Ideal Lattices in Ring Learning with Errors (Ring-LWE)

Maria Francis, IIT Hyderabad

June 10, 2020

Overview

(1) Introduction to Lattice Based Cryptography
(2) Learning With Errors
(3) Ring Learning With Errors
4. Going Forward

Public Key Cryptosystems

Key ingredients: A one-way function (do they exist?) and a public key K. RSA: $K=(N, e)$

Alice

Decryption uses a trapdoor, for eg: if you know the factorization of N.

Public Key Cryptosystems

Key ingredients : A one-way function (do they exist?) and a public key K. RSA: $K=(N, e)$

Alice

Decryption uses a trapdoor, for eg: if you know the factorization of N. RSA breaks when you have quantum computers!

Why Lattice Based Cryptography?

- Lattice problems are conjectured to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on worst-case hardness of lattice problems -

Why Lattice Based Cryptography?

- Lattice problems are conjectured to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on worst-case hardness of lattice problems - i.e. if one can break a random instance of the crypto scheme then one can solve a lattice problem on every n-dimensional instance.

Why Lattice Based Cryptography?

- Lattice problems are conjectured to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on worst-case hardness of lattice problems - i.e. if one can break a random instance of the crypto scheme then one can solve a lattice problem on every n-dimensional instance.
- Everywhere else its average case assumptions.
- Factoring from a certain distribution is hard - how should we choose this distribution?

Why Lattice Based Cryptography?

- Lattice problems are conjectured to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on worst-case hardness of lattice problems - i.e. if one can break a random instance of the crypto scheme then one can solve a lattice problem on every n-dimensional instance.
- Everywhere else its average case assumptions.
- Factoring from a certain distribution is hard - how should we choose this distribution?
- Fully Homomorphic Encryption and many other "exotic" schemes!

Integer Lattices - Two Dimensional Example

Integer Lattices - Definitions

- All integral combinations of n linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}$ in $\mathbb{Z}^{m}(m \geq n)$ is called lattice.

Integer Lattices - Definitions

- All integral combinations of n linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}$ in $\mathbb{Z}^{m}(m \geq n)$ is called lattice.
- It is an infinite, regular, n-dimensional grid, additive subgroup of \mathbb{Z}^{n}.

Integer Lattices - Definitions

- All integral combinations of n linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}$ in $\mathbb{Z}^{m}(m \geq n)$ is called lattice.
- It is an infinite, regular, n-dimensional grid, additive subgroup of \mathbb{Z}^{n}.
- $\mathbf{b}_{i} \mathrm{~s}$ form a lattice basis represented as a matrix,

$$
\mathbf{B}=\left[\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right] \in \mathbb{Z}^{m \times n}
$$

Integer Lattices - Definitions

- All integral combinations of n linearly independent vectors $\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}$ in $\mathbb{Z}^{m}(m \geq n)$ is called lattice.
- It is an infinite, regular, n-dimensional grid, additive subgroup of \mathbb{Z}^{n}.
- $\mathbf{b}_{i} \mathrm{~s}$ form a lattice basis represented as a matrix,

$$
\mathbf{B}=\left[\mathbf{b}_{\mathbf{1}}, \ldots, \mathbf{b}_{\mathbf{n}}\right] \in \mathbb{Z}^{m \times n}
$$

- The lattice can be written as,

$$
\mathcal{L}(\mathbf{B})=\left\{\mathbf{B x}: \mathbf{x} \in \mathbb{Z}^{n}\right\}
$$

One Lattice, Many Bases

The basis vectors of the previous example is :

$$
\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mathbf{b}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

One Lattice, Many Bases

The basis vectors of the previous example is :

$$
\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mathbf{b}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

The following vectors also generate the same lattice, $\mathcal{L}\left(\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right)$

$$
\mathbf{b}_{\mathbf{1}}{ }^{\prime}=\mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{2}}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{b}_{\mathbf{2}}{ }^{\prime}=2 \mathbf{b}_{\mathbf{1}}+\mathbf{b}_{\mathbf{2}}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

One Lattice, Many Bases

The grids are different, the intersection points are the same.

Lattice Invariants of $\Lambda=\mathcal{L}(\mathbf{B})$

- $\operatorname{det}(\Lambda)$ is the n-dimensional volume of the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$ spanned by basis vectors.

Lattice Invariants of $\Lambda=\mathcal{L}(\mathbf{B})$

- $\operatorname{det}(\Lambda)$ is the n-dimensional volume of the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$ spanned by basis vectors.
- Given a norm || || on \mathbb{R}^{n} (usually Euclidean norm or infinity norm):
- $\lambda_{1}(\Lambda)$ is the norm of the shortest nonzero vector $v \in \Lambda$.

Lattice Invariants of $\Lambda=\mathcal{L}(\mathbf{B})$

- $\operatorname{det}(\Lambda)$ is the n-dimensional volume of the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$ spanned by basis vectors.
- Given a norm || || on \mathbb{R}^{n} (usually Euclidean norm or infinity norm):
- $\lambda_{1}(\Lambda)$ is the norm of the shortest nonzero vector $v \in \Lambda$.
- $\lambda_{i}(\Lambda)$ is the i-th successive minima defined as

$$
\lambda_{i}(\Lambda):=\min _{S}\left(\max _{v \in S}\|v\|\right),
$$

where S runs over all I.i. sets $S \subset \Lambda$ with $|S|=i$.

Computational Lattice Problems

1. Shortest Vector Problem (SVP) : Find a shortest nonzero vector $v \in \Lambda$.
2. Shortest Independent Vector Problem (SIVP) : Find I.i. vectors v_{1}, \ldots, v_{n} in Λ such that $\max _{i}\left\|v_{i}\right\|=\lambda_{n}(\Lambda)$.
3. Closest Vector Problem (CVP): given any target vector $w \in \mathbb{R}^{n}$ find the closest lattice point $v \in \Lambda$ to w.

Computational Lattice Problems

- There are approximation variants, SVP $_{\gamma}$, CVP $_{\gamma}$, SIVP $_{\gamma}$. Let $\gamma \geq 1$, SVP $_{\gamma}$: find a vector v with $\|v\| \leq \gamma \lambda_{1}(\Lambda)$.

Computational Lattice Problems

- There are approximation variants, SVP $_{\gamma}$, CVP $_{\gamma}$, SIVP $_{\gamma}$. Let $\gamma \geq 1, \operatorname{SVP}_{\gamma}$: find a vector v with $\|v\| \leq \gamma \lambda_{1}(\Lambda)$.
- For "search" lattice problems, corresponding "decision" lattice problems and approx variants are there.

Computational Lattice Problems

- There are approximation variants, SVP $_{\gamma}$, CVP $_{\gamma}$, SIVP $_{\gamma}$. Let $\gamma \geq 1, \operatorname{SVP}_{\gamma}$: find a vector v with $\|v\| \leq \gamma \lambda_{1}(\Lambda)$.
- For "search" lattice problems, corresponding "decision" lattice problems and approx variants are there.
- Decision SVP : Given Λ and length d, decide if the shortest vector is shorter than d or not.

Computational Lattice Problems

- There are approximation variants, SVP $_{\gamma}$, CVP $_{\gamma}$, SIVP $_{\gamma}$. Let $\gamma \geq 1, \operatorname{SVP}_{\gamma}$: find a vector v with $\|v\| \leq \gamma \lambda_{1}(\Lambda)$.
- For "search" lattice problems, corresponding "decision" lattice problems and approx variants are there.
- Decision SVP : Given Λ and length d, decide if the shortest vector is shorter than d or not.
- GapSVP γ_{γ} : approximation version of the decision SVP, decide if the shortest vector is shorter than d or if it is longer than $\gamma \cdot d$.

Using basis to solve CVP

A trapdoor for lattice-based cryptosystems

A trapdoor for lattice-based cryptosystems

Good bases : nearly orthogonal and short

A bad basis and CVP

Algorithms for Lattice Problems

- For $n=2$, problem is very easy!
- For higher dimensions, LLL algorithm (1982) - runs in poly (n) time, but the vector returned is an exponential multiple of the actual shortest vector.

Algorithms for Lattice Problems

- For $n=2$, problem is very easy!
- For higher dimensions, LLL algorithm (1982) - runs in poly (n) time, but the vector returned is an exponential multiple of the actual shortest vector.

Result

For $\gamma=\operatorname{poly}(n)$, solving for very short vectors in high dimensions require $2^{\Omega(n)}$ time and space.

Lattice-based cryptography - Milestones

- Ajtai introduces SIS (1996) : first average case/worst case lattice problem reduction.
- Ajtai-Dwork : a PKC based on SIS
- J. Hoffstein, J. Pipher, J. H. Silverman : NTRU (1996)
- Regev (2005) : Learning with Errors problem. An efficient LWE solver implies an efficient quantum algorithm for SIVP.
- Micciancio, Lyubashevsky, $(2002,2006)$: Ideal Lattices and their applications in collision resistant hash functions and digital signatures.
- Peikert, Lyubashevsky, Regev $(2009,2010)$: Ring-LWE
- Gentry (2009) : Fully Homomorphic Encryption

Learning With Errors [Regev '05]

- Parameters: n : dimension, q : an integer of $\operatorname{poly}(n), \chi$: error distribution on \mathbb{Z}, vectors $\mathbf{a}_{\mathbf{i}} \in \mathbb{Z}_{q}{ }^{n}$ chosen uniformly at random.

Learning With Errors [Regev '05]

- Parameters: n : dimension, q : an integer of $\operatorname{poly}(n), \chi$: error distribution on \mathbb{Z}, vectors $\mathbf{a}_{\mathbf{i}} \in \mathbb{Z}_{q}{ }^{n}$ chosen uniformly at random.

Given a linear system of $m \geq n$ approximate/noisy eqns, find secret $\mathbf{s} \in \mathbb{Z}_{q}{ }^{n}$.

$$
\begin{gathered}
\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1}=b_{1}(\bmod) q \\
\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2}=b_{2}(\bmod) q \\
\vdots \\
\left\langle\mathbf{a}_{\mathbf{m}}, \mathbf{s}\right\rangle+e_{m}=b_{m}(\bmod) q
\end{gathered}
$$

Learning With Errors [Regev '05]

- Parameters: n : dimension, q : an integer of $\operatorname{poly}(n), \chi$: error distribution on \mathbb{Z}, vectors $\mathbf{a}_{\mathbf{i}} \in \mathbb{Z}_{q}{ }^{n}$ chosen uniformly at random.

Given a linear system of $m \geq n$ approximate/noisy eqns, find secret $\mathbf{s} \in \mathbb{Z}_{q}{ }^{n}$.

$$
\begin{gathered}
\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1}=b_{1}(\bmod) q \\
\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2}=b_{2}(\bmod) q \\
\vdots \\
\left\langle\mathbf{a}_{\mathbf{m}}, \mathbf{s}\right\rangle+e_{m}=b_{m}(\bmod) q
\end{gathered}
$$

In matrix notation,

$$
\mathbf{A} \mathbf{s}+\mathbf{e}=\mathbf{b}
$$

Learning With Errors (LWE)

- Search: find $\mathbf{s} \in \mathbb{Z}_{q}{ }^{n}$ given a system of $m \geq n$ noisy linear equations modulo q.

Learning With Errors (LWE)

- Search: find $\mathbf{s} \in \mathbb{Z}_{q}{ }^{n}$ given a system of $m \geq n$ noisy linear equations modulo q.
- Decision: Distinguish with non-negligible probability between $\mathbf{A}, \mathbf{b}(=\mathbf{A s}+\mathbf{e})$ and \mathbf{A}, \mathbf{b}, where \mathbf{b} is chosen uniformly at random.

Learning With Errors (LWE)

- Search: find $\mathbf{s} \in \mathbb{Z}_{q}{ }^{n}$ given a system of $m \geq n$ noisy linear equations modulo q.
- Decision: Distinguish with non-negligible probability between $\mathbf{A}, \mathbf{b}(=\mathbf{A s}+\mathbf{e})$ and \mathbf{A}, \mathbf{b}, where \mathbf{b} is chosen uniformly at random.
- Solving Search-LWE solves Decision-LWE. We will show that they are equivalent for q is a prime.

Error Distribution

- Number of equations is large enough for a unique solution with high probability.

Error Distribution

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero \Rightarrow poly time Gaussian elimination will give solution or a very good guess.

Error Distribution

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero \Rightarrow poly time Gaussian elimination will give solution or a very good guess.
- Errors too large \Rightarrow more than one solution - the noise we add should be less than min distance.

Error Distribution

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero \Rightarrow poly time Gaussian elimination will give solution or a very good guess.
- Errors too large \Rightarrow more than one solution - the noise we add should be less than min distance.
- If the error is not randomly chosen then LWE becomes easy.

Error Distribution

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero \Rightarrow poly time Gaussian elimination will give solution or a very good guess.
- Errors too large \Rightarrow more than one solution - the noise we add should be less than min distance.
- If the error is not randomly chosen then LWE becomes easy.
- The typical choice for χ is discrete Gaussian -

Error Distribution

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero \Rightarrow poly time Gaussian elimination will give solution or a very good guess.
- Errors too large \Rightarrow more than one solution - the noise we add should be less than min distance.
- If the error is not randomly chosen then LWE becomes easy.
- The typical choice for χ is discrete Gaussian - better security but sampling in practice is non-trivial.

Discrete Gaussian

Definition

$D_{\Lambda, s}$ is a probability distribution on Λ obtained from a continuous Gaussian, that assigns mass to a lattice point that is inversely proportional to its length.

Discrete Gaussian

Definition

$D_{\Lambda, s}$ is a probability distribution on Λ obtained from a continuous Gaussian, that assigns mass to a lattice point that is inversely proportional to its length.

LWE as a lattice problem

- Consider $\mathcal{L}(\mathbf{A})=\{\mathbf{z} \equiv A \mathbf{s} \bmod q\}$.

LWE as a lattice problem

- Consider $\mathcal{L}(\mathbf{A})=\{\mathbf{z} \equiv A \mathbf{s} \bmod q\}$.
- LWE is a CVP problem on $\mathcal{L}(\mathbf{A})$: given $\mathbf{b} \approx \mathbf{v}=A \mathbf{s} \in \mathcal{L}(\mathbf{A})$, find \mathbf{v}.

Hardness Results of LWE [Regev'05,'09]

Theorem

Solving the LWE decision problem is at least as hard as quantumly solving $\operatorname{SIVP}_{\gamma=p o l y(n) / \alpha}$ (and GapSVP γ_{γ}) on arbitrary n-dimensional lattices.
α is the error rate, $\approx(\sigma(\approx \sqrt{n} \ll q)) / q$.

Hardness Results of LWE [Regev'05,'09]

Theorem

Solving the LWE decision problem is at least as hard as quantumly solving $\operatorname{SIVP}_{\gamma=p o l y(n) / \alpha}$ (and GapSVP γ_{γ}) on arbitrary n-dimensional lattices.
α is the error rate, $\approx(\sigma(\approx \sqrt{n} \ll q)) / q$.
Larger the error rate, smaller your gap!

Hardness Results of LWE [Regev '05,'09]

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. - worst-case to average-case reduction.

Hardness Results of LWE [Regev '05,'09]

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. - worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor \Rightarrow LWE is a hard problem.

Hardness Results of LWE [Regev '05,'09]

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. - worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor \Rightarrow LWE is a hard problem.
- The actual reduction in (Regev '05) is in two steps:

1. A quantum reduction from SIVP/ GapSVP to search LWE
2. A classical reduction from Search LWE to decision LWE.

Hardness Results of LWE [Regev '05,'09]

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. - worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor \Rightarrow LWE is a hard problem.
- The actual reduction in (Regev '05) is in two steps:

1. A quantum reduction from SIVP/ GapSVP to search LWE
2. A classical reduction from Search LWE to decision LWE.

- Completely classical reductions under weaker parameters - (Peikert, '09).

Hardness Results of LWE [Regev '05,'09]

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. - worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor \Rightarrow LWE is a hard problem.
- The actual reduction in (Regev '05) is in two steps:

1. A quantum reduction from SIVP/ GapSVP to search LWE
2. A classical reduction from Search LWE to decision LWE.

- Completely classical reductions under weaker parameters - (Peikert, '09).
- The result works for $q>2 \sqrt{n}$. Open question : for smaller values of q. When q is very large $\left(\approx 2^{2 n}\right)$ there are attacks.

Search LWE to Decision LWE Classical Reduction

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathbf{s}, \chi}$ from uniform samples.

Search LWE to Decision LWE Classical Reduction

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathbf{s}, \chi}$ from uniform samples.
- $A_{\mathbf{s}, \chi}$ - choose $\mathbf{a} \in \mathbb{Z}_{q}{ }^{n}$ uniformly at random, e from χ and output $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$.
- Search LWE: To find \mathbf{s}.

Search LWE to Decision LWE Classical Reduction

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathrm{s}, \chi}$ from uniform samples.
- $A_{\mathbf{s}, \chi}$ - choose $\mathbf{a} \in \mathbb{Z}_{q}{ }^{n}$ uniformly at random, e from χ and output $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$.
- Search LWE: To find s.
- It is enough to find $s_{1} \in \mathbb{Z}_{q}$, other coordinates can be found similarly.

Search LWE to Decision LWE Classical Reduction

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathrm{s}, \chi}$ from uniform samples.
- $A_{\mathbf{s}, \chi}$ - choose $\mathbf{a} \in \mathbb{Z}_{q}{ }^{n}$ uniformly at random, e from χ and output $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$.
- Search LWE: To find s.
- It is enough to find $s_{1} \in \mathbb{Z}_{q}$, other coordinates can be found similarly.
- For a pair (\mathbf{a}, b) choose a fresh $k \in \mathbb{Z}_{q}$.

Search LWE to Decision LWE Classical Reduction

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathbf{s}, \chi}$ from uniform samples.
- $A_{\mathbf{s}, \chi}$ - choose $\mathbf{a} \in \mathbb{Z}_{q}{ }^{n}$ uniformly at random, e from χ and output $(\mathbf{a},\langle\mathbf{a}, \mathbf{s}\rangle+e)$.
- Search LWE: To find s.
- It is enough to find $s_{1} \in \mathbb{Z}_{q}$, other coordinates can be found similarly.
- For a pair (\mathbf{a}, b) choose a fresh $k \in \mathbb{Z}_{q}$.
- Invoke \mathcal{D} on pairs,

$$
(\mathbf{a}+(l, 0, \ldots, 0), b+l \cdot k),
$$

$l \in \mathbb{Z}_{q}$ chosen uniformly at random.

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.
- If $k=s_{1}$, then we have $\langle\mathbf{a}+(l, 0, \ldots, 0), \mathbf{s}\rangle=b+l \cdot s_{1}$ which is the second input of the tuple

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.
- If $k=s_{1}$, then we have $\langle\mathbf{a}+(l, 0, \ldots, 0), \mathbf{s}\rangle=b+l \cdot s_{1}$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.
- If $k=s_{1}$, then we have $\langle\mathbf{a}+(l, 0, \ldots, 0), \mathbf{s}\rangle=b+l \cdot s_{1}$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.
- If $k \neq s_{1}$, then since q is prime b is uniform

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.
- If $k=s_{1}$, then we have $\langle\mathbf{a}+(l, 0, \ldots, 0), \mathbf{s}\rangle=b+l \cdot s_{1}$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.
- If $k \neq s_{1}$, then since q is prime b is uniform $\Rightarrow \mathcal{D}$ rejects.

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.
- If $k=s_{1}$, then we have $\langle\mathbf{a}+(l, 0, \ldots, 0), \mathbf{s}\rangle=b+l \cdot s_{1}$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.
- If $k \neq s_{1}$, then since q is prime b is uniform $\Rightarrow \mathcal{D}$ rejects.
- Since $q=\operatorname{poly}(n)$ we can try all these possibilities for k.

Search LWE to Decision LWE Reduction

- If we had the uniform distribution as input then we still have a uniform distribution $\Rightarrow \mathcal{D}$ rejects.
- If $k=s_{1}$, then we have $\langle\mathbf{a}+(l, 0, \ldots, 0), \mathbf{s}\rangle=b+l \cdot s_{1}$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.
- If $k \neq s_{1}$, then since q is prime b is uniform $\Rightarrow \mathcal{D}$ rejects.
- Since $q=\operatorname{poly}(n)$ we can try all these possibilities for k.
- q need not be prime or $\operatorname{poly}(n)$ - (Peikert '09)

Efficiency of LWE

- LWE is efficient - all that we have is matrix multiplications and additions.

Efficiency of LWE

- LWE is efficient - all that we have is matrix multiplications and additions.
- Getting one $b_{i} \in \mathbb{Z}_{q}$ requires an n-dimensional $\bmod q$ inner product.

Efficiency of LWE

- LWE is efficient - all that we have is matrix multiplications and additions.
- Getting one $b_{i} \in \mathbb{Z}_{q}$ requires an n-dimensional $\bmod q$ inner product.
- Typically $O\left(n^{2}\right)$ work.

$$
\left(\cdots \mathbf{a}_{\mathbf{i}} \cdots\right)\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+e=b \in \mathbb{Z}_{q}
$$

- Another issue - Rather large keys!

$$
p k=\left(\cdots \mathbf{a}_{\mathbf{i}} \cdots\right),\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)
$$

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

$$
\begin{aligned}
& \text { Let } R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { for } n \text { a power of } 2 . \\
& R_{q}=R /\langle q\rangle \text {, with } q \text { prime and } q=1 \bmod n \text {. }
\end{aligned}
$$

R is a cyclotomic ring of integers \mathcal{O}_{K}.

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

$$
\begin{aligned}
& \text { Let } R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { for } n \text { a power of } 2 . \\
& R_{q}=R /\langle q\rangle \text {, with } q \text { prime and } q=1 \bmod n \text {. }
\end{aligned}
$$

R is a cyclotomic ring of integers \mathcal{O}_{K}.

- All elements of R_{q} can be uniquely represented by polynomials of $\operatorname{deg}<n, R_{q} \cong \mathbb{Z}_{q}{ }^{n}$.

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

$$
\begin{aligned}
& \text { Let } R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { for } n \text { a power of } 2 . \\
& R_{q}=R /\langle q\rangle \text {, with } q \text { prime and } q=1 \bmod n \text {. }
\end{aligned}
$$

R is a cyclotomic ring of integers \mathcal{O}_{K}.

- All elements of R_{q} can be uniquely represented by polynomials of $\operatorname{deg}<n, R_{q} \cong \mathbb{Z}_{q}{ }^{n}$.
- Linear representation, shorter keys

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

$$
\begin{aligned}
& \text { Let } R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { for } n \text { a power of } 2 . \\
& R_{q}=R /\langle q\rangle \text {, with } q \text { prime and } q=1 \bmod n \text {. }
\end{aligned}
$$

R is a cyclotomic ring of integers \mathcal{O}_{K}.

- All elements of R_{q} can be uniquely represented by polynomials of $\operatorname{deg}<n, R_{q} \cong \mathbb{Z}_{q}{ }^{n}$.
- Linear representation, shorter keys
- Operations in R_{q} efficient with FFT-like algorithms : $n \log n$ operations mod q.

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

$$
\begin{aligned}
& \text { Let } R=\mathbb{Z}[x] /\left\langle x^{n}+1\right\rangle \text { for } n \text { a power of } 2 . \\
& R_{q}=R /\langle q\rangle \text {, with } q \text { prime and } q=1 \bmod n \text {. }
\end{aligned}
$$

R is a cyclotomic ring of integers \mathcal{O}_{K}.

- All elements of R_{q} can be uniquely represented by polynomials of $\operatorname{deg}<n, R_{q} \cong \mathbb{Z}_{q}{ }^{n}$.
- Linear representation, shorter keys
- Operations in R_{q} efficient with FFT-like algorithms : $n \log n$ operations mod q.
- Same ring structures used in NTRU cryptosystems.

Ring-LWE

- Search : find secret ring element $s(x) \in R_{q}$ given

$$
\begin{aligned}
& a_{1} \cdot s+e_{1}=b_{1} \in R_{q} \\
& a_{2} \cdot s+e_{2}=b_{2} \in R_{q}
\end{aligned}
$$

$e_{i} \in R$.

Ring-LWE

- Search : find secret ring element $s(x) \in R_{q}$ given

$$
\begin{aligned}
& a_{1} \cdot s+e_{1}=b_{1} \in R_{q} \\
& a_{2} \cdot s+e_{2}=b_{2} \in R_{q}
\end{aligned}
$$

$e_{i} \in R . \chi$ is over short elements in R.

Ring-LWE

- Search : find secret ring element $s(x) \in R_{q}$ given

$$
\begin{aligned}
& a_{1} \cdot s+e_{1}=b_{1} \in R_{q} \\
& a_{2} \cdot s+e_{2}=b_{2} \in R_{q}
\end{aligned}
$$

$e_{i} \in R . \chi$ is over short elements in R. Spherically symmetric Gaussian needed!

Ring-LWE

- Search : find secret ring element $s(x) \in R_{q}$ given

$$
\begin{aligned}
& a_{1} \cdot s+e_{1}=b_{1} \in R_{q} \\
& a_{2} \cdot s+e_{2}=b_{2} \in R_{q}
\end{aligned}
$$

$e_{i} \in R . \chi$ is over short elements in R. Spherically symmetric Gaussian needed!

- Decision : distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right) \in R_{q} \times R_{q}$.

Ideal Lattices

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.

Ideal Lattices

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z}-module isomorphism,

$$
\begin{aligned}
\psi: \mathbb{Z}[x] /\langle f\rangle & \longrightarrow \mathbb{Z}^{n} \\
\sum_{i=0}^{n-1} a_{i} x^{i}+\langle f\rangle & \longmapsto\left(a_{0}, \cdots, a_{n-1}\right) .
\end{aligned}
$$

Ideal Lattices

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z}-module isomorphism,

$$
\begin{aligned}
\psi: \mathbb{Z}[x] /\langle f\rangle & \longrightarrow \mathbb{Z}^{n} \\
\sum_{i=0}^{n-1} a_{i} x^{i}+\langle f\rangle & \longmapsto\left(a_{0}, \cdots, a_{n-1}\right) .
\end{aligned}
$$

This is called coefficient embedding.

Ideal Lattices

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z}-module isomorphism,

$$
\begin{aligned}
\psi: \mathbb{Z}[x] /\langle f\rangle & \longrightarrow \mathbb{Z}^{n} \\
\sum_{i=0}^{n-1} a_{i} x^{i}+\langle f\rangle & \longmapsto\left(a_{0}, \cdots, a_{n-1}\right) .
\end{aligned}
$$

This is called coefficient embedding.

- All \mathbb{Z}-submodules (including ideals) in $\mathbb{Z}[x] /\langle f\rangle$ are isomorphic to \mathbb{Z} submodules/sublattices of \mathbb{Z}^{N}.

Ideal Lattices

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z}-module isomorphism,

$$
\begin{aligned}
\psi: \mathbb{Z}[x] /\langle f\rangle & \longrightarrow \mathbb{Z}^{n} \\
\sum_{i=0}^{n-1} a_{i} x^{i}+\langle f\rangle & \longmapsto\left(a_{0}, \cdots, a_{n-1}\right) .
\end{aligned}
$$

This is called coefficient embedding.

- All \mathbb{Z}-submodules (including ideals) in $\mathbb{Z}[x] /\langle f\rangle$ are isomorphic to \mathbb{Z} submodules/sublattices of \mathbb{Z}^{N}.
- Ideals in $\mathbb{Z}[x] /\langle f\rangle$ are ideal lattices.

Hardness Results in Ideal Lattices

There is a quantum reduction from a worst case lattice problem SVP $_{\gamma=p o l y(n)}$ on arbitrary ideal lattices to search Ring-LWE.
There is a classical reduction from search Ring-LWE to decision RingLWE for any ideal lattice in cyclotomic R.

Hardness Results in Ideal Lattices

There is a quantum reduction from a worst case lattice problem SVP $_{\gamma=\text { poly }(n)}$ on arbitrary ideal lattices to search Ring-LWE.
There is a classical reduction from search Ring-LWE to decision RingLWE for any ideal lattice in cyclotomic R.

Results are w.r.t. ideal lattices that have more structure. But no significant difference in security proofs versus general n-dim lattices.

- Decision Ring-LWE is needed for crypto - if you can break the crypto scheme then you can distinguish $\left(a_{i}, b_{i}\right)$ from $\left(a_{i}, b_{i}\right)$, etc, etc.

Embedding of R

- Coefficient embedding to embed R into \mathbb{Z}^{n}.

Embedding of R

- Coefficient embedding to embed R into \mathbb{Z}^{n}.
- + is coordinate wise but . is not that easy to analyze.

Embedding of R

- Coefficient embedding to embed R into \mathbb{Z}^{n}.
- + is coordinate wise but . is not that easy to analyze.
- Minkowski embedding/'canonical embedding' :

Embedding of R

- Coefficient embedding to embed R into \mathbb{Z}^{n}.
- + is coordinate wise but . is not that easy to analyze.
- Minkowski embedding/'canonical embedding' :
- Let z be the primitive $2 n$th root of unity $\bmod q$, then roots of $x^{n}+1$ $\bmod q$ are $z^{1}, z^{3}, \ldots, z^{2 n-1}$.

Embedding of R

- Coefficient embedding to embed R into \mathbb{Z}^{n}.
- + is coordinate wise but . is not that easy to analyze.
- Minkowski embedding/'canonical embedding' :
- Let z be the primitive $2 n$th root of unity $\bmod q$, then roots of $x^{n}+1$ $\bmod q$ are $z^{1}, z^{3}, \ldots, z^{2 n-1}$.
- Now we have an embedding that is + and \cdot coordinate-wise.

$$
f(x) \longmapsto\left(f\left(z^{1}\right), f\left(z^{3}\right), \ldots, f\left(z^{2 n-1}\right)\right)
$$

Where are we going with this?

- Why coordinate wise multiplication?

Where are we going with this?

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction

Where are we going with this?

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret \mathbf{s} one by one.

Where are we going with this?

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.
- Can we guess coefficients of $s \in R_{q}$ one by one?

Where are we going with this?

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.
- Can we guess coefficients of $s \in R_{q}$ one by one?
- Coefficient multiplication - knowing one or more coefficients of s wont help us compute $a \cdot s$ mod $q R$!

Where are we going with this?

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.
- Can we guess coefficients of $s \in R_{q}$ one by one?
- Coefficient multiplication - knowing one or more coefficients of s wont help us compute $a \cdot s$ mod $q R$!
- With the new embedding we now have coordinate multiplication $a \cdot s=\left(a_{1} s_{1}, \cdots, a_{n} s_{n}\right)$.

What happens to the error distribution?

- Error distribution looks very different in canonical embedding!

What happens to the error distribution?

- Error distribution looks very different in canonical embedding!
- Consider $x^{2}+1$ splits modulo 13 as $x^{2}+1=(x+5)(x-5) \bmod 13$.

What happens to the error distribution?

- Error distribution looks very different in canonical embedding!
- Consider $x^{2}+1$ splits modulo 13 as $x^{2}+1=(x+5)(x-5) \bmod 13$.
- An element $a x+b$ in $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$ has canonical embedding

$$
(5 a+b, b-5 a) \in \mathbb{Z}_{13}^{2}
$$

What happens to the error distribution?

- Error distribution looks very different in canonical embedding!
- Consider $x^{2}+1$ splits modulo 13 as $x^{2}+1=(x+5)(x-5) \bmod 13$.
- An element $a x+b$ in $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$ has canonical embedding

$$
(5 a+b, b-5 a) \in \mathbb{Z}_{13}^{2}
$$

- If say our initial error distribution is uniform with $a, b \in\{-1,0,1\}$ then now its uniform over

$$
\{(0,0), \pm(5,-5), \pm(1,1) \pm(6,-4), \pm(6,-4)\}
$$

What happens to the error distribution?

- Error distribution looks very different in canonical embedding!
- Consider $x^{2}+1$ splits modulo 13 as $x^{2}+1=(x+5)(x-5) \bmod 13$.
- An element $a x+b$ in $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$ has canonical embedding

$$
(5 a+b, b-5 a) \in \mathbb{Z}_{13}^{2}
$$

- If say our initial error distribution is uniform with $a, b \in\{-1,0,1\}$ then now its uniform over

$$
\{(0,0), \pm(5,-5), \pm(1,1) \pm(6,-4), \pm(6,-4)\}
$$

long elements relative to $q=13$.

What happens to the error distribution?

- Error distribution looks very different in canonical embedding!
- Consider $x^{2}+1$ splits modulo 13 as $x^{2}+1=(x+5)(x-5) \bmod 13$.
- An element $a x+b$ in $\mathbb{Z}[x] /\left\langle x^{2}+1\right\rangle$ has canonical embedding

$$
(5 a+b, b-5 a) \in \mathbb{Z}_{13}^{2}
$$

- If say our initial error distribution is uniform with $a, b \in\{-1,0,1\}$ then now its uniform over

$$
\{(0,0), \pm(5,-5), \pm(1,1) \pm(6,-4), \pm(6,-4)\}
$$

long elements relative to $q=13$.

- We have error distributions that depend on q in very complicated ways.

Exploiting the symmetry of the canonical embedding

- Order the coordinates of the canonical embedding of $p(x) \in R_{q}$ as i th coordinate is $p\left(z^{2 i-1}\right)$.

Exploiting the symmetry of the canonical embedding

- Order the coordinates of the canonical embedding of $p(x) \in R_{q}$ as i th coordinate is $p\left(z^{2 i-1}\right)$.
- There exists a k such that the i th coordinate of $p(x)$ is the j th coordinate of $p\left(x^{k}\right)$!

Exploiting the symmetry of the canonical embedding

- Order the coordinates of the canonical embedding of $p(x) \in R_{q}$ as i th coordinate is $p\left(z^{2 i-1}\right)$.
- There exists a k such that the i th coordinate of $p(x)$ is the j th coordinate of $p\left(x^{k}\right)$!
- Define an automorphism for such a k,

$$
\tau_{k}: R_{q} \rightarrow R_{q}, \tau_{k}(p(x)):=p\left(x^{k}\right)
$$

Exploiting the symmetry of the canonical embedding

- Order the coordinates of the canonical embedding of $p(x) \in R_{q}$ as i th coordinate is $p\left(z^{2 i-1}\right)$.
- There exists a k such that the i th coordinate of $p(x)$ is the j th coordinate of $p\left(x^{k}\right)$!
- Define an automorphism for such a k,

$$
\tau_{k}: R_{q} \rightarrow R_{q}, \tau_{k}(p(x)):=p\left(x^{k}\right)
$$

- τ preserves norms in the coefficient embedding -

$$
\left\|\tau_{k}(p(x))\right\|=\left\|p\left(x^{k}\right)\right\|=\|p(x)\|
$$

Search Ring-LWE to Decision Ring-LWE reduction

- \mathcal{D}_{j} - distinguishes Ring-LWE samples with first $j-1$ coordinates (in canonical embedding) replaced by uniform random noise from samples in which j coordinates are replaced by uniform random noise.

Search Ring-LWE to Decision Ring-LWE reduction

- \mathcal{D}_{j} - distinguishes Ring-LWE samples with first $j-1$ coordinates (in canonical embedding) replaced by uniform random noise from samples in which j coordinates are replaced by uniform random noise.
- To find s_{i} :
- Compute τ_{k} such that the i th canonical coordinate is mapped to j.

Search Ring-LWE to Decision Ring-LWE reduction

- \mathcal{D}_{j} - distinguishes Ring-LWE samples with first $j-1$ coordinates (in canonical embedding) replaced by uniform random noise from samples in which j coordinates are replaced by uniform random noise.
- To find s_{i} :
- Compute τ_{k} such that the i th canonical coordinate is mapped to j.
- Let $v_{j} \in R_{q}$ be $(0,0, \ldots, 1,0, \ldots, 0)$, j th position has 1 ,
- $\alpha_{l} \in R_{q}$ be chosen uniformly random,
- and k be our guess for s_{i} of s.

Search Ring-LWE to Decision Ring-LWE reduction

- Replace Ring-LWE samples $\left(a_{l}, b_{l}\right)$ by

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(b_{l}\right)+k \alpha_{l} v_{j}+e_{l}^{\prime}\right)
$$

Search Ring-LWE to Decision Ring-LWE reduction

- Replace Ring-LWE samples $\left(a_{l}, b_{l}\right)$ by

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(b_{l}\right)+k \alpha_{l} v_{j}+e_{l}^{\prime}\right)
$$

- Since $\tau_{k}\left(b_{l}\right)=\tau_{k}\left(a_{l}\right) \tau_{k}\left(s_{l}\right)+\tau_{k}\left(e_{l}\right)$, the sample is

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(a_{l}\right) \tau_{k}\left(s_{l}\right)+k \alpha_{l} v_{j}+\tau_{k}\left(e_{l}\right)+e_{l}^{\prime}\right)
$$

Search Ring-LWE to Decision Ring-LWE reduction

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(a_{l}\right) \tau_{k}\left(s_{l}\right)+k \alpha_{l} v_{j}+\tau_{k}\left(e_{l}\right)+e_{l}^{\prime}\right)
$$

Search Ring-LWE to Decision Ring-LWE reduction

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(a_{l}\right) \tau_{k}\left(s_{l}\right)+k \alpha_{l} v_{j}+\tau_{k}\left(e_{l}\right)+e_{l}^{\prime}\right)
$$

- If $k=s_{i}$, then the sample is for secret $\tau_{k}(s)$ and \mathcal{D}_{j} accepts.

Search Ring-LWE to Decision Ring-LWE reduction

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(a_{l}\right) \tau_{k}\left(s_{l}\right)+k \alpha_{l} v_{j}+\tau_{k}\left(e_{l}\right)+e_{l}^{\prime}\right)
$$

- If $k=s_{i}$, then the sample is for secret $\tau_{k}(s)$ and \mathcal{D}_{j} accepts.
-Why?The first $j-1$ coordinates will be uniformly random.

Search Ring-LWE to Decision Ring-LWE reduction

$$
\left(\tau_{k}\left(a_{l}\right)+\alpha_{l} v_{j}, \tau_{k}\left(a_{l}\right) \tau_{k}\left(s_{l}\right)+k \alpha_{l} v_{j}+\tau_{k}\left(e_{l}\right)+e_{l}^{\prime}\right)
$$

- If $k=s_{i}$, then the sample is for secret $\tau_{k}(s)$ and \mathcal{D}_{j} accepts.
-Why?The first $j-1$ coordinates will be uniformly random.
- Else \mathcal{D}_{j} rejects - the j th coordinate is also uniformly random.

Search Ring-LWE to Decision Ring-LWE reduction

- What about the error in the samples with secret $\tau_{k}(s)$?

Search Ring-LWE to Decision Ring-LWE reduction

- What about the error in the samples with secret $\tau_{k}(s)$?
- χ is spherically symmetric, depends only on norm.
- τ_{k} preserves the norm.

Search Ring-LWE to Decision Ring-LWE reduction

- What about the error in the samples with secret $\tau_{k}(s)$?
- χ is spherically symmetric, depends only on norm.
- τ_{k} preserves the norm.
- This implies τ_{k} preserves error distribution.

Search Ring-LWE to Decision Ring-LWE reduction

- What about the error in the samples with secret $\tau_{k}(s)$?
- χ is spherically symmetric, depends only on norm.
- τ_{k} preserves the norm.
- This implies τ_{k} preserves error distribution.
- Can we move from 2^{n} cyclotomic polynomial rings to other univariate ideal lattices?

Search Ring-LWE to Decision Ring-LWE reduction

- What about the error in the samples with secret $\tau_{k}(s)$?
- χ is spherically symmetric, depends only on norm.
- τ_{k} preserves the norm.
- This implies τ_{k} preserves error distribution.
- Can we move from 2^{n} cyclotomic polynomial rings to other univariate ideal lattices?
- How to find an embedding that will give coordinate wise multiplication and with that a good guess for the secret?
- The embedding should have symmetry as given by τ_{k} - that is rare!
- The error distribution should be preserved.

Search Ring-LWE to Decision Ring-LWE reduction

- What about the error in the samples with secret $\tau_{k}(s)$?
- χ is spherically symmetric, depends only on norm.
- τ_{k} preserves the norm.
- This implies τ_{k} preserves error distribution.
- Can we move from 2^{n} cyclotomic polynomial rings to other univariate ideal lattices?
- How to find an embedding that will give coordinate wise multiplication and with that a good guess for the secret?
- The embedding should have symmetry as given by τ_{k} - that is rare!
- The error distribution should be preserved.
- Other alternatives - Polynomial-LWE (Stehle, et.al 2009).

Implementations

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.

Implementations

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.
- Google has experimentally deployed NewHope+ECDH in Chrome canary.

Implementations

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.
- Google has experimentally deployed NewHope+ECDH in Chrome canary.
- Frodo : removes the ring, just plain-lwe key exchange. Around 128-bit security.

Implementations

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.
- Google has experimentally deployed NewHope+ECDH in Chrome canary.
- Frodo : removes the ring, just plain-lwe key exchange. Around 128-bit security.
- Many second round lattice-crypto entrants at the NiST PQC standardization contest.

Future Directions

- Fully classical proofs for all reductions.

Future Directions

- Fully classical proofs for all reductions.
- Other ring of integers where ring-LWE can be used.

Future Directions

- Fully classical proofs for all reductions.
- Other ring of integers where ring-LWE can be used.
- Multivariate Ideal Lattices (Francis, Dukkipati 2017) :
- Have a characterization for multivariate ideal lattices based on coefficient mapping using Gröbner basis.

Future Directions

- Fully classical proofs for all reductions.
- Other ring of integers where ring-LWE can be used.
- Multivariate Ideal Lattices (Francis, Dukkipati 2017) :
- Have a characterization for multivariate ideal lattices based on coefficient mapping using Gröbner basis.
- How to extend it to build Ring-LWE? How to define the canonical embedding?

Some History

- NTRU submitted to Crypto 97 and rejected.

Some History

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98-a biannual math conference.

Some History

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98-a biannual math conference.
- Lattice Attacks on NTRU - Coppersmith and Shamir, Eurocrypt '97!

Some History

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98-a biannual math conference.
- Lattice Attacks on NTRU - Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!

Some History

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98-a biannual math conference.
- Lattice Attacks on NTRU - Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!
- Regev's paper came out in 2005!

Some History

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 - a biannual math conference.
- Lattice Attacks on NTRU - Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!
- Regev's paper came out in 2005!
- NTRU was accepted as an IEEE 13.63 standard in 2008. NiST in 2009 stated that NTRU appears to be the most practical in quantum resistant PKC.

Some History

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 - a biannual math conference.
- Lattice Attacks on NTRU - Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!
- Regev's paper came out in 2005!
- NTRU was accepted as an IEEE 13.63 standard in 2008. NiST in 2009 stated that NTRU appears to be the most practical in quantum resistant PKC.
- Story of resilience?

References

- On lattices, learning with errors, random linear codes, and cryptography. O. Regev (2009)
- On Ideal Lattices and Learning with Errors over Rings. V. Lyubashevsky, C. Peikert, O.Regev (2013)
- A Decade of Lattice Cryptography C. Peikert (2016)
- A Toolkit for Ring-LWE Cryptography - V.Lyubashevsky, C. Peikert, O. Regev (2013)
- Fully Homormorphic Encryption for Mathematicians - A.Silverberg (2013)
- Ring-LWE Cryptography for the Number Theorist - Y. Elias, Kristin E. Lauter, E. Ozman, K. E. Stange (2015)
- Course notes and expository lectures by Micciancio, Peikert, Vaikuntanathan.

