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Randomness

Is there randomness in the universe?

We do not know.

But anyhoo, the answer does not a�ect purely theoretical areas like:
I Probability Theory
I Probabilistic Method
I Discrete mathematics, combinatorics

Why is this question interesting to mathematics?
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Randomness

An area of computer science that needs the answer to be Yes is:

Randomized Algorithms

I One of the most elegant areas of computer science.
I Almost always use lesser resources than deterministic

counterparts.
I Many times there are no deterministic counterparts.
I Randomized algorithms are used widely in practice.

Hence the question of the existence of randomness is very
important.
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“Toss a coin dude, it’ll look random lol”
– some dude on the internet, maybe



Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.

So why do coin tosses appear random to us?!

If we could sense the following at the instant of tossing:
I The force we apply
I The point of contact
I Angle of a�ack, bla bla bla

Then the outcome is simply a deterministic function.

The function could be very hard to compute before the coin lands!
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Could it be true that limited computational power makes events
look completely random even if they are not?

Nisan ’92 shows that indeed this is true, and proves it formally!
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Nisan ’92

This talk borrows ideas and some notation from the excellent lecture notes by

Ryan O’ Donell. https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf


Preliminaries

The Problem:
There is a randomized algorithm A that:
I uses R independent random bits drawn from UR.
I uses space O(s).

We would like to:
I Draw only O(s log R) random bits from uniform. Call this x .
I Generate a string y of length R using x deterministically.
I Feed y to A as the “random” bits.
I Output Yes or No with probabilities similar to that of A.

Think of s ∈ O(log n). Then, O(s log R) ∈ O(log2n).
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Definition
A function G : {0, 1}n → {0, 1}m ε-fools a randomized algorithm A
that uses m bits of randomness if for all inputs x∣∣∣∣ Prr∼Um

[A(x, r) accepts]− Pr
y∼Un

[A(x,G(y)) accepts]
∣∣∣∣ ≤ ε

We should think of n << m.
i.e., G takes a small string of length n from the uniform distribution
and stretches it to a length m string that looks random to the
algorithm A.

Such a function is called a pseudorandom generator.

Our goal is to construct a pseudorandom generator that can fool
every space O(s) algorithm.
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Preliminaries

Some Assumptions:

I The input x is given to us.
I The algorithm A uses randomness in blocks of k bits.
I The TM A corresponding to A has a unique accepting

configuration.

A configuration of a TM typically looks like this:

0110001101010 q4 0011111010t

Fact: A TM that uses space s
I has at most 2O(s) configurations.
I has running time at most 2O(s).
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Preliminaries

From the given TM A and input x , we construct the following state
machine:

I State/Vertex set V is the set of all m = 2O(s) possible
configurations.

I The start state is c0 and accepting state is cacc.
I cacc has a self loop. No outgoing edges.
I Transitions are labelled by strings in {0, 1}k .

The edges correspond to transitions from a configuration u to v
a�er reading k random bits.
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For every pair of vertices u, v ∈ V ,

(u, v) ∈ E with label t ∈ {0, 1}k
m

A goes from u to v a�er reading t as the random string.

Observation: Every state (except cacc) has 2k transitions going out.
Denote the above state machine as an (m,k)-automaton.
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Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:

δ : V × {0, 1}k → V

δ(u; x) = v ⇐⇒ D goes from state u to v with x as the random string

Let M be the transition matrix of the state machine defined as:

M[u, v] = Pr
x
[δ(u; x) = v]

Let the running time be t = 2cs .

Our goal is to output “Yes” with probability close to Mt [c0, cacc].
(Think of powering adjacency matrices for unweighted graphs)
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Main Idea

A fast way to power matrices is via repeated squaring.

M −→ M2 −→ M4 −→ · · · −→ Mt

Let’s look at just M2 for now.
How could we output “Yes” with probability close to M2[u, v]?

Naïve way:
I Pick x1, x2 ∈ {0, 1}k uniformly and independently at random.
I Follow the path in the automaton graph starting from u

labelled x1 and x2.
I Output “Yes” if we land at v .

i.e., Output “Yes” if δ(δ(u; x1); x2) = v .

By definitions, we would output “Yes” with probability M2[u, v].

Can we use fewer random bits to get a similar e�ect?
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Main Idea

Nisan’s idea:
I to pick string x1 at random.
I Generate x2 = h(x1) where h is a hash function picked from a

pairwise independent hash family.

Short detour into pairwise independent hash families...
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Universal Hash Families
Definition:
A family H of functions from h : {0, 1}n → {0, 1}m is a pairwise
independent hash family if for all x1, x2 ∈ {0, 1}n, x1 6= x2, and
y1, y2 ∈ {0, 1}m, we have:

Pr
h
[h(x1) = y1 ∧ h(x2) = y2] =

1
22m

Definition:
Let A,B ⊆ {0, 1}k and h : {0, 1}k → {0, 1}k . Let α = |A|/2k and
β = |B|/2k . The function h is “τ -independent for (A,B)” if∣∣∣Pr

x
[x ∈ A ∧ h(x) ∈ B]− αβ

∣∣∣ < τ

Fact: If h is chosen at random from a pairwise independent hash
family, then:

Pr
h
[h is not τ -independent for (A,B)] ≤ 1

τ 22k
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Main Idea

Define shorthand δ2(u; x1, x2) = δ(δ(u; x1); x2). Then we have:

M2[u, v] = Pr
x1,x2

[δ2(u; x1, x2) = v]

Define Mh to be the following matrix:

Mh[u, v] = Pr
x1
[δ2(u; x1, h(x1)) = v]

How di�erent are M2 and Mh?
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Main Idea

Lemma: Let D be an (m, k)−automaton, and M it’s transition
matrix. Then:

Pr
h∼Hk

[
∥∥M2 −Mh

∥∥
∞ ≥ ε] ≤

m7

ε22k

where ‖M‖∞ denotes the the largest row sum of abs values in the matrix.



Main Idea

Proof: Fix an entry u, v , and assume h has been picked from a
pairwise independent hash family. Then we have:

|M[u, v]−Mh[u, v]|

=

∣∣∣∣ Prx1,x2
[δ2(u; x1, x2) = v]− Pr

x
[δ2(u; x, h(x)) = v]

∣∣∣∣
=

∣∣∣∣∣
m∑

w=1

Pr
x1,x2

[δ(u; x1) = w ∧ δ(w; x2) = v]−
m∑

w=1

Pr
x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣∣
≤

m∑
w=1

∣∣∣∣ Prx1,x2
[δ(u; x1) = w ∧ δ(w; x2) = v]− Pr

x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣
≤

m∑
w=1

∣∣∣∣Prx1
[δ(u; x1) = w] Pr

x2
[δ(w; x2) = v]− Pr

x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣

Define Au,w = {x | δ(u; x) = w} and Bw,v = {x | δ(w; x) = v}.
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Main Idea

Suppose h is τ = (ε/m2)-indep for every (Au,w ,Bw,v).
Then by definition of τ -independence, and union bound, we get:

|M[u, v]−Mh[u, v]| ≤ m · (ε/m2) =
ε

m

From property of hash family:

Pr
h
[h is not τ -independent for Au,w ,Bw,v)] ≤

1
τ 22k

= m4/ε2

Union bound over all u,w, v to get:

Pr
h
[h is bad] ≤ m3 · m

4

ε2 =
m7

ε22k



Main Idea

In picking x ∈ {0, 1}k and an h ∈ Hk , did we really save a lot?

I Hash families with linear space descriptions are known.
I So choosing h ∈ Hk needs only O(k) bits of randomness.
I We could have chosen x2 directly instead?!

The idea of using hash functions scales extremely well:
Computing M4[u, v]:

I We pick x ∈ {0, 1}k and only two hash functions h1, h2.
I The strings we generate are x, h1(x), h2(x) and h1(h2(x)).

Computing M8[u, v]:

I We pick x ∈ {0, 1}k and only three hash functions h1, h2, h3.
I The strings we generate are:

x, h1(x), h2(x), h1h2(x), h3(x), h1h3(x), h2h3(x), h1h2h3(x).
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Main Idea

In general, to compute M2s , we will use s many hash functions.
And we will still be very close to M2s :

Theorem

Pr
h1,h2,...,hs∼Hk

[∥∥M2s −Mh1,h2,...,hs

∥∥ > (2s − 1)ε
]
≤ s

m7

ε22k

Let’s calculate the number of pure random bits used for the general
case of estimating M2s :
I Picking x ∈ {0, 1}k needs k bits of randomness
I Picking h1, . . . hs needs O(sk) bits of randomness.

Think of s ∈ O(log n), and choose k ∈ O(s).
This gives number of random bits needed as O(s2) ∈ O(log2n).

Choosing ε ∈ 1/2O(s) works for the bounds.
Please see the paper for the exact choices!



Main Idea

In general, to compute M2s , we will use s many hash functions.
And we will still be very close to M2s :

Theorem

Pr
h1,h2,...,hs∼Hk

[∥∥M2s −Mh1,h2,...,hs

∥∥ > (2s − 1)ε
]
≤ s

m7

ε22k

Let’s calculate the number of pure random bits used for the general
case of estimating M2s :
I Picking x ∈ {0, 1}k needs k bits of randomness
I Picking h1, . . . hs needs O(sk) bits of randomness.

Think of s ∈ O(log n), and choose k ∈ O(s).
This gives number of random bits needed as O(s2) ∈ O(log2n).

Choosing ε ∈ 1/2O(s) works for the bounds.
Please see the paper for the exact choices!



Main Idea

In general, to compute M2s , we will use s many hash functions.
And we will still be very close to M2s :

Theorem

Pr
h1,h2,...,hs∼Hk

[∥∥M2s −Mh1,h2,...,hs

∥∥ > (2s − 1)ε
]
≤ s

m7

ε22k

Let’s calculate the number of pure random bits used for the general
case of estimating M2s :
I Picking x ∈ {0, 1}k needs k bits of randomness
I Picking h1, . . . hs needs O(sk) bits of randomness.

Think of s ∈ O(log n), and choose k ∈ O(s).
This gives number of random bits needed as O(s2) ∈ O(log2n).

Choosing ε ∈ 1/2O(s) works for the bounds.
Please see the paper for the exact choices!



Pseudorandom Generator

The generator from the paper is defined recursively:

G0(x) = x

Gx(x, h1, . . . , hk) = Gk−1(x, h1, . . . , hk−1) ◦Gk−1(hk(x), h1, . . . , hk−1)

The first few levels look like:

G0(x) = x

G1(x, h1) = x h1(x)

G2(x, h1, h2) = x h1(x) h2(x) h1(h2(x))
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Thank you!


