two (entry-wise) non-negative matrices 𝑆 = 𝑇𝑈, where 𝑇 ∈ ℝ𝑀×𝑟, 
and 𝑈 ∈ ℝ𝑟×𝑁

Remark: Without the non-negativity condition on 𝑇, 𝑈 this would just be the 
usual rank of 𝑆

Type equation here. Type
equation here.

= Type equation here.

Type
equation
here.
Type

equation
here.



Slack Matrix: Observation

• Some facets / inequalities may be redundant: 
the slack matrix may also includes rows for such 
inequalities.

• Claim: This does not change the non-negative 
rank!

• Proof: Farkas’ Lemma!

• Idea: The redundant inequality is a non-
negative combination of other inequalities 
• The added row is a non-negative combination of 

other rows

𝑆 𝑖, 𝑗



Farkas’ Lemma

• Let 𝑃 ∈ ℝ𝑛 be a polyhedron defined by a set of 𝑀 inequalities A𝑥 ≤ 𝑏, 
bounded along at least one direction. 

• Then any inequality 𝑐𝑇𝑥 ≤ 𝛿 that is valid for all points of 𝑃 can be derived by 
a non-negative linear combination of the given inequalities: i.e. there exist 
non-negative 𝜆 ∈ ℝ𝑚:

𝜆𝑇𝐴 = 𝑐𝑇 and     𝜆𝑇𝑏 = 𝛿

• Conversely, if 𝑐𝑇𝑥 ≤ 𝛿 is invalid, then it can be refuted by deriving a 
contradiction using non-negative linear combinations (derive 0=-1)



Yannakakis’ Factorization Theorem

Theorem: Let 𝑃 = 𝐴𝑥 ≤ 𝑏| 𝑥 ∈ ℝ𝑛 be a polytope with dim 𝑃 ≥ 1. Let 𝑉
be the set of vertices of 𝑃. Let 𝑆 be the slack matrix of 𝑃 with respect to the 
given inequalities. Then the following are equivalent:

1. S has non-negative rank at most 𝑟

2. 𝑥𝑐 𝑃 ≤ 𝑟 + 𝑂(𝑛)

In words, the extension complexity is characterized by the non-negative rank 
of the slack matrix.



Proof Outline: 𝑟𝑘+ 𝑆 ≤ 𝑟 ⇒EF of size O(𝑟)

• Let 𝑃 be given using inequalities. Suppose the slack matrix 𝑆 = 𝑇𝑈. 

• Let 𝑇𝑖 be the 𝑖𝑡ℎ row of 𝑇; 𝑈𝑗 be the 𝑗𝑡ℎ col of U

• 𝑆 𝑖, 𝑗 = 𝑇𝑖 , 𝑈𝑗 = 𝑏𝑖 − ⟨𝐴𝑖 , 𝑣𝑗⟩ by definition.

• Define polytope  𝑃′ as:

• 𝐴𝑥 + 𝑇𝑦 = 𝑏; 𝑦 ≥ 0 Here, 𝑦 ∈ ℝ𝑟

• Among the above equalities, at most 𝑛 + 𝑟 of them are relevant, as this is 
the number of variables. Thus we have at most 𝑛 + 2𝑟 constraints.

• Any extreme point 𝑣𝑗 in 𝑃 has an extreme point (𝑣𝑗 , 𝑈𝑗) in 𝑃′.

Type
equation
here.
Type

equation
here.

=
Type
equation
here.



Proof II: EF of size 𝑟 ⇒ 𝑟𝑘+ 𝑆 ≤ 𝑂(𝑟)

• If P was specified using 𝑟 inequalities, we can always bring it to the form:

𝐸𝑥 + 𝐹𝑦 = 𝑡, 𝑦 ≥ 0

by adding at most 𝑂(𝑟) variables 𝑦.  
• e.g. every unconstrained 𝑧 = 𝑦+ − 𝑦−, with 𝑦+ , 𝑦− ≥ 0), 
• inequality 𝑐𝑇𝑥 ≤ 𝑑 gets 𝑐𝑇𝑥 + 𝑦′ = 𝑑 with 𝑦′ ≥ 0

• For every vertex 𝑣𝑗, there is a 𝑦𝑗 satisfying the above equalities. 

• Since we can derive 𝐴𝑖𝑥 ≤ 𝑏𝑖 from above, it implies there exist 𝜆𝑖 ∈ ℝ≥0
𝑟 , 

with:

𝜆𝑖
𝑇𝐸 = 𝐴𝑖, 𝜆𝑖

𝑇𝑡 = 𝑏𝑖, and 𝜆𝑖
𝑇𝐹 ≥ 0 . Further, 𝜆𝑖

𝑇𝐹𝑦𝑗 is the slack on vertex 𝑣𝑗 of 
constraint i. 

• Finally, define the matrices 𝑇, 𝑈: 𝑇𝑖 = 𝜆𝑖𝐹 and 𝑈𝑗 = 𝑦𝑗.  



Details



A simple observation

• If P’  is a face of P, then xc(P)≥xc(P’)

• Proof: The slack matrix of P’ is a submatrix of the slack matrix of P. The non-
negative rank factorization of P also holds for P’ by keeping appropriate rows 
of T and columns of U.



Step 2: The Correlation Polytope and its Slack 
Matrix



The correlation polytope 𝐶𝑂𝑅𝑅(𝑛)

𝐶𝑂𝑅𝑅 𝑛 = conv 𝑏𝑏𝑇 𝑏 ∈ 0,1 𝑛}

• The polytope lies in  ℝ𝑛2. One way to think of a feasible point of the polytope 
is as a matrix 𝑥 ∈ ℝ𝑛×𝑛. 

• The extreme points are those for which 𝑥 = 𝑏𝑏𝑇, for some 𝑏 ∈ 0,1 𝑛.

Main Result: 𝑥𝑐 𝐶𝑂𝑅𝑅 𝑛 = 2Ω 𝑛



Slack (sub) Matrix of the Correlation polytope

• What inequalities to consider?

• Claim: ∀𝑎 ∈ 0,1 𝑛 ∀𝑥 ∈ 𝐶𝑂𝑅𝑅(𝑛):
⟨2 diag 𝑎 − 𝑎𝑎𝑇 , 𝑥⟩ ≤ 1

• Proof: Only show for vertices, rest follows by 
linearity

𝑺[𝒂, 𝒃]

Notation: 𝑋, 𝑌 ∈ ℝ𝑛×𝑛

𝑋, 𝑌 = Tr 𝑋𝑇𝑌

“Unroll the X and Y into 
vectors and take their inner 
product”

𝑆[𝑎, 𝑏] =1-⟨2 diag 𝑎 − 𝑎𝑎𝑇 , 𝑏𝑏𝑇⟩

𝒂 ∈ 𝟎, 𝟏 𝒏

𝒃 ∈ 𝟎, 𝟏 𝒏



The support matrix

• 𝑠𝑢𝑝𝑝𝑚𝑎𝑡 𝑆 = ቊ
1 𝑖𝑓 𝑆[𝑎, 𝑏] ≠ 0

0 𝑖𝑓 𝑆[𝑎, 𝑏] = 0

• [Razborov]: Covering only the 1’s in SuppMat(S) 
using rectangles requires at least 2Ω(𝑛)

rectangles.

• Suppmat(S) with an appropriate measure, is exactly 
the communication matrix of the Unique 
Disjointness function!

𝑺[𝒂, 𝒃]

𝑆[𝑎, 𝑏] =1-⟨2 diag 𝑎 − 𝑎𝑎𝑇 , 𝑏𝑏𝑇⟩

𝒂 ∈ 𝟎, 𝟏 𝒏

𝒃 ∈ 𝟎, 𝟏 𝒏

Example: Any cover of the 1’s in this matrix 
using rectangles uses at least 2 rectangles



Extension Complexity and Covers

Theorem: 𝑥𝑐 𝑆 ≈ 𝑟𝑘+ 𝑆 ≥ |cover 𝑠𝑢𝑝𝑝𝑚𝑎𝑡 𝑆 |

where, cover denotes the minimum-sized collection of rectangles needed to cover the 1’s of 
suppmat(S).

Proof:  Let S=TU, and 𝑟𝑘+ 𝑆 = 𝑟. Then we have:  𝑆 = σ𝑘∈[𝑟]𝑇𝑘𝑈
𝑘



Step 3: Relating back 𝐶𝑂𝑅𝑅(𝑛) to 𝑇𝑆𝑃𝑛



How to relate 𝐶𝑂𝑅𝑅(𝑛) to 𝑇𝑆𝑃𝑛

• We have: 𝐶𝑂𝑅𝑅 𝑛 = conv 𝑏𝑏𝑇 𝑏 ∈ 0,1 𝑛}, 𝑥𝑐 𝐶𝑂𝑅𝑅 ≥ 2Ω(𝑛)

• 𝑇𝑆𝑃𝑛 = conv {𝑥 ∈ ℝ
𝑛
2 : 𝑥 =Ham-cycle 𝐾𝑛 }

We will use: If P’  is a face of P, then 𝑥𝑐(𝑃) ≥ 𝑥𝑐(𝑃’). A face of 𝑇𝑆𝑃𝑛 itself will 
have extension complexity as exponential.

Also, you might have guessed: we will show that 𝐶𝑂𝑅𝑅 𝑛 is a face of 
𝑇𝑆𝑃𝑂(𝑛2).

Use the standard NP-hardness reduction from 3-SAT to TSP.



CORR(n) to 3-SAT

• The following formula 𝜙𝑛 on variables 𝑍𝑖𝑗 for 𝑖, 𝑗 ∈ [𝑛]

• 𝜙𝑛 = ∋𝑖,𝑗ٿ 𝑛 𝑍𝑖𝑖 ∨ 𝑍𝑗𝑗 ∨ ҧ𝑍𝑖𝑗 ∧ 𝑍𝑖𝑖 ∨ ҧ𝑍𝑗𝑗 ∨ ҧ𝑍𝑖𝑗 ∧ ҧ𝑍𝑖𝑖 ∨ 𝑍𝑗𝑗 ∨ ҧ𝑍𝑖𝑗 ∧ ҧ𝑍𝑖𝑖 ∨ ҧ𝑍𝑗𝑗 ∨ 𝑍𝑖𝑗

• Each set of 4 clauses encodes 𝑍𝑖𝑗 = 𝑏𝑖 ∧ 𝑏𝑗 for each i,j.

• Satisfying assignments to 𝜙𝑛 are exactly 𝑍 = 𝑏𝑏𝑇 for any 𝑏 ∈ 0,1 𝑛. 
• Convex hull of satisfying assignments is CORR(n)



3-SAT (𝜙𝑛) to 𝑇𝑆𝑃𝑛

• Build a graph 𝐺𝑛 on O(𝑛2) vertices. First start with a directed graph for 
simplicity; then add few vertices to make it undirected.

• Tours in 𝐺𝑛 will be in one-one correspondence with satisfying assignments of 
𝜙𝑛.

• Each tour in 𝐺𝑛 is also a tour in 𝐾𝑛. So, convex hull of the tours of 𝐺𝑛 is a face 
of 𝑇𝑆𝑃𝑂(𝑛2).

• Since this face is exactly CORR(n) ⇒ 𝑥𝑐 𝑇𝑆𝑃𝑛 = 2Ω( 𝑛). □



The Gadget for reducing 3-SAT to TSP

• Variable Gadget:

• For variable 𝑣𝑘 in 
𝜙 occuring in p clauses

• Clause Gadget
• If clause m has  variable k un-

negated, and m’ has variable  
k negated



Further developments

• Rothvoss[2013] showed that the perfect matching polytope has exponential 
extension complexity!
• Note that perfect matching is solvable in polytime
• This also improves the TSP lower bound to 2Ω(𝑛).

• Semidefinite extension lower bounds: 
• There exist polytopes with  exponential LP complexity, but polynomial SDP complexity.
• CUT, TSP, Stable set polytopes also have exponential semidefinite-extension complexity

• Approximately capturing polytopes: indicates what approximation factor can be 
achieved using LPs/SDPs[Braun-Fiorini-Pokutta-Steurer12]

• Closely related to hierarchies of Linear and Semidefinite Programs (Sherali-Adams,  
Lasserre, etc.) [CLRS13, LRS15]



Open problems

• Most techniques work only when the base polytope is independent of the 
graph

• Extending known techniques to handle graph-dependent polytopes is a 
challenging open problem

• Techniques for approximate EFs do not work when there are hard constraints 
involved

• For e.g. How well can we approximate 𝑇𝑆𝑃𝑛 using  Extended Formulations is still Open.



Thank You!




