Ideal Lattices in Ring Learning with Errors (Ring-LWE)

Maria Francis, IIT Hyderabad

June 10, 2020

Maria Francis, IIT Hyderabad

June 10, 2020 1 / 42

1 Introduction to Lattice Based Cryptography

2 Learning With Errors

- 3 Ring Learning With Errors
- 4 Going Forward

Public Key Cryptosystems

Key ingredients : A one-way function (do they exist?) and a public key K. RSA:K = (N, e)

Decryption uses a trapdoor, for eg: if you know the factorization of N.

Public Key Cryptosystems

Key ingredients : A one-way function (do they exist?) and a public key K. RSA:K = (N, e)

Alice

Bob

(日) (周) (三) (三)

Decryption uses a trapdoor, for eg: if you know the factorization of N. RSA breaks when you have quantum computers!

- Lattice problems are *conjectured* to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on worst-case hardness of lattice problems -

- Lattice problems are *conjectured* to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on *worst-case hardness* of lattice problems i.e. if one can break a *random instance* of the crypto scheme then one can solve a lattice problem on *every n-dimensional instance*.

- Lattice problems are *conjectured* to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on *worst-case hardness* of lattice problems i.e. if one can break a *random instance* of the crypto scheme then one can solve a lattice problem on *every n-dimensional instance*.
 - Everywhere else its average case assumptions.
 - Factoring from a certain distribution is hard how should we choose this distribution?

- Lattice problems are *conjectured* to be resistant to quantum attacks.
- Efficient representations and computations (almost linear).
- Security based on *worst-case hardness* of lattice problems i.e. if one can break a *random instance* of the crypto scheme then one can solve a lattice problem on *every n-dimensional instance*.
 - Everywhere else its average case assumptions.
 - Factoring from a certain distribution is hard how should we choose this distribution?
- Fully Homomorphic Encryption and many other "exotic" schemes!

Integer Lattices – Two Dimensional Example

Maria Francis, IIT Hyderabad

All integral combinations of n linearly independent vectors b₁,..., b_n in Z^m (m ≥ n) is called lattice.

- All integral combinations of n linearly independent vectors b₁,..., b_n in Z^m (m ≥ n) is called lattice.
- It is an infinite, regular, *n*-dimensional grid, additive subgroup of \mathbb{Z}^n .

- All integral combinations of n linearly independent vectors b₁,..., b_n in Z^m (m ≥ n) is called lattice.
- It is an infinite, regular, *n*-dimensional grid, additive subgroup of \mathbb{Z}^n .
- **b**_is form a lattice basis represented as a matrix,

$$\mathbf{B} = [\mathbf{b_1}, \dots, \mathbf{b_n}] \in \mathbb{Z}^{m \times n}$$

- All integral combinations of n linearly independent vectors b₁,..., b_n in Z^m (m ≥ n) is called lattice.
- It is an infinite, regular, *n*-dimensional grid, additive subgroup of \mathbb{Z}^n .
- **b**_is form a lattice basis represented as a matrix,

$$\mathbf{B} = [\mathbf{b_1}, \dots, \mathbf{b_n}] \in \mathbb{Z}^{m \times n}$$

• The lattice can be written as,

$$\mathcal{L}(\mathbf{B}) = \{\mathbf{B}\mathbf{x} : \mathbf{x} \in \mathbb{Z}^n\}.$$

One Lattice, Many Bases

The basis vectors of the previous example is :

$$\mathbf{b_1} = \begin{bmatrix} 1\\ 2 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1\\ -1 \end{bmatrix}$$

.

3

One Lattice, Many Bases

The basis vectors of the previous example is :

$$\mathbf{b_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

. The following vectors also generate the same lattice, $\mathcal{L}(\mathbf{b_1},\mathbf{b_2})$

$$\mathbf{b_1}' = \mathbf{b_1} + \mathbf{b_2} = \begin{bmatrix} 2\\1 \end{bmatrix}, \mathbf{b_2}' = 2\mathbf{b_1} + \mathbf{b_2} = \begin{bmatrix} 3\\3 \end{bmatrix}$$

One Lattice, Many Bases

The grids are different, the intersection points are the same.

Lattice Invariants of $\Lambda = \mathcal{L}(\mathbf{B})$

• $det(\Lambda)$ is the *n*-dimensional volume of the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$ spanned by basis vectors.

Lattice Invariants of $\Lambda = \mathcal{L}(\mathbf{B})$

- $det(\Lambda)$ is the *n*-dimensional volume of the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$ spanned by basis vectors.
- Given a norm || || on \mathbb{R}^n (usually Euclidean norm or infinity norm):
 - $\lambda_1(\Lambda)$ is the norm of the shortest nonzero vector $v \in \Lambda$.

Lattice Invariants of $\Lambda = \mathcal{L}(\mathbf{B})$

- $det(\Lambda)$ is the *n*-dimensional volume of the fundamental parallelepiped $\mathcal{P}(\mathbf{B})$ spanned by basis vectors.
- Given a norm || || on \mathbb{R}^n (usually Euclidean norm or infinity norm):
 - $\lambda_1(\Lambda)$ is the norm of the shortest nonzero vector $v \in \Lambda$.
 - $\lambda_i(\Lambda)$ is the *i*-th successive minima defined as

 $\lambda_i(\Lambda) := \min_S(\max_{v \in S} ||v||),$

where S runs over all l.i. sets $S \subset \Lambda$ with |S| = i.

・ロン ・四 ・ ・ ヨン ・ ヨン

- 1. Shortest Vector Problem (SVP) : Find a shortest nonzero vector $v \in \Lambda$.
- 2. Shortest Independent Vector Problem (SIVP) : Find I.i. vectors v_1, \ldots, v_n in Λ such that $\max_i ||v_i|| = \lambda_n(\Lambda)$.
- 3. Closest Vector Problem (CVP): given any target vector $w \in \mathbb{R}^n$ find the closest lattice point $v \in \Lambda$ to w.

 There are approximation variants, SVP_γ, CVP_γ, SIVP_γ. Let γ ≥ 1, SVP_γ : find a vector v with ||v|| ≤ γλ₁(Λ).

3

イロト イヨト イヨト

- There are approximation variants, SVP_γ, CVP_γ, SIVP_γ. Let γ ≥ 1, SVP_γ : find a vector v with ||v|| ≤ γλ₁(Λ).
- For "search" lattice problems, corresponding "decision" lattice problems and approx variants are there.

- There are approximation variants, SVP_γ, CVP_γ, SIVP_γ. Let γ ≥ 1, SVP_γ : find a vector v with ||v|| ≤ γλ₁(Λ).
- For "search" lattice problems, corresponding "decision" lattice problems and approx variants are there.
- Decision SVP : Given Λ and length d, decide if the shortest vector is shorter than d or not.

- There are approximation variants, SVP_γ, CVP_γ, SIVP_γ. Let γ ≥ 1, SVP_γ : find a vector v with ||v|| ≤ γλ₁(Λ).
- For "search" lattice problems, corresponding "decision" lattice problems and approx variants are there.
- Decision SVP : Given Λ and length d, decide if the shortest vector is shorter than d or not.
- GapSVP_{γ}: approximation version of the decision SVP, decide if the shortest vector is shorter than d or if it is longer than $\gamma \cdot d$.

イロト 不得下 イヨト イヨト 二日

Using basis to solve CVP

A trapdoor for lattice-based cryptosystems

A "Good Basis"

< ロ > < 同 > < 三 > < 三

A "Bad Basis"

A trapdoor for lattice-based cryptosystems

"Good Basis" А

A "Bad Basis"

- ∢ ศ⊒ ▶

→ ∃ → -

Good bases : nearly orthogonal and short

A bad basis and $\ensuremath{\mathsf{CVP}}$

Maria Francis, IIT Hyderabad

Algorithms for Lattice Problems

- For n = 2, problem is very easy!
- For higher dimensions, LLL algorithm (1982) runs in poly(n) time, but the vector returned is an exponential multiple of the actual shortest vector.

Algorithms for Lattice Problems

- For n = 2, problem is very easy!
- For higher dimensions, LLL algorithm (1982) runs in poly(n) time, but the vector returned is an exponential multiple of the actual shortest vector.

Result

For $\gamma = poly(n)$, solving for very short vectors in high dimensions require $2^{\Omega(n)}$ time and space.

Lattice-based cryptography - Milestones

- Ajtai introduces SIS (1996) : first average case/worst case lattice problem reduction.
- Ajtai-Dwork : a PKC based on SIS
- J. Hoffstein, J. Pipher, J. H. Silverman : NTRU (1996)
- Regev (2005) : Learning with Errors problem. An efficient LWE solver implies an efficient quantum algorithm for SIVP.
- Micciancio, Lyubashevsky, (2002, 2006) : Ideal Lattices and their applications in collision resistant hash functions and digital signatures.
- Peikert, Lyubashevsky, Regev(2009,2010) : Ring-LWE
- Gentry (2009) : Fully Homomorphic Encryption

イロト イポト イヨト イヨト 二日

Learning With Errors [Regev '05]

Parameters: n: dimension, q : an integer of poly(n), χ : error distribution on Z, vectors a_i ∈ Z_qⁿ chosen uniformly at random.

イロト イポト イヨト イヨト 二日

Learning With Errors [Regev '05]

Parameters: n: dimension, q : an integer of poly(n), χ : error distribution on Z, vectors a_i ∈ Z_qⁿ chosen uniformly at random.

Given a linear system of $m \ge n$ approximate/noisy eqns, find secret $\mathbf{s} \in \mathbb{Z}_q^n$.

$$\langle \mathbf{a_1}, \mathbf{s} \rangle + e_1 = b_1 \pmod{q}$$

 $\langle \mathbf{a_2}, \mathbf{s} \rangle + e_2 = b_2 \pmod{q}$
 \vdots
 $\langle \mathbf{a_m}, \mathbf{s} \rangle + e_m = b_m \pmod{q}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Learning With Errors [Regev '05]

Parameters: n: dimension, q : an integer of poly(n), χ : error distribution on Z, vectors a_i ∈ Z_qⁿ chosen uniformly at random.

Given a linear system of $m \ge n$ approximate/noisy eqns, find secret $\mathbf{s} \in \mathbb{Z}_q^{n}$.

$$\langle \mathbf{a_1}, \mathbf{s} \rangle + e_1 = b_1 \pmod{q}$$

 $\langle \mathbf{a_2}, \mathbf{s} \rangle + e_2 = b_2 \pmod{q}$
 \vdots
 $\langle \mathbf{a_m}, \mathbf{s} \rangle + e_m = b_m \pmod{q}$

In matrix notation,

$$As + e = b$$

Maria	Francis,	IIT F	łyc	lerab	ad
-------	----------	-------	-----	-------	----

イロト 不得下 イヨト イヨト 二日

Learning With Errors (LWE)

Search: find s ∈ Z_qⁿ given a system of m ≥ n noisy linear equations modulo q.

Learning With Errors (LWE)

- Search: find s ∈ Z_qⁿ given a system of m ≥ n noisy linear equations modulo q.
- Decision: Distinguish with non-negligible probability between $\mathbf{A}, \mathbf{b}(=\mathbf{As}+\mathbf{e})$ and \mathbf{A}, \mathbf{b} , where \mathbf{b} is chosen uniformly at random.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Learning With Errors (LWE)

- Search: find s ∈ Z_qⁿ given a system of m ≥ n noisy linear equations modulo q.
- Decision: Distinguish with non-negligible probability between $\mathbf{A}, \mathbf{b}(=\mathbf{As}+\mathbf{e})$ and \mathbf{A}, \mathbf{b} , where \mathbf{b} is chosen uniformly at random.
- Solving Search-LWE solves Decision-LWE. We will show that they are equivalent for q is a prime.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Number of equations is large enough for a unique solution with high probability.

3

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero ⇒ poly time Gaussian elimination will give solution or a very good guess.

3

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero ⇒ poly time Gaussian elimination will give solution or a very good guess.
- Errors too large ⇒ more than one solution the noise we add should be less than min distance.

3

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero ⇒ poly time Gaussian elimination will give solution or a very good guess.
- Errors too large ⇒ more than one solution the noise we add should be less than min distance.
- If the error is not randomly chosen then LWE becomes easy.

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero ⇒ poly time Gaussian elimination will give solution or a very good guess.
- Errors too large ⇒ more than one solution the noise we add should be less than min distance.
- If the error is not randomly chosen then LWE becomes easy.
- The typical choice for χ is discrete Gaussian -

- Number of equations is large enough for a unique solution with high probability.
- Error too small or zero ⇒ poly time Gaussian elimination will give solution or a very good guess.
- Errors too large ⇒ more than one solution the noise we add should be less than min distance.
- If the error is not randomly chosen then LWE becomes easy.
- The typical choice for χ is discrete Gaussian better security but sampling in practice is non-trivial.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Discrete Gaussian

Definition

 $D_{\Lambda,s}$ is a probability distribution on Λ obtained from a continuous Gaussian, that assigns mass to a lattice point that is inversely proportional to its length.

/□ ▶ 《 ⋽ ▶ 《 ⋽

Discrete Gaussian

Definition

 $D_{\Lambda,s}$ is a probability distribution on Λ obtained from a continuous Gaussian, that assigns mass to a lattice point that is inversely proportional to its length.

LWE as a lattice problem

• Consider $\mathcal{L}(\mathbf{A}) = \{ \mathbf{z} \equiv A\mathbf{s} \mod q \}.$

(日) (四) (王) (王) (王)

LWE as a lattice problem

- Consider $\mathcal{L}(\mathbf{A}) = \{ \mathbf{z} \equiv A\mathbf{s} \mod q \}.$
- LWE is a CVP problem on $\mathcal{L}(\mathbf{A})$: given $\mathbf{b} \approx \mathbf{v} = A\mathbf{s} \in \mathcal{L}(\mathbf{A})$, find \mathbf{v} .

3

Theorem

Solving the LWE decision problem is at least as hard as quantumly solving $SIVP_{\gamma=poly(n)/\alpha}$ (and $GapSVP_{\gamma}$) on arbitrary *n*-dimensional lattices.

 α is the error rate, $\approx (\sigma (\approx \sqrt{n} << q))/q.$

Theorem

Solving the LWE decision problem is at least as hard as quantumly solving $SIVP_{\gamma=poly(n)/\alpha}$ (and $GapSVP_{\gamma}$) on arbitrary *n*-dimensional lattices.

 α is the error rate, $\approx (\sigma (\approx \sqrt{n} \ll q))/q$. Larger the error rate, smaller your gap!

• An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. – worst-case to average-case reduction.

3

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. – worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor ⇒ LWE is a hard problem.

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. – worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor ⇒ LWE is a hard problem.
- The actual reduction in (Regev '05) is in two steps:
 - 1. A quantum reduction from SIVP/ GapSVP to search LWE
 - 2. A classical reduction from Search LWE to decision LWE.

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. – worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor ⇒ LWE is a hard problem.
- The actual reduction in (Regev '05) is in two steps:
 - 1. A quantum reduction from SIVP/ GapSVP to search LWE
 - 2. A classical reduction from Search LWE to decision LWE.
- Completely classical reductions under weaker parameters (Peikert, '09).

- An efficient LWE solver implies a poly-time quantum algorithm for any instance of the SIVP and GapSVP problem. – worst-case to average-case reduction.
- It is conjectured that there is no classical or quantum polynomial time algo that approximates GAPSVP (or SIVP) to within any poly factor ⇒ LWE is a hard problem.
- The actual reduction in (Regev '05) is in two steps:
 - 1. A quantum reduction from SIVP/ GapSVP to search LWE
 - 2. A classical reduction from Search LWE to decision LWE.
- Completely classical reductions under weaker parameters (Peikert, '09).
- The result works for $q > 2\sqrt{n}$. Open question : for smaller values of q. When q is very large ($\approx 2^{2n}$) there are attacks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• Suppose we have an oracle \mathcal{D} that solves decision LWE – distinguishes LWE samples taken from $A_{s,\chi}$ from uniform samples.

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{s,\chi}$ from uniform samples.
- $A_{\mathbf{s},\chi}$ choose $\mathbf{a} \in \mathbb{Z}_q^n$ uniformly at random, e from χ and output $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$.
- Search LWE: To find s.

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathbf{s},\chi}$ from uniform samples.
- $A_{\mathbf{s},\chi}$ choose $\mathbf{a} \in \mathbb{Z}_q^n$ uniformly at random, e from χ and output $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$.
- Search LWE: To find s.
- It is enough to find $s_1 \in \mathbb{Z}_q$, other coordinates can be found similarly.

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathbf{s},\chi}$ from uniform samples.
- $A_{\mathbf{s},\chi}$ choose $\mathbf{a} \in \mathbb{Z}_q^n$ uniformly at random, e from χ and output $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$.
- Search LWE: To find s.
- It is enough to find $s_1 \in \mathbb{Z}_q$, other coordinates can be found similarly.
- For a pair (\mathbf{a}, b) choose a fresh $k \in \mathbb{Z}_q$.

イロト イポト イヨト イヨト 二日

- Suppose we have an oracle \mathcal{D} that solves decision LWE distinguishes LWE samples taken from $A_{\mathbf{s},\chi}$ from uniform samples.
- $A_{\mathbf{s},\chi}$ choose $\mathbf{a} \in \mathbb{Z}_q^n$ uniformly at random, e from χ and output $(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)$.
- Search LWE: To find s.
- It is enough to find $s_1 \in \mathbb{Z}_q$, other coordinates can be found similarly.
- For a pair (\mathbf{a}, b) choose a fresh $k \in \mathbb{Z}_q$.
- Invoke \mathcal{D} on pairs,

$$(\mathbf{a}+(l,0,\ldots,0),b+l\cdot k),$$

 $l \in \mathbb{Z}_q$ chosen uniformly at random.

イロト イポト イヨト イヨト 二日

• If we had the uniform distribution as input then we still have a uniform distribution

 If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.

- If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.
- If $k = s_1$, then we have $\langle \mathbf{a} + (l, 0, ..., 0), \mathbf{s} \rangle = b + l \cdot s_1$ which is the second input of the tuple

- If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.
- If k = s₁, then we have ⟨a + (l, 0, ..., 0), s⟩ = b + l ⋅ s₁ which is the second input of the tuple ⇒ D accepts.

- If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.
- If k = s₁, then we have ⟨a + (l, 0, ..., 0), s⟩ = b + l ⋅ s₁ which is the second input of the tuple ⇒ D accepts.
- If $k \neq s_1$, then since q is prime b is uniform

- If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.
- If $k = s_1$, then we have $\langle \mathbf{a} + (l, 0, \dots, 0), \mathbf{s} \rangle = b + l \cdot s_1$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.
- If $k \neq s_1$, then since q is prime b is uniform $\Rightarrow \mathcal{D}$ rejects.

イロト 不得下 イヨト イヨト 二日

- If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.
- If $k = s_1$, then we have $\langle \mathbf{a} + (l, 0, \dots, 0), \mathbf{s} \rangle = b + l \cdot s_1$ which is the second input of the tuple $\Rightarrow \mathcal{D}$ accepts.
- If $k \neq s_1$, then since q is prime b is uniform $\Rightarrow \mathcal{D}$ rejects.
- Since q = poly(n) we can try all these possibilities for k.

イロト 不得下 イヨト イヨト 二日

- If we had the uniform distribution as input then we still have a uniform distribution ⇒ *D* rejects.
- If k = s₁, then we have ⟨a + (l, 0, ..., 0), s⟩ = b + l ⋅ s₁ which is the second input of the tuple ⇒ D accepts.
- If $k \neq s_1$, then since q is prime b is uniform $\Rightarrow \mathcal{D}$ rejects.
- Since q = poly(n) we can try all these possibilities for k.
- q need not be prime or poly(n) (Peikert '09)

イロト イポト イヨト イヨト 二日

Efficiency of LWE

• LWE is efficient – all that we have is matrix multiplications and additions.

3

Efficiency of LWE

- LWE is efficient all that we have is matrix multiplications and additions.
- Getting one $b_i \in \mathbb{Z}_q$ requires an *n*-dimensional mod *q* inner product.

3

Efficiency of LWE

- LWE is efficient all that we have is matrix multiplications and additions.
- Getting one $b_i \in \mathbb{Z}_q$ requires an *n*-dimensional mod q inner product.
- Typically $O(n^2)$ work.

$$(\cdots \mathbf{a_i} \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e = b \in \mathbb{Z}_q$$

• Another issue – Rather large keys!

$$pk = (\cdots \mathbf{a_i} \cdots), \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \end{pmatrix}$$

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

Let $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ for n a power of 2. $R_q = R/\langle q \rangle$, with q prime and $q = 1 \mod n$.

R is a cyclotomic ring of integers \mathcal{O}_K .

イロト 不得下 イヨト イヨト 二日

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

Let $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ for n a power of 2. $R_q = R/\langle q \rangle$, with q prime and $q = 1 \mod n$.

R is a cyclotomic ring of integers \mathcal{O}_K .

• All elements of R_q can be uniquely represented by polynomials of deg < n, $R_q \cong \mathbb{Z}_q^{n}$.

イロト イポト イヨト イヨト 二日

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

Let $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ for n a power of 2. $R_q = R/\langle q \rangle$, with q prime and $q = 1 \mod n$.

R is a cyclotomic ring of integers \mathcal{O}_K .

- All elements of R_q can be uniquely represented by polynomials of deg < n, $R_q \cong \mathbb{Z}_q^{n}$.
- Linear representation, shorter keys

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

Let $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ for n a power of 2. $R_q = R/\langle q \rangle$, with q prime and $q = 1 \mod n$.

R is a cyclotomic ring of integers \mathcal{O}_K .

- All elements of R_q can be uniquely represented by polynomials of deg < n, $R_q \cong \mathbb{Z}_q^{n}$.
- Linear representation, shorter keys
- Operations in R_q efficient with FFT-like algorithms : $n \log n$ operations mod q.

イロト イポト イヨト イヨト 二日

Ring-Learning With Errors [Peikert, Lyubashevsky, Regev('09)]

Let $R = \mathbb{Z}[x]/\langle x^n + 1 \rangle$ for n a power of 2. $R_q = R/\langle q \rangle$, with q prime and $q = 1 \mod n$.

R is a cyclotomic ring of integers \mathcal{O}_K .

- All elements of R_q can be uniquely represented by polynomials of deg < n, $R_q \cong \mathbb{Z}_q^{n}$.
- Linear representation, shorter keys
- Operations in R_q efficient with FFT-like algorithms : $n \log n$ operations mod q.
- Same ring structures used in NTRU cryptosystems.

• Search : find secret ring element $s(x) \in R_q$ given

$$a_1 \cdot s + e_1 = b_1 \in R_q$$
$$a_2 \cdot s + e_2 = b_2 \in R_q$$

:,

 $e_i \in R$.

2

イロト イヨト イヨト イヨト

• Search : find secret ring element $s(x) \in R_q$ given

$$a_1 \cdot s + e_1 = b_1 \in R_q$$
$$a_2 \cdot s + e_2 = b_2 \in R_q$$
$$\vdots,$$

 $e_i \in R$. χ is over short elements in R.

イロト イ理ト イヨト イヨト 二日

• Search : find secret ring element $s(x) \in R_q$ given

$$a_1 \cdot s + e_1 = b_1 \in R_q$$
$$a_2 \cdot s + e_2 = b_2 \in R_q$$
$$\vdots,$$

 $e_i \in R$. χ is over short elements in R. Spherically symmetric Gaussian needed!

イロト 不得下 イヨト イヨト 二日

• Search : find secret ring element $s(x) \in R_q$ given

$$a_1 \cdot s + e_1 = b_1 \in R_q$$
$$a_2 \cdot s + e_2 = b_2 \in R_q$$
$$\vdots,$$

 $e_i \in R$. χ is over short elements in R. Spherically symmetric Gaussian needed!

• Decision : distinguish (a_i, b_i) from uniform $(a_i, b_i) \in R_q \times R_q$.

イロト 不得下 イヨト イヨト 二日

• Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z} -module isomorphism,

$$\psi: \mathbb{Z}[x]/\langle f \rangle \longrightarrow \mathbb{Z}^n$$
$$\sum_{i=0}^{n-1} a_i x^i + \langle f \rangle \longmapsto (a_0, \cdots, a_{n-1}).$$

3

イロト イヨト イヨト

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z} -module isomorphism,

$$\psi: \mathbb{Z}[x]/\langle f \rangle \longrightarrow \mathbb{Z}^n$$
$$\sum_{i=0}^{n-1} a_i x^i + \langle f \rangle \longmapsto (a_0, \cdots, a_{n-1}).$$

This is called coefficient embedding.

3

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z} -module isomorphism,

$$\psi: \mathbb{Z}[x]/\langle f \rangle \longrightarrow \mathbb{Z}^n$$
$$\sum_{i=0}^{n-1} a_i x^i + \langle f \rangle \longmapsto (a_0, \cdots, a_{n-1}).$$

This is called coefficient embedding.

All Z-submodules (including ideals) in Z[x]/⟨f⟩ are isomorphic to Z-submodules/sublattices of Z^N.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $f \in \mathbb{Z}[x]$ be an monic irreducible polynomial of degree n.
- Consider the following \mathbb{Z} -module isomorphism,

$$\psi: \mathbb{Z}[x]/\langle f \rangle \longrightarrow \mathbb{Z}^n$$
$$\sum_{i=0}^{n-1} a_i x^i + \langle f \rangle \longmapsto (a_0, \cdots, a_{n-1}).$$

This is called coefficient embedding.

- All \mathbb{Z} -submodules (including ideals) in $\mathbb{Z}[x]/\langle f \rangle$ are isomorphic to \mathbb{Z} -submodules/sublattices of \mathbb{Z}^N .
- Ideals in $\mathbb{Z}[x]/\langle f \rangle$ are ideal lattices.

イロト 不得下 イヨト イヨト

Hardness Results in Ideal Lattices

There is a quantum reduction from a worst case lattice problem $SVP_{\gamma=poly(n)}$ on arbitrary ideal lattices to search Ring-LWE. There is a classical reduction from search Ring-LWE to decision Ring-LWE for any ideal lattice in cyclotomic R.

Hardness Results in Ideal Lattices

There is a quantum reduction from a worst case lattice problem $SVP_{\gamma=poly(n)}$ on arbitrary ideal lattices to search Ring-LWE. There is a classical reduction from search Ring-LWE to decision Ring-LWE for any ideal lattice in cyclotomic R.

Results are w.r.t. ideal lattices that have more structure. But no significant difference in security proofs versus general n-dim lattices.

• Decision Ring-LWE is needed for crypto – if you can break the crypto scheme then you can distinguish (a_i, b_i) from (a_i, b_i) , etc, etc.

イロト イヨト イヨト

Embedding of R

• Coefficient embedding to embed R into \mathbb{Z}^n .

æ

イロト イポト イヨト イヨト

Embedding of ${\cal R}$

- Coefficient embedding to embed R into \mathbb{Z}^n .
- + is coordinate wise but \cdot is not that easy to analyze.

3

Embedding of ${\cal R}$

- Coefficient embedding to embed R into \mathbb{Z}^n .
- + is coordinate wise but \cdot is not that easy to analyze.
- Minkowski embedding/'canonical embedding' :

3

< ロ > < 同 > < 三 > < 三

Embedding of ${\cal R}$

- Coefficient embedding to embed R into \mathbb{Z}^n .
- + is coordinate wise but \cdot is not that easy to analyze.
- Minkowski embedding/'canonical embedding' :
 - Let z be the primitive 2nth root of unity mod q, then roots of $x^n + 1$ mod q are $z^1, z^3, \ldots, z^{2n-1}$.

${\sf Embedding} \ {\sf of} \ R$

- Coefficient embedding to embed R into \mathbb{Z}^n .
- + is coordinate wise but \cdot is not that easy to analyze.
- Minkowski embedding/'canonical embedding' :
 - Let z be the primitive 2nth root of unity mod q, then roots of $x^n + 1$ mod q are $z^1, z^3, \ldots, z^{2n-1}$.
 - Now we have an embedding that is + and · coordinate-wise.

$$f(x)\longmapsto (f(z^1), f(z^3), \dots, f(z^{2n-1}))$$

• Why coordinate wise multiplication?

3

• Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction

3

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.

3

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.
- Can we guess coefficients of $s \in R_q$ one by one?

3

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.
- Can we guess coefficients of $s \in R_q$ one by one?
- Coefficient multiplication knowing one or more coefficients of s wont help us compute $a \cdot s \mod qR!$

- Why coordinate wise multiplication?Search Ring-LWE to Decision Ring-LWE reduction
- In plain LWE we worked by guessing the coordinates of the secret s one by one.
- Can we guess coefficients of $s \in R_q$ one by one?
- Coefficient multiplication knowing one or more coefficients of s wont help us compute $a \cdot s \mod qR!$
- With the new embedding we now have coordinate multiplication $a \cdot s = (a_1s_1, \cdots, a_ns_n).$

イロト イポト イヨト イヨト 二日

• Error distribution looks very different in canonical embedding!

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Error distribution looks very different in canonical embedding!
- Consider $x^2 + 1$ splits modulo 13 as $x^2 + 1 = (x+5)(x-5) \mod 13$.

- Error distribution looks very different in canonical embedding!
- Consider $x^2 + 1$ splits modulo 13 as $x^2 + 1 = (x+5)(x-5) \mod 13$.
- An element ax + b in $\mathbb{Z}[x]/\langle x^2 + 1 \rangle$ has canonical embedding

$$(5a+b,b-5a) \in \mathbb{Z}_{13}^2$$

- Error distribution looks very different in canonical embedding!
- Consider $x^2 + 1$ splits modulo 13 as $x^2 + 1 = (x+5)(x-5) \mod 13$.
- An element ax + b in $\mathbb{Z}[x]/\langle x^2 + 1 \rangle$ has canonical embedding

$$(5a+b,b-5a) \in \mathbb{Z}_{13}^2$$

• If say our initial error distribution is uniform with $a, b \in \{-1, 0, 1\}$ then now its uniform over

$$\{(0,0),\pm(5,-5),\pm(1,1)\pm(6,-4),\pm(6,-4)\}$$

- Error distribution looks very different in canonical embedding!
- Consider $x^2 + 1$ splits modulo 13 as $x^2 + 1 = (x+5)(x-5) \mod 13$.
- An element ax + b in $\mathbb{Z}[x]/\langle x^2 + 1 \rangle$ has canonical embedding

$$(5a+b,b-5a) \in \mathbb{Z}_{13}^2$$

• If say our initial error distribution is uniform with $a,b \in \{-1,0,1\}$ then now its uniform over

$$\{(0,0), \pm(5,-5), \pm(1,1) \pm (6,-4), \pm(6,-4)\}$$

long elements relative to q = 13.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Error distribution looks very different in canonical embedding!
- Consider $x^2 + 1$ splits modulo 13 as $x^2 + 1 = (x+5)(x-5) \mod 13$.
- An element ax + b in $\mathbb{Z}[x]/\langle x^2 + 1 \rangle$ has canonical embedding

$$(5a+b,b-5a) \in \mathbb{Z}_{13}^2$$

• If say our initial error distribution is uniform with $a,b\in\{-1,0,1\}$ then now its uniform over

$$\{(0,0), \pm(5,-5), \pm(1,1) \pm (6,-4), \pm(6,-4)\}$$

long elements relative to q = 13.

• We have error distributions that depend on q in very complicated ways.

• Order the coordinates of the canonical embedding of $p(x) \in R_q$ as *i*th coordinate is $p(z^{2i-1})$.

- Order the coordinates of the canonical embedding of $p(x) \in R_q$ as ith coordinate is $p(z^{2i-1})$.
- There exists a k such that the $i{\rm th}$ coordinate of p(x) is the $j{\rm th}$ coordinate of $p(x^k)!$

- Order the coordinates of the canonical embedding of $p(x) \in R_q$ as *i*th coordinate is $p(z^{2i-1})$.
- There exists a k such that the $i{\rm th}$ coordinate of p(x) is the $j{\rm th}$ coordinate of $p(x^k)!$
- Define an automorphism for such a k,

$$\tau_k : R_q \to R_q, \tau_k(p(x)) := p(x^k)$$

- Order the coordinates of the canonical embedding of $p(x) \in R_q$ as *i*th coordinate is $p(z^{2i-1})$.
- There exists a k such that the $i{\rm th}$ coordinate of p(x) is the $j{\rm th}$ coordinate of $p(x^k)!$
- Define an automorphism for such a k,

$$\tau_k : R_q \to R_q, \tau_k(p(x)) := p(x^k)$$

• τ preserves norms in the coefficient embedding – $||\tau_k(p(x))|| = ||p(x^k)|| = ||p(x)||$

Search Ring-LWE to Decision Ring-LWE reduction

• D_j – distinguishes Ring-LWE samples with first j - 1 coordinates (in canonical embedding) replaced by uniform random noise from samples in which j coordinates are replaced by uniform random noise.

イロト 不得下 イヨト イヨト 二日

- D_j distinguishes Ring-LWE samples with first j-1 coordinates (in canonical embedding) replaced by uniform random noise from samples in which j coordinates are replaced by uniform random noise.
- To find s_i :
 - Compute τ_k such that the *i*th canonical coordinate is mapped to *j*.

イロト 不得下 イヨト イヨト 二日

- D_j distinguishes Ring-LWE samples with first j 1 coordinates (in canonical embedding) replaced by uniform random noise from samples in which j coordinates are replaced by uniform random noise.
- To find s_i :
 - Compute τ_k such that the *i*th canonical coordinate is mapped to *j*.
 - Let $v_j \in R_q$ be $(0, 0, \dots, 1, 0, \dots, 0)$, *j*th position has 1,
 - $\alpha_l \in R_q$ be chosen uniformly random,
 - and k be our guess for s_i of s.

イロト 不得下 イヨト イヨト 二日

• Replace Ring-LWE samples (a_l, b_l) by

 $(\tau_k(a_l) + \frac{\alpha_l}{\alpha_l}v_j, \tau_k(b_l) + \frac{k\alpha_l}{\alpha_l}v_j + e_l').$

• Replace Ring-LWE samples (a_l, b_l) by

 $(\tau_k(a_l) + \frac{\alpha_l}{\nu_j}v_j, \tau_k(b_l) + \frac{k\alpha_l}{\nu_j}v_j + e_l').$

• Since
$$au_k(b_l) = au_k(a_l) au_k(s_l) + au_k(e_l)$$
, the sample is

 $(\tau_k(a_l) + \alpha_l v_j, \tau_k(a_l)\tau_k(s_l) + k\alpha_l v_j + \tau_k(e_l) + e_l').$

$(\tau_k(a_l) + \alpha_l v_j, \tau_k(a_l)\tau_k(s_l) + k\alpha_l v_j + \tau_k(e_l) + e_l').$

$(\tau_k(a_l) + \alpha_l v_j, \tau_k(a_l)\tau_k(s_l) + k\alpha_l v_j + \tau_k(e_l) + e_l').$

• If $k = s_i$, then the sample is for secret $\tau_k(s)$ and \mathcal{D}_j accepts.

$(\tau_k(a_l) + \alpha_l v_j, \tau_k(a_l)\tau_k(s_l) + k\alpha_l v_j + \tau_k(e_l) + e_l').$

- If $k = s_i$, then the sample is for secret $\tau_k(s)$ and \mathcal{D}_j accepts.
- Why?The first j 1 coordinates will be uniformly random.

$$(\tau_k(a_l) + \alpha_l v_j, \tau_k(a_l)\tau_k(s_l) + k\alpha_l v_j + \tau_k(e_l) + e_l').$$

- If $k = s_i$, then the sample is for secret $\tau_k(s)$ and \mathcal{D}_j accepts.
- Why?The first j-1 coordinates will be uniformly random.
- Else D_j rejects the jth coordinate is also uniformly random.

イロト 不得下 イヨト イヨト 二日

• What about the error in the samples with secret $\tau_k(s)$?

- What about the error in the samples with secret $\tau_k(s)$?
 - χ is spherically symmetric, depends only on norm.
 - τ_k preserves the norm.

- What about the error in the samples with secret $\tau_k(s)$?
 - χ is spherically symmetric, depends only on norm.
 - τ_k preserves the norm.
 - This implies τ_k preserves error distribution.

- What about the error in the samples with secret $\tau_k(s)$?
 - χ is spherically symmetric, depends only on norm.
 - τ_k preserves the norm.
 - This implies τ_k preserves error distribution.
- Can we move from 2^n cyclotomic polynomial rings to other univariate ideal lattices?

- What about the error in the samples with secret $\tau_k(s)$?
 - χ is spherically symmetric, depends only on norm.
 - τ_k preserves the norm.
 - This implies τ_k preserves error distribution.
- Can we move from 2^n cyclotomic polynomial rings to other univariate ideal lattices?
 - How to find an embedding that will give coordinate wise multiplication and with that a good guess for the secret?
 - The embedding should have symmetry as given by au_k that is rare!
 - The error distribution should be preserved.

- What about the error in the samples with secret $\tau_k(s)$?
 - χ is spherically symmetric, depends only on norm.
 - τ_k preserves the norm.
 - This implies τ_k preserves error distribution.
- Can we move from 2^n cyclotomic polynomial rings to other univariate ideal lattices?
 - How to find an embedding that will give coordinate wise multiplication and with that a good guess for the secret?
 - The embedding should have symmetry as given by au_k that is rare!
 - The error distribution should be preserved.
 - Other alternatives Polynomial-LWE (Stehle, et.al 2009).

・ロン ・四 ・ ・ ヨン ・ ヨン

• NewHope : Ring-LWE key exchange. About 200 bit quantum security.

3

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.
- Google has experimentally deployed NewHope+ECDH in Chrome canary.

3

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.
- Google has experimentally deployed NewHope+ECDH in Chrome canary.
- Frodo : removes the ring, just plain-lwe key exchange. Around 128-bit security.

3

- NewHope : Ring-LWE key exchange. About 200 bit quantum security.
- Google has experimentally deployed NewHope+ECDH in Chrome canary.
- Frodo : removes the ring, just plain-lwe key exchange. Around 128-bit security.
- Many second round lattice-crypto entrants at the NiST PQC standardization contest.

• Fully classical proofs for all reductions.

3

- Fully classical proofs for all reductions.
- Other ring of integers where ring-LWE can be used.

3

- Fully classical proofs for all reductions.
- Other ring of integers where ring-LWE can be used.
- Multivariate Ideal Lattices (Francis, Dukkipati 2017) :
 - Have a characterization for multivariate ideal lattices based on coefficient mapping using Gröbner basis.

- Fully classical proofs for all reductions.
- Other ring of integers where ring-LWE can be used.
- Multivariate Ideal Lattices (Francis, Dukkipati 2017) :
 - Have a characterization for multivariate ideal lattices based on coefficient mapping using Gröbner basis.
 - How to extend it to build Ring-LWE? How to define the canonical embedding?

• NTRU submitted to Crypto 97 and rejected.

3

イロト イポト イヨト イヨト

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 a biannual math conference.

3

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 a biannual math conference.
- Lattice Attacks on NTRU Coppersmith and Shamir, Eurocrypt '97!

3

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 a biannual math conference.
- Lattice Attacks on NTRU Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!

3

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 a biannual math conference.
- Lattice Attacks on NTRU Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!
- Regev's paper came out in 2005!

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 a biannual math conference.
- Lattice Attacks on NTRU Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!
- Regev's paper came out in 2005!
- NTRU was accepted as an IEEE 13.63 standard in 2008. NiST in 2009 stated that NTRU appears to be the most practical in quantum resistant PKC.

- NTRU submitted to Crypto 97 and rejected.
- Accepted in ANTS 98 a biannual math conference.
- Lattice Attacks on NTRU Coppersmith and Shamir, Eurocrypt '97!
- They even thought LLL algo will help!
- Regev's paper came out in 2005!
- NTRU was accepted as an IEEE 13.63 standard in 2008. NiST in 2009 stated that NTRU appears to be the most practical in quantum resistant PKC.
- Story of resilience?

References

- On lattices, learning with errors, random linear codes, and cryptography. O. Regev (2009)
- On Ideal Lattices and Learning with Errors over Rings. V. Lyubashevsky, C. Peikert, O.Regev (2013)
- A Decade of Lattice Cryptography C. Peikert (2016)
- A Toolkit for Ring-LWE Cryptography V.Lyubashevsky, C. Peikert, O. Regev (2013)
- Fully Homormorphic Encryption for Mathematicians A.Silverberg (2013)
- Ring-LWE Cryptography for the Number Theorist Y. Elias, Kristin E. Lauter, E. Ozman, K. E. Stange (2015)
- Course notes and expository lectures by Micciancio, Peikert, Vaikuntanathan.