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Introduction to Lattice Based Cryptography

Public Key Cryptosystems

Key ingredients : A one-way function (do they exist?) and a public key K.
RSA:K = (N, e)

Alice Bob

c = me mod N

m = DecK,sk(c)

Decryption uses a trapdoor, for eg: if you know the factorization of N .

RSA breaks when you have quantum computers!
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Introduction to Lattice Based Cryptography

Why Lattice Based Cryptography?

• Lattice problems are conjectured to be resistant to quantum attacks.

• Efficient representations and computations (almost linear).

• Security based on worst-case hardness of lattice problems –

i.e. if one
can break a random instance of the crypto scheme then one can
solve a lattice problem on every n-dimensional instance.

• Everywhere else its average case assumptions.
• Factoring from a certain distribution is hard – how should we choose

this distribution?

• Fully Homomorphic Encryption and many other ”exotic” schemes!
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Introduction to Lattice Based Cryptography

Integer Lattices – Two Dimensional Example
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Introduction to Lattice Based Cryptography

Integer Lattices - Definitions

• All integral combinations of n linearly independent vectors b1, . . . ,bn

in Zm (m ≥ n) is called lattice.

• It is an infinite, regular, n-dimensional grid, additive subgroup of Zn.

• bis form a lattice basis represented as a matrix,

B = [b1, . . . ,bn] ∈ Zm×n.

• The lattice can be written as,

L(B) = {Bx : x ∈ Zn}.
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Introduction to Lattice Based Cryptography

One Lattice, Many Bases

The basis vectors of the previous example is :

b1 =

[
1
2

]
,b2 =

[
1
−1

]
.

The following vectors also generate the same lattice, L(b1,b2)

b1
′

= b1 + b2 =

[
2
1

]
,b2

′
= 2b1 + b2 =

[
3
3

]
.
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Introduction to Lattice Based Cryptography

One Lattice, Many Bases

The grids are different, the intersection points are the same.
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Introduction to Lattice Based Cryptography

Lattice Invariants of Λ = L(B)

• det(Λ) is the n-dimensional volume of the fundamental parallelepiped
P(B) spanned by basis vectors.

• Given a norm || || on Rn (usually Euclidean norm or infinity norm):
• λ1(Λ) is the norm of the shortest nonzero vector v ∈ Λ.
• λi(Λ) is the i-th successive minima defined as

λi(Λ) := minS(maxv∈S ||v||),

where S runs over all l.i. sets S ⊂ Λ with |S| = i.
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Introduction to Lattice Based Cryptography

Computational Lattice Problems

1. Shortest Vector Problem (SVP) : Find a shortest nonzero vector
v ∈ Λ.

2. Shortest Independent Vector Problem (SIVP) : Find l.i. vectors
v1, . . . , vn in Λ such that maxi||vi|| = λn(Λ).

3. Closest Vector Problem (CVP): given any target vector w ∈ Rn find
the closest lattice point v ∈ Λ to w.
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Introduction to Lattice Based Cryptography

Computational Lattice Problems

• There are approximation variants, SVPγ , CVPγ , SIVPγ .
Let γ ≥ 1, SVPγ : find a vector v with ||v|| ≤ γλ1(Λ).

• For “search” lattice problems, corresponding “decision” lattice
problems and approx variants are there.

• Decision SVP : Given Λ and length d, decide if the shortest vector is
shorter than d or not.

• GapSVPγ : approximation version of the decision SVP, decide if the
shortest vector is shorter than d or if it is longer than γ · d.
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Introduction to Lattice Based Cryptography

Using basis to solve CVP
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Introduction to Lattice Based Cryptography

A trapdoor for lattice-based cryptosystems

Good bases : nearly orthogonal and short
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Introduction to Lattice Based Cryptography

A bad basis and CVP
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Introduction to Lattice Based Cryptography

Algorithms for Lattice Problems

• For n = 2, problem is very easy!

• For higher dimensions, LLL algorithm (1982) - runs in poly(n) time,
but the vector returned is an exponential multiple of the actual
shortest vector.

Result

For γ = poly(n), solving for very short vectors in high dimensions require
2Ω(n) time and space.
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Learning With Errors

Lattice-based cryptography - Milestones

• Ajtai introduces SIS (1996) : first average case/worst case lattice
problem reduction.

• Ajtai-Dwork : a PKC based on SIS

• J. Hoffstein, J. Pipher, J. H. Silverman : NTRU (1996)

• Regev (2005) : Learning with Errors problem. An efficient LWE solver
implies an efficient quantum algorithm for SIVP.

• Micciancio, Lyubashevsky, (2002, 2006) : Ideal Lattices and their
applications in collision resistant hash functions and digital signatures.

• Peikert, Lyubashevsky, Regev(2009,2010) : Ring-LWE

• Gentry (2009 ) : Fully Homomorphic Encryption
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Learning With Errors

Learning With Errors [Regev ’05]

• Parameters: n: dimension , q : an integer of poly(n), χ : error
distribution on Z, vectors ai ∈ Zqn chosen uniformly at random.

Given a linear system of m ≥ n approximate/noisy eqns, find secret
s ∈ Zqn.

〈a1, s〉+ e1 = b1 (mod) q

〈a2, s〉+ e2 = b2 (mod) q

...

〈am, s〉+ em = bm (mod) q

In matrix notation,
As + e = b.
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Learning With Errors

Learning With Errors (LWE)

• Search: find s ∈ Zqn given a system of m ≥ n noisy linear equations
modulo q.

• Decision: Distinguish with non-negligible probability between
A,b(= As + e) and A,b, where b is chosen uniformly at random.

• Solving Search-LWE solves Decision-LWE. We will show that they are
equivalent for q is a prime.
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Learning With Errors

Error Distribution

• Number of equations is large enough for a unique solution with high
probability.

• Error too small or zero ⇒ poly time Gaussian elimination will give
solution or a very good guess.

• Errors too large ⇒ more than one solution – the noise we add should
be less than min distance.

• If the error is not randomly chosen then LWE becomes easy.

• The typical choice for χ is discrete Gaussian - better security but
sampling in practice is non-trivial.
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Learning With Errors

Discrete Gaussian

Definition

DΛ,s is a probability distribution on Λ obtained from a continuous
Gaussian, that assigns mass to a lattice point that is inversely proportional
to its length.
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Learning With Errors

LWE as a lattice problem

• Consider L(A) = {z ≡ As mod q}.

• LWE is a CVP problem on L(A): given b ≈ v = As ∈ L(A), find v.
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Learning With Errors

Hardness Results of LWE [Regev’05,’09]

Theorem

Solving the LWE decision problem is at least as hard as quantumly solving
SIVPγ=poly(n)/α (and GapSVPγ) on arbitrary n-dimensional lattices.

α is the error rate, ≈ (σ(≈
√
n << q))/q.

Larger the error rate, smaller your gap!
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Learning With Errors

Hardness Results of LWE [Regev ’05,’09]

• An efficient LWE solver implies a poly-time quantum algorithm for
any instance of the SIVP and GapSVP problem. – worst-case to
average-case reduction.

• It is conjectured that there is no classical or quantum polynomial time
algo that approximates GAPSVP (or SIVP) to within any poly factor
⇒ LWE is a hard problem.

• The actual reduction in (Regev ’05) is in two steps:

1. A quantum reduction from SIVP/ GapSVP to search LWE
2. A classical reduction from Search LWE to decision LWE.

• Completely classical reductions under weaker parameters – (Peikert,
’09).

• The result works for q > 2
√
n. Open question : for smaller values of

q. When q is very large (≈ 22n) there are attacks.
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Learning With Errors

Search LWE to Decision LWE Classical Reduction

• Suppose we have an oracle D that solves decision LWE –
distinguishes LWE samples taken from As,χ from uniform samples.

• As,χ - choose a ∈ Zqn uniformly at random, e from χ and output
(a, 〈a, s〉+ e).

• Search LWE: To find s.

• It is enough to find s1 ∈ Zq, other coordinates can be found similarly.

• For a pair (a, b) choose a fresh k ∈ Zq.
• Invoke D on pairs,

(a + (l, 0, . . . , 0), b+ l · k),

l ∈ Zq chosen uniformly at random.
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Learning With Errors

Search LWE to Decision LWE Reduction

• If we had the uniform distribution as input then we still have a
uniform distribution

⇒ D rejects.

• If k = s1, then we have 〈a + (l, 0, . . . , 0), s〉 = b+ l · s1 which is the
second input of the tuple ⇒ D accepts.

• If k 6= s1, then since q is prime b is uniform ⇒ D rejects.

• Since q = poly(n) we can try all these possibilities for k.

• q need not be prime or poly(n) - (Peikert ’09)
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Ring Learning With Errors

Efficiency of LWE

• LWE is efficient – all that we have is matrix multiplications and
additions.

• Getting one bi ∈ Zq requires an n-dimensional mod q inner product.

• Typically O(n2) work.

(
· · ·ai · · ·

)
...
s
...

+ e = b ∈ Zq

• Another issue – Rather large keys!

pk =
(
· · ·ai · · ·

)
,


...
b
...
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Ring Learning With Errors

Ring-Learning With Errors [Peikert, Lyubashevsky,
Regev(’09)]

Let R = Z[x]/〈xn + 1〉 for n a power of 2.
Rq = R/〈q〉, with q prime and q = 1 mod n.

R is a cyclotomic ring of integers OK .

• All elements of Rq can be uniquely represented by polynomials of
deg < n, Rq ∼= Zqn.

• Linear representation, shorter keys

• Operations in Rq efficient with FFT-like algorithms : n log n
operations mod q.

• Same ring structures used in NTRU cryptosystems.
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Ring Learning With Errors

Ring-LWE

• Search : find secret ring element s(x) ∈ Rq given

a1 · s+ e1 = b1 ∈ Rq
a2 · s+ e2 = b2 ∈ Rq

...,

ei ∈ R.

χ is over short elements in R. Spherically symmetric
Gaussian needed!

• Decision : distinguish (ai, bi) from uniform (ai, bi) ∈ Rq ×Rq.
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Ring Learning With Errors

Ideal Lattices

• Let f ∈ Z[x] be an monic irreducible polynomial of degree n.

• Consider the following Z-module isomorphism,

ψ : Z[x]/〈f〉 −→ Zn

n−1∑
i=0

aix
i + 〈f〉 7−→ (a0, · · · , an−1).

This is called coefficient embedding.

• All Z-submodules (including ideals) in Z[x]/〈f〉 are isomorphic to Z-
submodules/sublattices of ZN .

• Ideals in Z[x]/〈f〉 are ideal lattices.
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Ring Learning With Errors

Hardness Results in Ideal Lattices

There is a quantum reduction from a worst case lattice problem
SVPγ=poly(n) on arbitrary ideal lattices to search Ring-LWE.
There is a classical reduction from search Ring-LWE to decision Ring-
LWE for any ideal lattice in cyclotomic R.

Results are w.r.t. ideal lattices that have more structure. But no
significant difference in security proofs versus general n-dim lattices.

• Decision Ring-LWE is needed for crypto – if you can break the crypto
scheme then you can distinguish (ai, bi) from (ai, bi), etc, etc.
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Ring Learning With Errors

Embedding of R

• Coefficient embedding to embed R into Zn.

• + is coordinate wise but · is not that easy to analyze.

• Minkowski embedding/‘canonical embedding’ :
• Let z be the primitive 2nth root of unity mod q, then roots of xn + 1

mod q are z1, z3, . . . , z2n−1.
• Now we have an embedding that is + and · coordinate-wise.

f(x) 7−→ (f(z1), f(z3), . . . , f(z2n−1))
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Ring Learning With Errors

Where are we going with this?

• Why coordinate wise multiplication?

Search Ring-LWE to Decision
Ring-LWE reduction

• In plain LWE we worked by guessing the coordinates of the secret s
one by one.

• Can we guess coefficients of s ∈ Rq one by one?

• Coefficient multiplication – knowing one or more coefficients of s
wont help us compute a · s mod qR!

• With the new embedding we now have coordinate multiplication -
a · s = (a1s1, · · · , ansn).
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Ring Learning With Errors

What happens to the error distribution?

• Error distribution looks very different in canonical embedding!

• Consider x2 + 1 splits modulo 13 as x2 + 1 = (x+ 5)(x− 5) mod 13.

• An element ax+ b in Z[x]/〈x2 + 1〉 has canonical embedding

(5a+ b, b− 5a) ∈ Z13
2

• If say our initial error distribution is uniform with a, b ∈ {−1, 0, 1}
then now its uniform over

{(0, 0),±(5,−5),±(1, 1)± (6,−4),±(6,−4)}

long elements relative to q = 13.

• We have error distributions that depend on q in very complicated
ways.
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then now its uniform over

{(0, 0),±(5,−5),±(1, 1)± (6,−4),±(6,−4)}

long elements relative to q = 13.

• We have error distributions that depend on q in very complicated
ways.
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Ring Learning With Errors

Exploiting the symmetry of the canonical embedding

• Order the coordinates of the canonical embedding of p(x) ∈ Rq as ith
coordinate is p(z2i−1).

• There exists a k such that the ith coordinate of p(x) is the jth
coordinate of p(xk)!

• Define an automorphism for such a k,

τk : Rq → Rq, τk(p(x)) := p(xk)

• τ preserves norms in the coefficient embedding –
||τk(p(x))|| = ||p(xk)|| = ||p(x)||
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Ring Learning With Errors

Search Ring-LWE to Decision Ring-LWE reduction

• Dj – distinguishes Ring-LWE samples with first j − 1 coordinates (in
canonical embedding) replaced by uniform random noise from
samples in which j coordinates are replaced by uniform random noise.

• To find si :
• Compute τk such that the ith canonical coordinate is mapped to j.
• Let vj ∈ Rq be (0, 0, . . . , 1, 0, . . . , 0), jth position has 1,
• αl ∈ Rq be chosen uniformly random,
• and k be our guess for si of s.
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Ring Learning With Errors

Search Ring-LWE to Decision Ring-LWE reduction

• Replace Ring-LWE samples (al, bl) by

(τk(al) + αlvj , τk(bl) + kαlvj + el
′
).

• Since τk(bl) = τk(al)τk(sl) + τk(el), the sample is

(τk(al) + αlvj , τk(al)τk(sl) + kαlvj + τk(el) + el
′
).
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Ring Learning With Errors

Search Ring-LWE to Decision Ring-LWE reduction

(τk(al) + αlvj , τk(al)τk(sl) + kαlvj + τk(el) + el
′
).

• If k = si, then the sample is for secret τk(s) and Dj accepts.

• Why?The first j − 1 coordinates will be uniformly random.

• Else Dj rejects – the jth coordinate is also uniformly random.
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Ring Learning With Errors

Search Ring-LWE to Decision Ring-LWE reduction

• What about the error in the samples with secret τk(s) ?

• χ is spherically symmetric, depends only on norm.
• τk preserves the norm.
• This implies τk preserves error distribution.

• Can we move from 2n cyclotomic polynomial rings to other univariate
ideal lattices?

• How to find an embedding that will give coordinate wise multiplication
and with that a good guess for the secret?

• The embedding should have symmetry as given by τk – that is rare!
• The error distribution should be preserved.
• Other alternatives – Polynomial-LWE (Stehle, et.al 2009).
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Going Forward

Implementations

• NewHope : Ring-LWE key exchange. About 200 bit quantum security.

• Google has experimentally deployed NewHope+ECDH in Chrome
canary.

• Frodo : removes the ring, just plain-lwe key exchange. Around
128-bit security.

• Many second round lattice-crypto entrants at the NiST PQC
standardization contest.
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Going Forward

Future Directions

• Fully classical proofs for all reductions.

• Other ring of integers where ring-LWE can be used.

• Multivariate Ideal Lattices (Francis, Dukkipati 2017) :
• Have a characterization for multivariate ideal lattices based on

coefficient mapping using Gröbner basis.
• How to extend it to build Ring-LWE? How to define the canonical

embedding?
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Going Forward

Some History

• NTRU submitted to Crypto 97 and rejected.

• Accepted in ANTS 98 - a biannual math conference.

• Lattice Attacks on NTRU - Coppersmith and Shamir, Eurocrypt ’97!

• They even thought LLL algo will help!

• Regev’s paper came out in 2005!

• NTRU was accepted as an IEEE 13.63 standard in 2008. NiST in
2009 stated that NTRU appears to be the most practical in quantum
resistant PKC.

• Story of resilience?
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Going Forward
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