On the Extension Complexity of the TSP Polytope

Speaker: Rakesh Venkat
Online CS Theory Seminar Series, IIT Hyderabad

May 2020

Attribution

This talk is primarily based on the following paper:
Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds
By: Fiorini, Massar, Pokutta, Tiwary, de Wolf
Appeared in STOC, 2012.

Outline

1. Polytopes, Extension Complexity, Linear Programming
2. Yannakakis' Theorem
3. The Correlation polytope and its extension complexity
4. From Corr(n) to the TSP Polytope
5. Related work and Open problems

Polytopes, Extension Complexity and Combinatorial optimization

Polytopes: Two views

- Convex Hull of vertices in \mathbb{R}^{d}

- $P=\operatorname{conv}\left(\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}\right)$
- Intersection of Finite Number of halfspaces in \mathbb{R}^{d}

$$
\begin{aligned}
& a_{1}^{\top} x \leqslant b_{1} \\
& a_{2}^{\top} x \leqslant b_{2} \\
& a_{3}^{\top} x \leqslant b_{3}
\end{aligned}
$$

- $P=\{x \mid A x \leq b\}$ where $A \in \mathbb{R}^{m \times d}$, $b \in \mathbb{R}^{m}$

Vertices and Halfspaces

- Number of vertices may be exponential in the number of halfspaces
- E.g. The hypercube in \mathbb{R}^{d}

$$
\begin{aligned}
& 0 \leq x_{1} \leq 1 \\
& 0 \leq x_{2} \leq 1 \\
& \quad \vdots \\
& 0 \leq x_{d} \leq 1
\end{aligned}
$$

- Broad question for this talk: Can some polytopes that have an exponential number of vertices be expressed with a polynomial number of inequalities?

A non-trivial example

- The Parity Polytope $P P=\operatorname{conv}\left(x \in\{0,1\}^{d}: \sum_{i} x_{i}=\right.$ odd $)$

An exponential-sized halfspace description:

$$
\begin{aligned}
& \sum_{i \in S} x_{i}-\sum_{i \notin S} x_{i} \leq|S|-1 \quad \forall S \subseteq \\
& \text { [d]: even-sized sets } \\
& 0 \leq x_{i} \leq 1
\end{aligned}
$$

Check: Above is violated for even-weighted x.

- Above is still an exponential-sized description; can we get a polysized description?

A polynomial-sized description of $P P_{d}$

- The Parity Polytope $P P=\operatorname{conv}\left(x \in\{0,1\}^{d}: \sum_{i} x_{i}=\right.$ odd $)$

$$
\begin{array}{ll}
\sum_{k: o d d} \alpha_{k}=1 & \\
\sum_{k: o d d} z_{i k}=x_{i} & \forall i \in[d] \\
\frac{1}{k} \sum_{i} z_{i k}=\alpha_{k} & \forall k \in[d], \text { odd }
\end{array}
$$

Intuition:

- α_{k} selects which k we are looking at
- $z_{i k}$ is 1 , if x_{i} is 1 and $\sum_{i} x_{i}=k$

Key point: Introduction of auxiliary variables z, α.

- The above polytope lies in higher dimension $\left(\mathbb{R}^{o\left(d^{2}\right)}\right)$, the projection onto the x variables gives us our desired polytope.

Extension Complexity and Projections

We will mainly deal with coordinate projections, but the theory holds for general linear maps.

- The polytope P is a projection of a polytope Q along a subset of the dimensions.
- The description of Q in terms of halfspaces is called an extended formulation of the polytope P
- As we have seen, the extended formulation may have fewer facets/faces.

Question: Is it always possible to find such compact extended formulations?

Extension Complexity: Definition and a result

Definition of Extension Complexity: $\mathrm{xc}(P)$ is the minimum number of inequalities required to describe P, even when allowed to use auxiliary variables/extended formulations.

- Rothvoss[2011]: There exist polytopes in \mathbb{R}^{d} that require $2^{\Omega\left(\frac{d}{2}\right)}$ inequalities to describe.
- Shown using a probabilistic counting argument
- But why should we (as computer scientists) care?

Linear Programming (LP) Relaxations

- Linear optimization can be solved in polytime!
- Express a combinatorial optimization problem as a linear optimization problem
- E.g. Consider the maximum independent-set problem on a graph $G=(V, E)$:

$$
\begin{array}{lll}
& \cdot \max \sum_{i} x_{i} \\
\text { s.t. } & x_{i}+x_{j} \leq 1 \quad \forall i, j \in E(G) \\
& 0 \leq x_{i} \leq 1 \quad \forall i \in V
\end{array}
$$

- If the variables were restricted to $x_{i} \in\{0,1\}$, then clearly, any feasible solution to the above is an independent set.
- The relaxation of each x_{i} to the real interval introduces spurious solutions.
- E.g. setting all $x_{i}=\frac{1}{2}$ is a feasible solution! Doesn't mean anything.
- Question: When would a relaxation be useful/ideal?

An Ideal Relaxation

An ideal relaxation for the independent set problem: the feasible polytope is exactly the convex hull of the independent sets in G.

- We may still get convex-combinations of the vertices as fractional solutions, but that is fine
- Optimal value will be attained at some vertex always.

LPs have found widespread use in the design of algorithms. Can we hope to capture all problems using LPs?

NP-Hard problems and Extension Cc

- Objective: Prove P=NP / Conquer the world
- Method: Pick a favourite NP-Hard problem, Problem (TSP).

- Come up with an extremely clever Polynomial-sized LP formulation, using auxiliary variables.
- Show that the vertices of the feasible region are exactly Hamiltonian cycles in the input instance
- Congratulations, you've have just released the NP-genie; infinite riches await!
- If the world is sane ($P \neq N P$), the above should not work.

The Travelling Salesperson Problem (TSP)

- Given n cities and distances $w_{i j}$ between them, find the shortest tour that visits all cities and returns back to the starting city.

- Input can be viewed as a weighted complete graph K_{n}. Select edges that form a Hamiltonian cycle of minimum weight.

The TSP Polytope, and a relaxation formulation

- Use variables $x_{i j}$ for each distinct pair $i, j \in V$. Thus, $x \in \mathbb{R}\binom{n}{2}$.
\min

$$
\sum_{v_{i}}^{w_{j} x_{i j}}
$$

s.t. $\quad x$ is a HamCycle in $K _n$
min
s.t.

$$
\begin{gathered}
x(\delta(S)) \geq 2 \quad \forall S \neq \emptyset, V \\
x(\delta(i))=2 \quad \forall i \in V \\
x \geq 0
\end{gathered}
$$

- Above, $\delta(S)$ denotes the edges crossing S.
- The above LP has a conjectured gap of $4 / 3$ to the optimum integer solution.

The TSP story

- In 1986, Swart came up with a claimed polynomial-sized EF for the TSP polytope (in a draft titled " $\mathrm{P}=\mathrm{NP}$ ")
- With some effort, researchers found bugs in the LP
- Swart claimed to fix these in a new draft; but more bugs were were again fixed... and this went on.

- Yannakakis came up with an ingenious method that showed that any symmetric extended formulation that captures the TSP Polytope is necessarily exponential-sized, disproving Swart's approach.
- However, symmetry can be powerful:
- [Kaibel-Pashkovich-Theis 2011]: There are explicit polytopes with exponential symmetric extension complexity, but polynomial asymmetric extension complexity.

Settling the TSP story

- 20 years after Yannakakis' result, Fiorini-Massar-Pokutta-Tiwary-deWolf (2012) showed that any extended formulation for the TSP polytope has size $2^{\Omega(\sqrt{n})}$, answering the open question.
- [Rothvoss-2013] showed that this can be improved to $2^{\Omega(n)}$.
- Yannakakis' result has lead to a number of other breakthroughs, tying in diverse fields
- Communication complexity, quantum computation, Fourier analysis, etc.
- Many interesting questions remain open (we will see a few at the end)

Today's Result

Theorem: [Fiorini et al., 2012]

$$
\mathrm{xc}\left(T S P_{n}\right) \geq 2^{\Omega(n)}
$$

- Step 1: Yannakakis' Factorization Theorem
- Step 2: The Correlation Polytope and its Extension Complexity
- Step 3: From the Correlation Polytope to TSP

Why prove lower bounds for NP-hard problems?

- Bounds are independent of complexity-theoretic assumptions ($\mathrm{P} \neq \mathrm{NP}$).
- Can view LPs as a computational model/proof system. This gives lower bounds in this particular proof system.
- Yields insights into the computational difficulty of the problem at hand
- Bounds in the LP (or SDP) world have been translated to lower bounds using hardness assumptions [Raghavendra 08].

Step 1: Yannakakis' Factorization Theorem

The Slack Matrix of a Polytope

- Consider a polytope given by M inequalities: $A x \leq b$
- Suppose its vertices are u_{1}, \ldots, u_{N}

- The Slack matrix S is defined as:

$$
S[i, j]=b_{i}-\left\langle A^{i}, u_{j}\right\rangle
$$

- $S \in \mathbb{R}^{M \times N}\left(A^{i}\right.$ is $i^{\text {th }}$ row of A)
- Every entry is non-negative
- Slack of the $j^{\text {th }}$ vertex on $i^{\text {th }}$ constraint

Slack Matrix: Non-Negative Rank

Definition: Non-negative rank $r k_{+}(S)$ of S is the smallest r for which S is the product of two (entry-wise) non-negative matrices $S=T U$, where $T \in \mathbb{R}^{M \times r}$, and $U \in \mathbb{R}^{r \times N}$

Remark: Without the non-negativity condition on T, U this would just be the usual rank of S

Slack Matrix: Observation

- Some facets / inequalities may be redundant: the slack matrix may also includes rows for such inequalities.
- Claim: This does not change the non-negative rank!
- Proof: Farkas' Lemma!
- Idea: The redundant inequality is a nonnegative combination of other inequalities
- The added row is a non-negative combination of other rows

Farkas' Lemma

- Let $P \in \mathbb{R}^{n}$ be a polyhedron defined by a set of M inequalities $\mathrm{A} x \leq b$, bounded along at least one direction.
- Then any inequality $c^{T} x \leq \delta$ that is valid for all points of P can be derived by a non-negative linear combination of the given inequalities: i.e. there exist non-negative $\lambda \in \mathbb{R}^{m}$:

$$
\lambda^{T} A=c^{T} \quad \text { and } \quad \lambda^{T} b=\delta
$$

- Conversely, if $c^{T} x \leq \delta$ is invalid, then it can be refuted by deriving a contradiction using non-negative linear combinations (derive $0=-1$)

Yannakakis' Factorization Theorem

Theorem: Let $P=\left\{A x \leq b \mid x \in \mathbb{R}^{n}\right\}$ be a polytope with $\operatorname{dim}(P) \geq 1$. Let V be the set of vertices of P. Let S be the slack matrix of P with respect to the given inequalities. Then the following are equivalent:

1. S has non-negative rank at most r
2. $x c(P) \leq r+O(n)$

In words, the extension complexity is characterized by the non-negative rank of the slack matrix.

Proof Outline: $r k_{+}(S) \leq r \Rightarrow \mathrm{EF}$ of size $\mathrm{O}(r)^{\text {Cl }}$

- Let P be given using inequalities. Suppose the slack matrix $S=T U$.
- Let T^{i} be the $i^{\text {th }}$ row of $T ; U_{j}$ be the $j^{\text {th }}$ col of U
- $S[i, j]=\left\langle T^{i}, U_{j}\right\rangle=b_{i}-\left\langle A^{i}, v_{j}\right\rangle$ by definition.
- Define polytope P^{\prime} as:

$$
P: v_{j} \text { extreme pt }
$$

$$
P_{:}^{\prime} A v_{j}+T U_{j}
$$

$$
\text { - } A x+T y=b ; y \geq 0 \quad \text { Here, } y \in \mathbb{R}^{r} \quad=A v_{j}+\left(b-A v_{j}\right)=b
$$

- Among the above equalities, at most $n+r$ of them are relevant, as this is the number of variables. Thus we have at most $n+2 r$ constraints.
- Any extreme point v_{j} in P has an extreme point $\left(v_{j}, U_{j}\right)$ in P^{\prime}.

Proof II: EF of size $r \Rightarrow r k_{+}(S) \leq O(r)$

- If P was specified using r inequalities, we can always bring it to the form:

$$
E x+F y=t, y \geq 0
$$

by adding at most $O(r)$ variables y.

- e.g. every unconstrained $z=y^{+}-y^{-}$, with $y^{+}, y^{-} \geq 0$),
- inequality $c^{T} x \leq d$ gets $c^{T} x+y^{\prime}=d$ with $y^{\prime} \geq 0$
- For every vertex v_{j}, there is a y_{j} satisfying the above equalities.
- Since we can derive $A^{i} x \leq b_{i}$ from above, it implies there exist $\lambda_{i} \in \mathbb{R}_{\geq 0}^{r}$, with:
$\lambda_{i}^{T} E=A^{i}, \lambda_{i}^{T} t=b_{i}$, and $\lambda_{i}^{T} F \geq 0$. Further, $\lambda_{i}^{T} F y_{j}$ is the slack on vertex v_{j} of constraint i .
- Finally, define the matrices $T, U: T^{i}=\lambda_{i} F$ and $U_{j}=y_{j}$.

Details

A simple observation

- If P^{\prime} is a face of P , then $\mathrm{xc}(\mathrm{P}) \geq \mathrm{xc}\left(\mathrm{P}^{\prime}\right)$
- Proof: The slack matrix of P^{\prime} is a submatrix of the slack matrix of P. The nonnegative rank factorization of P also holds for P^{\prime} by keeping appropriate rows of T and columns of U .

Step 2: The Correlation Polytope and its Slack Matrix

The correlation polytope $\operatorname{CORR}(n)$

$$
\operatorname{CORR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}
$$

- The polytope lies in $\mathbb{R}^{n^{2}}$. One way to think of a feasible point of the polytope is as a matrix $x \in \mathbb{R}^{n \times n}$.
- The extreme points are those for which $x=b b^{T}$, for some $b \in\{0,1\}^{n}$.

Main Result: $x c(\operatorname{CORR}(n))=2^{\Omega(n)}$

Slack (sub) Matrix of the Correlation polytope

- What inequalities to consider?
- Claim: $\forall a \in\{0,1\}^{n} \forall x \in \operatorname{CORR}(n)$:

$$
\left(2\left(\begin{array}{lll}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right)-n^{\square}\right.
$$

Notation: $X, Y \in \mathbb{R}^{n \times n}$

$$
\langle X, Y\rangle=\operatorname{Tr}\left(X^{T} Y\right)
$$

"Unroll the X and Y into vectors and take their inner
$\left\langle 2 \operatorname{diag}(a)-a a^{T}, x\right\rangle \leq 1$

- Proof: Only show for vertices, rest follows by linearity

$$
\begin{aligned}
& 1-\left\langle 2 \operatorname{diag}(a)-a a^{\top}, b b^{\top}\right\rangle \\
& =1-\left\langle 2 \operatorname{diag}(a), b b^{\top}\right\rangle \\
& +\left\langle a a^{\top}, b b^{\top}\right\rangle \\
& =1-2 a^{\top} b+\left(a^{\top} b\right)^{2}=\left(1-a^{\top} b\right)^{2} \\
& \geqslant 0
\end{aligned}
$$

$$
S[a, b]=1-\left\langle 2 \operatorname{diag}(a)-a a^{T}, b b^{T}\right\rangle
$$

The support matrix

- $\operatorname{suppmat}(S)=\left\{\begin{array}{lcc}1 & \text { if } & S[a, b] \neq 0 \\ 0 & \text { if } & S[a, b]=0\end{array}\right.$

- [Razborov]: Covering only the 1's in SuppMat(S) using rectangles requires at least $2^{\Omega(n)}$ rectangles.
- Suppmat(S) with an appropriate measure, is exactly the communication matrix of the Unique Disjointness function!

$$
S[a, b]=1-\left\langle 2 \operatorname{diag}(a)-a a^{T}, b b^{T}\right\rangle
$$

Extension Complexity and Covers

where, cover denotes the minimum-sized collection of rectangles needed to cover the 1's of suppmat(S).

$$
\begin{aligned}
& =\bigcup_{k=1}^{r} \underbrace{\operatorname{supp}\left(T_{k}\right) \times \operatorname{supp}}_{a \text { rectangle }}\left(U^{k}\right) \Rightarrow r \geqslant \mid \text { cover }
\end{aligned}
$$

Step 3: Relating back $\operatorname{CORR}(n)$ to $T S P_{n}$

How to relate $\operatorname{CORR}(n)$ to TSP_{n}

- We have: $\operatorname{CORR}(n)=\operatorname{conv}\left\{b b^{T} \mid b \in\{0,1\}^{n}\right\}, x c(\operatorname{CORR}) \geq 2^{\Omega(n)}$
- $T S P_{n}=\operatorname{conv}\left\{x \in \mathbb{R}^{\binom{n}{2}}: x=\operatorname{Ham}-\operatorname{cycle}\left(K_{n}\right)\right\}$

We will use: If P^{\prime} is a face of P , then $x c(P) \geq x c\left(P^{\prime}\right)$. A face of $T S P_{n}$ itself will have extension complexity as exponential.

Also, you might have guessed: we will show that $\operatorname{CORR}(n)$ is a face of $T S P_{O\left(n^{2}\right)}$.

Use the standard NP-hardness reduction from 3-SAT to TSP.

CORR(n) to 3-SAT

- The following formula ϕ_{n} on variables $Z_{i j}$ for $i, j \in[n]$
- $\phi_{n}=\Lambda_{i, j \in[n]}\left(\left(z_{i i} \vee Z_{j j} \vee \bar{Z}_{i j}\right) \wedge\left(z_{i i} \vee \bar{Z}_{j j} \vee \bar{Z}_{i j}\right) \wedge\left(\bar{z}_{i i} \vee Z_{j j} \vee \bar{Z}_{i j}\right) \wedge\left(\bar{z}_{i i} \vee \bar{Z}_{j j} \vee Z_{i j}\right)\right)$
- Each set of 4 clauses encodes $Z_{i j}=b_{i} \wedge b_{j}$ for each i, j. for Some $b_{i}, b_{j} \in\{0,1\}$.
- Satisfying assignments to ϕ_{n} are exactly $Z=b b^{T}$ for any $b \in\{0,1\}^{n}$.
- Convex hull of satisfying assignments is $\operatorname{CORR}(\mathrm{n})$

3-SAT $\left(\phi_{n}\right)$ to $T S P_{n}$

- Build a graph G_{n} on $O\left(n^{2}\right)$ vertices. First start with a directed graph for simplicity; then add few vertices to make it undirected.
- Tours in G_{n} will be in one-one correspondence with satisfying assignments of ϕ_{n}.
- Each tour in G_{n} is also a tour in K_{n}. So, convex hull of the tours of G_{n} is a face of $T S P_{O\left(n^{2}\right)}$.
- Since this face is exactly $\operatorname{CORR}(\mathrm{n}) \Rightarrow x c\left(T S P_{n}\right)=2^{\Omega(\sqrt{n})} . \quad \square$

The Gadget for reducing 3-SAT to TSP

- Variable Gadget:
- For variable v_{k} in ϕ occuring in p clauses
- Clause Gadget
- If clause m has variable k unnegated, and m^{\prime} has variable k negated

Further developments

- Rothvoss[2013] showed that the perfect matching polytope has exponential extension complexity!
- Note that perfect matching is solvable in polytime
- This also improves the TSP lower bound to $2^{\Omega(n)}$.
- Semidefinite extension lower bounds:
- There exist polytopes with exponential LP complexity, but polynomial SDP complexity.
- CUT, TSP, Stable set polytopes also have exponential semidefinite-extension complexity
- Approximately capturing polytopes: indicates what approximation factor can be achieved using LPs/SDPs[Braun-Fiorini-Pokutta-Steurer12]
- Closely related to hierarchies of Linear and Semidefinite Programs (Sherali-Adams, Lasserre, etc.) [CLRS13, LRS15]

Open problems

- Most techniques work only when the base polytope is independent of the graph
- Extending known techniques to handle graph-dependent polytopes is a challenging open problem
- Techniques for approximate EFs do not work when there are hard constraints involved
- For e.g. How well can we approximate $T S P_{n}$ using Extended Formulations is still Open.

Thank You!

