Fooling machines that have limited
computational power

Karteek Sreenivasaiah

22nd July 2020

Randomness

Is there randomness in the universe?

Randomness

Is there randomness in the universe?

We do not know.

Randomness

Is there randomness in the universe?
We do not know.

But anyhoo, the answer does not affect purely theoretical areas like:
» Probability Theory
» Probabilistic Method

» Discrete mathematics, combinatorics

Randomness

Is there randomness in the universe?
We do not know.

But anyhoo, the answer does not affect purely theoretical areas like:
» Probability Theory
» Probabilistic Method

» Discrete mathematics, combinatorics

Why is this question interesting to mathematics?

Randomness

An area of computer science that needs the answer to be Yes is:

Randomized Algorithms

Randomness

An area of computer science that needs the answer to be Yes is:

Randomized Algorithms

» One of the most elegant areas of computer science.

P> Almost always use lesser resources than deterministic
counterparts.

> Many times there are no deterministic counterparts.
» Randomized algorithms are used widely in practice.

Hence the question of the existence of randomness is very
important.

“Toss a coin dude, it’ll look random lol”

— some dude on the internet, maybe

Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.

So why do coin tosses appear random to us?!

Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.
So why do coin tosses appear random to us?!
If we could sense the following at the instant of tossing:
» The force we apply
» The point of contact
> Angle of attack, bla bla bla

Then the outcome is simply a deterministic function.

Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.
So why do coin tosses appear random to us?!

If we could sense the following at the instant of tossing:
» The force we apply
» The point of contact
> Angle of attack, bla bla bla

Then the outcome is simply a deterministic function.

The function could be very hard to compute before the coin lands!

Randomness

Could it be true that limited computational power makes events
look completely random even if they are not?

Randomness

Could it be true that limited computational power makes events
look completely random even if they are not?

Nisan '92 shows that indeed this is true, and proves it formally!

Nisan ’92

COMBINATORKA COMBINATORICA 12 (4) (1992) 449-461

Akadémiai Kiad6 - Springer-Verlag

PSEUDORANDOM GENERATORS FOR SPACE-BOUNDED
COMPUTATION

NOAM NISAN*

Received December 3, 1989
Revised June 16, 1992

Pseudorandom generators are constructed which convert O(SlogR) truly random bits to R
bits that appear random to any algorithm that runs in SPACE(S). In particular, any randomized
polynomial time algorithm that runs in space S can be simulated using only O(Slogn) random bits.
An application of these generators is an explicit construction of universal traversal sequences (for
arbitrary graphs) of length nOlogn),

The generators constructed are technically stronger than just appearing random to space-
bounded machines, and have several other applications. In particular, applications are given for
“deterministic amplification” (i.e. reducing the probability of error of randomized algorithms), as
well as generalizations of it.

This talk borrows ideas and some notation from the excellent lecture notes by

Ryan O’ Donell. https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

Preliminaries

The Problem:
There is a randomized algorithm A that:

» uses R independent random bits drawn from Ug.

» uses space O(s).

Preliminaries

The Problem:
There is a randomized algorithm A that:

» uses R independent random bits drawn from Ug.

» uses space O(s).
We would like to:

» Draw only O(slog R) random bits from uniform. Call this x.

» Generate a string y of length R using x deterministically.

» Feed y to A as the “random” bits.

» Output Yes or No with probabilities similar to that of A.
Think of s € O(log n). Then, O(slog R) € O(log?n).

Definition
A function G : {0,1}" — {0, 1}™ e-fools a randomized algorithm A
that uses m bits of randomness if for all inputs x

PLC [A(x, r) accepts] — P{, [A(x, G(y)) accepts]| < e
r~Um y~Un

Definition
A function G : {0,1}" — {0, 1}™ e-fools a randomized algorithm A
that uses m bits of randomness if for all inputs x

PLC [A(x, r) accepts] — P{, [A(x, G(y)) accepts]| < e
r~Um y~Un

We should think of n << m.

i.e., G takes a small string of length n from the uniform distribution
and stretches it to a length m string that looks random to the
algorithm A.

Such a function is called a pseudorandom generator.

Our goal is to construct a pseudorandom generator that can fool
every space O(s) algorithm.

Preliminaries

Some Assumptions:

» The input x is given to us.
» The algorithm A uses randomness in blocks of k bits.

» The TM A corresponding to A has a unique accepting
configuration.

A configuration of a TM typically looks like this:

0110001101010 g4 00111110101

Preliminaries

Some Assumptions:

» The input x is given to us.

» The algorithm A uses randomness in blocks of k bits.

» The TM A corresponding to A has a unique accepting
configuration.

A configuration of a TM typically looks like this:
0110001101010 g4 00111110101

Fact: A TM that uses space s
> has at most 2°0) configurations.

» has running time at most 200,

Preliminaries

From the given TM A and input x, we construct the following state
machine:

> State/Vertex set V is the set of all m = 290 possible
configurations.

P> The start state is ¢y and accepting state is cycc.

P c,cc has a self loop. No outgoing edges.

» Transitions are labelled by strings in {0, 1}X.

The edges correspond to transitions from a configuration u to v
after reading k random bits.

Preliminaries

From the given TM A and input x, we construct the following state
machine:

> State/Vertex set V is the set of all m = 290) possible
configurations.

P The start state is ¢y and accepting state is cacc.

P c,cc has a self loop. No outgoing edges.

» Transitions are labelled by strings in {0, 1}X.
For every pair of vertices u,v € V,

(u,v) € E with label t € {0, 1}¥

)

A goes from u to v after reading t as the random string.

Preliminaries

From the given TM A and input x, we construct the following state
machine:

> State/Vertex set V is the set of all m = 290) possible
configurations.

P The start state is ¢y and accepting state is cacc.

P c,cc has a self loop. No outgoing edges.

» Transitions are labelled by strings in {0, 1}X.
For every pair of vertices u,v € V,

(u,v) € E with label t € {0, 1}¥

)

A goes from u to v after reading t as the random string.

Observation: Every state (except caec) has 2k transitions going out.
Denote the above state machine as an (m,k)-automaton.

Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:
§:Vx{0,1}k—>v

d(u; x) = v <= D goes from state u to v with x as the random string

Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:
§:Vx{0,1}k—>v

d(u; x) = v <= D goes from state u to v with x as the random string

Let M be the transition matrix of the state machine defined as:

M[u, v] = F)’(r[é(u; x) = V|

Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:
§:Vx{0,1}k—>v

d(u; x) = v <= D goes from state u to v with x as the random string
Let M be the transition matrix of the state machine defined as:

M[u, v] = F)’(r[(;(u; x) = V|

Let the running time be t = 2.

Our goal is to output “Yes” with probability close to M'[cy, Cacc]-

(Think of powering adjacency matrices for unweighted graphs)

Main ldea

A fast way to power matrices is via repeated squaring.

M— M — M —...— M

Main ldea

A fast way to power matrices is via repeated squaring.

M— M — M —...— M

Let’s look at just M? for now.
How could we output “Yes” with probability close to M?*[u, v]?

Main ldea

A fast way to power matrices is via repeated squaring.

M— M — M —...— M

Let’s look at just M? for now.
How could we output “Yes” with probability close to M?*[u, v]?

Naive way:
» Pick x1, x, € {0, 1}¥ uniformly and independently at random.

» Follow the path in the automaton graph starting from u
labelled x; and x».

» Output “Yes” if we land at v.
i.e., Output “Yes” if 0(0(u; x1); x2) = v.
By definitions, we would output “Yes” with probability M?[u, v].

Can we use fewer random bits to get a similar effect?

Main ldea

Nisan’s idea:
> to pick string x; at random.

» Generate x, = h(x;) where h is a hash function picked from a
pairwise independent hash family.

Main ldea

Nisan’s idea:
> to pick string x; at random.

» Generate x, = h(x;) where h is a hash function picked from a
pairwise independent hash family.

Short detour into pairwise independent hash families...

Universal Hash Families
Definition:
A family H of functions from h: {0,1}" — {0, 1}™ is a pairwise
independent hash family if for all x;, x; € {0, 1}", x; # x3, and
v1, y2 € {0, 1}, we have:

:
Pria(xi) = y1 A h(e) = yo] = 2

Universal Hash Families
Definition:
A family H of functions from h: {0,1}" — {0, 1}™ is a pairwise
independent hash family if for all x;, x; € {0, 1}", x; # x3, and
v1, y2 € {0, 1}, we have:

1

F:,r[h(X1) =y Ah(x) =y = 22m

Definition:
Let A, B C {0,1}*and h: {0, 1}k — {0, 1}¥. Let a = |A|/2* and
B = | B|/2*. The function h is “T-independent for (A, B)” if

F)’(r[xEA/\h(x)GB]—aﬁ <T

Universal Hash Families
Definition:
A family H of functions from h: {0,1}" — {0, 1}™ is a pairwise
independent hash family if for all x;, x; € {0, 1}", x; # x3, and
v1, y2 € {0, 1}, we have:

m

Definition:
Let A, B C {0,1}*and h: {0,1}k — {0, 1} Let a = |A|/2¥ and
B = | B|/2*. The function h is “T-independent for (A, B)” if

F)’(r[xEA/\h(x)GB]—aﬁ <T

Fact: If h is chosen at random from a pairwise independent hash
family, then:

Pr[h is not T-independent for (A, B)] < T

Main ldea

Define shorthand 6%(u; x1, x2) = 6(8(u; x1); x2). Then we have:

Mz[u, vl = Pr [52(u; x1,X2) = V|
X1,X2

Main ldea

Define shorthand 6%(u; x1, x2) = 6(8(u; x1); x2). Then we have:
M?[u,v] = Pr[6*(u; x1, %) = V]
X1,X2
Define Mp, to be the following matrix:

Mplu, v] = Iir[dz(u; x1, h(x1)) = v]

Main ldea

Define shorthand 6%(u; x1, x2) = 6(8(u; x1); x2). Then we have:

Mz[u, vl = Pr [52(u; x1,X2) = V|
X1,X2

Define Mp, to be the following matrix:

Mplu, v] = Iir[dz(u; x1, h(x1)) = v]

How different are M? and M;?

Main ldea

Lemma: Let D be an (m, k)—automaton, and M it’s transition
matrix. Then:
m

pr [— ay|, > d < T

hoHy

where |[M||__ denotes the the largest row sum of abs values in the matrix.

Main ldea

Proof: Fix an entry u, v, and assume h has been picked from a
pairwise independent hash family. Then we have:

[Mlu, v] = My[u, V]|

= | Pr[0%(u; x1, %) = v] — Iir[dz(u; x, h(x)) = v]

X1,X2

iMS

Pr[6(u;x) = wAd(w;x) =v]— Z er[é(u;x) = wAd(w; h(x)) = v]

X1,X2

w=1

Ms

<

X;

P)I;Z[(S(u; x1) = wAd(w; x)=v]— Iir[é(u; x) = w A §(w; h(x)) = v]

w=1

Ms

Izr[é(u x1) = w] Pr[5(w X)) =v]— Pr[5(u; x) = w A §(w; h(x)) = v]

w=1

Main ldea

Proof: Fix an entry u, v, and assume h has been picked from a
pairwise independent hash family. Then we have:

[Mlu, v] = My[u, V]|

= | Pr[0%(u; x1, %) = v] — Pr[52(u; x, h(x)) = v]

X1,X2

Il:’rz[(Sux])—W/\(S(W x)=v]— ZPr[éux)—w/\é(w h(x)) = v]

w=1

Ms

XF:L[(S(U; x1) = wAd(w; x)=v]— Iir[é(u; x) = w A §(w; h(x)) = v]

w:

Prid(u; x;) = w] Pr[5(w X)) =v]— Pr[5(u; x) = w A §(w; h(x)) = v]

X1

Ms

w=1

Define A, w = {x | 0(u; x) = w} and B,,, = {x | 6(w; x) = v}.

Main ldea

Suppose his T = (e¢/m?*)-indep for every (Ayw, Bu.v)-

Then by definition of 7-independence, and union bound, we get:

IM[u, v] — Mp[u, V]| < m- (e/m?) = %

From property of hash family:

:m4/62

1
P h i t -i d d tf Au w BW v <
hr[is not 7-independent for A, vl £ Y

Union bound over all u, w, v to get:
4 7

. 3 m _m
F:)r[hlsbad]gm T ok

Main ldea

In picking x € {0,1}* and an h € H,, did we really save a lot?

» Hash families with linear space descriptions are known.
» So choosing h € Hy needs only O(k) bits of randomness.

» We could have chosen x; directly instead?!

Main ldea

In picking x € {0,1}* and an h € H,, did we really save a lot?

» Hash families with linear space descriptions are known.
» So choosing h € Hy needs only O(k) bits of randomness.

» We could have chosen x; directly instead?!

The idea of using hash functions scales extremely well:
Computing M*{u, v]:

> We pick x € {0, 1}¥ and only two hash functions hy, hs.
> The strings we generate are x, hi(x), hy(x) and hi(hy(x)).

Main ldea

In picking x € {0,1}* and an h € H,, did we really save a lot?

» Hash families with linear space descriptions are known.
» So choosing h € Hy needs only O(k) bits of randomness.

» We could have chosen x; directly instead?!

The idea of using hash functions scales extremely well:
Computing M*{u, v]:

> We pick x € {0, 1}¥ and only two hash functions hy, hs.

> The strings we generate are x, hi(x), hy(x) and hi(hy(x)).
Computing M®[u, v]:

» We pick x € {0, 1}" and only three hash functions hy, hy, hs.

» The strings we generate are:
X, h1 (X), hz(X), h] hz(X), h3(X), h1h3(X), h2h3(X), h1h2h3(X).

Main ldea

In general, to compute M?', we will use s many hash functions.
And we will still be very close to M?":

Theorem

7

Pr [[IM* = My, || > (22 = 1)e] < 5:7

h]7h2,‘.~7h:NHk

Main ldea

In general, to compute M?', we will use s many hash functions.
And we will still be very close to M?":

Theorem

7

Pr [[IM* = My, || > (22 = 1)e] < 5:7

h1,ha,..., hsoHy,

Let’s calculate the number of pure random bits used for the general
case of estimating M?:

> Picking x € {0, 1} needs k bits of randomness
» Picking hy, ... hs needs O(sk) bits of randomness.

Think of s € O(log n), and choose k € O(s).
This gives number of random bits needed as O(s*) € O(log?n).

Main ldea

In general, to compute M?', we will use s many hash functions.
And we will still be very close to M?":

Theorem

7

>(25—1)e]§sm

Pr [|IM* — Muy .., €22k

hi,ha,....hs~Hy

Let’s calculate the number of pure random bits used for the general
case of estimating M?:

> Picking x € {0, 1} needs k bits of randomness
» Picking hy, ... hs needs O(sk) bits of randomness.

Think of s € O(log n), and choose k € O(s).
This gives number of random bits needed as O(s*) € O(log?n).

Choosing € € 1/2°0) works for the bounds.
Please see the paper for the exact choices!

Pseudorandom Generator

The generator from the paper is defined recursively:
Go(x) = x

GX(Xv h'la oo '7hk) = Gk—1(Xa h17' o 'ahk—T)o Gk—T(hk(X)ah'lu oo '7hk—1)

Pseudorandom Generator

The generator from the paper is defined recursively:

Go(x) = x
GX(Xv h'la ©coog hk) = Gk—1(Xa h1a °cocy hk—]) o Gk—'l(hk(x)v h17 ©cooy hk—'l)
The first few levels look like:

Go(x) = x
Gi(x, h1) = x hi(x)
Ga(x, h1, hy) = x h1(x) ha(x) h1(ha(x))

Thank you!

