
Fooling machines that have limited
computational power

Karteek Sreenivasaiah

22nd July 2020

Randomness

Is there randomness in the universe?

We do not know.

But anyhoo, the answer does not a�ect purely theoretical areas like:
I Probability Theory
I Probabilistic Method
I Discrete mathematics, combinatorics

Why is this question interesting to mathematics?

Randomness

Is there randomness in the universe?

We do not know.

But anyhoo, the answer does not a�ect purely theoretical areas like:
I Probability Theory
I Probabilistic Method
I Discrete mathematics, combinatorics

Why is this question interesting to mathematics?

Randomness

Is there randomness in the universe?

We do not know.

But anyhoo, the answer does not a�ect purely theoretical areas like:
I Probability Theory
I Probabilistic Method
I Discrete mathematics, combinatorics

Why is this question interesting to mathematics?

Randomness

Is there randomness in the universe?

We do not know.

But anyhoo, the answer does not a�ect purely theoretical areas like:
I Probability Theory
I Probabilistic Method
I Discrete mathematics, combinatorics

Why is this question interesting to mathematics?

Randomness

An area of computer science that needs the answer to be Yes is:

Randomized Algorithms

I One of the most elegant areas of computer science.
I Almost always use lesser resources than deterministic

counterparts.
I Many times there are no deterministic counterparts.
I Randomized algorithms are used widely in practice.

Hence the question of the existence of randomness is very
important.

Randomness

An area of computer science that needs the answer to be Yes is:

Randomized Algorithms

I One of the most elegant areas of computer science.
I Almost always use lesser resources than deterministic

counterparts.
I Many times there are no deterministic counterparts.
I Randomized algorithms are used widely in practice.

Hence the question of the existence of randomness is very
important.

“Toss a coin dude, it’ll look random lol”
– some dude on the internet, maybe

Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.

So why do coin tosses appear random to us?!

If we could sense the following at the instant of tossing:
I The force we apply
I The point of contact
I Angle of a�ack, bla bla bla

Then the outcome is simply a deterministic function.

The function could be very hard to compute before the coin lands!

Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.

So why do coin tosses appear random to us?!

If we could sense the following at the instant of tossing:
I The force we apply
I The point of contact
I Angle of a�ack, bla bla bla

Then the outcome is simply a deterministic function.

The function could be very hard to compute before the coin lands!

Randomness

Coin Toss

Tossing a coin identically will give identical outcomes.

So why do coin tosses appear random to us?!

If we could sense the following at the instant of tossing:
I The force we apply
I The point of contact
I Angle of a�ack, bla bla bla

Then the outcome is simply a deterministic function.

The function could be very hard to compute before the coin lands!

Randomness

Could it be true that limited computational power makes events
look completely random even if they are not?

Nisan ’92 shows that indeed this is true, and proves it formally!

Randomness

Could it be true that limited computational power makes events
look completely random even if they are not?

Nisan ’92 shows that indeed this is true, and proves it formally!

Nisan ’92

This talk borrows ideas and some notation from the excellent lecture notes by

Ryan O’ Donell. https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

https://www.cs.cmu.edu/~odonnell/complexity/docs/lecture16.pdf

Preliminaries

The Problem:
There is a randomized algorithm A that:
I uses R independent random bits drawn from UR.
I uses space O(s).

We would like to:
I Draw only O(s log R) random bits from uniform. Call this x .
I Generate a string y of length R using x deterministically.
I Feed y to A as the “random” bits.
I Output Yes or No with probabilities similar to that of A.

Think of s ∈ O(log n). Then, O(s log R) ∈ O(log2n).

Preliminaries

The Problem:
There is a randomized algorithm A that:
I uses R independent random bits drawn from UR.
I uses space O(s).

We would like to:
I Draw only O(s log R) random bits from uniform. Call this x .
I Generate a string y of length R using x deterministically.
I Feed y to A as the “random” bits.
I Output Yes or No with probabilities similar to that of A.

Think of s ∈ O(log n). Then, O(s log R) ∈ O(log2n).

Definition
A function G : {0, 1}n → {0, 1}m ε-fools a randomized algorithm A
that uses m bits of randomness if for all inputs x∣∣∣∣ Prr∼Um

[A(x, r) accepts]− Pr
y∼Un

[A(x,G(y)) accepts]
∣∣∣∣ ≤ ε

We should think of n << m.
i.e., G takes a small string of length n from the uniform distribution
and stretches it to a length m string that looks random to the
algorithm A.

Such a function is called a pseudorandom generator.

Our goal is to construct a pseudorandom generator that can fool
every space O(s) algorithm.

Definition
A function G : {0, 1}n → {0, 1}m ε-fools a randomized algorithm A
that uses m bits of randomness if for all inputs x∣∣∣∣ Prr∼Um

[A(x, r) accepts]− Pr
y∼Un

[A(x,G(y)) accepts]
∣∣∣∣ ≤ ε

We should think of n << m.
i.e., G takes a small string of length n from the uniform distribution
and stretches it to a length m string that looks random to the
algorithm A.

Such a function is called a pseudorandom generator.

Our goal is to construct a pseudorandom generator that can fool
every space O(s) algorithm.

Preliminaries

Some Assumptions:

I The input x is given to us.
I The algorithm A uses randomness in blocks of k bits.
I The TM A corresponding to A has a unique accepting

configuration.

A configuration of a TM typically looks like this:

0110001101010 q4 0011111010t

Fact: A TM that uses space s
I has at most 2O(s) configurations.
I has running time at most 2O(s).

Preliminaries

Some Assumptions:

I The input x is given to us.
I The algorithm A uses randomness in blocks of k bits.
I The TM A corresponding to A has a unique accepting

configuration.

A configuration of a TM typically looks like this:

0110001101010 q4 0011111010t

Fact: A TM that uses space s
I has at most 2O(s) configurations.
I has running time at most 2O(s).

Preliminaries

From the given TM A and input x , we construct the following state
machine:

I State/Vertex set V is the set of all m = 2O(s) possible
configurations.

I The start state is c0 and accepting state is cacc.
I cacc has a self loop. No outgoing edges.
I Transitions are labelled by strings in {0, 1}k .

The edges correspond to transitions from a configuration u to v
a�er reading k random bits.

Preliminaries

From the given TM A and input x , we construct the following state
machine:

I State/Vertex set V is the set of all m = 2O(s) possible
configurations.

I The start state is c0 and accepting state is cacc.
I cacc has a self loop. No outgoing edges.
I Transitions are labelled by strings in {0, 1}k .

For every pair of vertices u, v ∈ V ,

(u, v) ∈ E with label t ∈ {0, 1}k
m

A goes from u to v a�er reading t as the random string.

Observation: Every state (except cacc) has 2k transitions going out.
Denote the above state machine as an (m,k)-automaton.

Preliminaries

From the given TM A and input x , we construct the following state
machine:

I State/Vertex set V is the set of all m = 2O(s) possible
configurations.

I The start state is c0 and accepting state is cacc.
I cacc has a self loop. No outgoing edges.
I Transitions are labelled by strings in {0, 1}k .

For every pair of vertices u, v ∈ V ,

(u, v) ∈ E with label t ∈ {0, 1}k
m

A goes from u to v a�er reading t as the random string.

Observation: Every state (except cacc) has 2k transitions going out.
Denote the above state machine as an (m,k)-automaton.

Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:

δ : V × {0, 1}k → V

δ(u; x) = v ⇐⇒ D goes from state u to v with x as the random string

Let M be the transition matrix of the state machine defined as:

M[u, v] = Pr
x
[δ(u; x) = v]

Let the running time be t = 2cs .

Our goal is to output “Yes” with probability close to Mt [c0, cacc].
(Think of powering adjacency matrices for unweighted graphs)

Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:

δ : V × {0, 1}k → V

δ(u; x) = v ⇐⇒ D goes from state u to v with x as the random string

Let M be the transition matrix of the state machine defined as:

M[u, v] = Pr
x
[δ(u; x) = v]

Let the running time be t = 2cs .

Our goal is to output “Yes” with probability close to Mt [c0, cacc].
(Think of powering adjacency matrices for unweighted graphs)

Preliminaries

An (m, k)-automaton D will have a transition function that looks
like:

δ : V × {0, 1}k → V

δ(u; x) = v ⇐⇒ D goes from state u to v with x as the random string

Let M be the transition matrix of the state machine defined as:

M[u, v] = Pr
x
[δ(u; x) = v]

Let the running time be t = 2cs .

Our goal is to output “Yes” with probability close to Mt [c0, cacc].
(Think of powering adjacency matrices for unweighted graphs)

Main Idea

A fast way to power matrices is via repeated squaring.

M −→ M2 −→ M4 −→ · · · −→ Mt

Let’s look at just M2 for now.
How could we output “Yes” with probability close to M2[u, v]?

Naïve way:
I Pick x1, x2 ∈ {0, 1}k uniformly and independently at random.
I Follow the path in the automaton graph starting from u

labelled x1 and x2.
I Output “Yes” if we land at v .

i.e., Output “Yes” if δ(δ(u; x1); x2) = v .

By definitions, we would output “Yes” with probability M2[u, v].

Can we use fewer random bits to get a similar e�ect?

Main Idea

A fast way to power matrices is via repeated squaring.

M −→ M2 −→ M4 −→ · · · −→ Mt

Let’s look at just M2 for now.
How could we output “Yes” with probability close to M2[u, v]?

Naïve way:
I Pick x1, x2 ∈ {0, 1}k uniformly and independently at random.
I Follow the path in the automaton graph starting from u

labelled x1 and x2.
I Output “Yes” if we land at v .

i.e., Output “Yes” if δ(δ(u; x1); x2) = v .

By definitions, we would output “Yes” with probability M2[u, v].

Can we use fewer random bits to get a similar e�ect?

Main Idea

A fast way to power matrices is via repeated squaring.

M −→ M2 −→ M4 −→ · · · −→ Mt

Let’s look at just M2 for now.
How could we output “Yes” with probability close to M2[u, v]?

Naïve way:
I Pick x1, x2 ∈ {0, 1}k uniformly and independently at random.
I Follow the path in the automaton graph starting from u

labelled x1 and x2.
I Output “Yes” if we land at v .

i.e., Output “Yes” if δ(δ(u; x1); x2) = v .

By definitions, we would output “Yes” with probability M2[u, v].

Can we use fewer random bits to get a similar e�ect?

Main Idea

Nisan’s idea:
I to pick string x1 at random.
I Generate x2 = h(x1) where h is a hash function picked from a

pairwise independent hash family.

Short detour into pairwise independent hash families...

Main Idea

Nisan’s idea:
I to pick string x1 at random.
I Generate x2 = h(x1) where h is a hash function picked from a

pairwise independent hash family.

Short detour into pairwise independent hash families...

Universal Hash Families
Definition:
A family H of functions from h : {0, 1}n → {0, 1}m is a pairwise
independent hash family if for all x1, x2 ∈ {0, 1}n, x1 6= x2, and
y1, y2 ∈ {0, 1}m, we have:

Pr
h
[h(x1) = y1 ∧ h(x2) = y2] =

1
22m

Definition:
Let A,B ⊆ {0, 1}k and h : {0, 1}k → {0, 1}k . Let α = |A|/2k and
β = |B|/2k . The function h is “τ -independent for (A,B)” if∣∣∣Pr

x
[x ∈ A ∧ h(x) ∈ B]− αβ

∣∣∣ < τ

Fact: If h is chosen at random from a pairwise independent hash
family, then:

Pr
h
[h is not τ -independent for (A,B)] ≤ 1

τ 22k

Universal Hash Families
Definition:
A family H of functions from h : {0, 1}n → {0, 1}m is a pairwise
independent hash family if for all x1, x2 ∈ {0, 1}n, x1 6= x2, and
y1, y2 ∈ {0, 1}m, we have:

Pr
h
[h(x1) = y1 ∧ h(x2) = y2] =

1
22m

Definition:
Let A,B ⊆ {0, 1}k and h : {0, 1}k → {0, 1}k . Let α = |A|/2k and
β = |B|/2k . The function h is “τ -independent for (A,B)” if∣∣∣Pr

x
[x ∈ A ∧ h(x) ∈ B]− αβ

∣∣∣ < τ

Fact: If h is chosen at random from a pairwise independent hash
family, then:

Pr
h
[h is not τ -independent for (A,B)] ≤ 1

τ 22k

Universal Hash Families
Definition:
A family H of functions from h : {0, 1}n → {0, 1}m is a pairwise
independent hash family if for all x1, x2 ∈ {0, 1}n, x1 6= x2, and
y1, y2 ∈ {0, 1}m, we have:

Pr
h
[h(x1) = y1 ∧ h(x2) = y2] =

1
22m

Definition:
Let A,B ⊆ {0, 1}k and h : {0, 1}k → {0, 1}k . Let α = |A|/2k and
β = |B|/2k . The function h is “τ -independent for (A,B)” if∣∣∣Pr

x
[x ∈ A ∧ h(x) ∈ B]− αβ

∣∣∣ < τ

Fact: If h is chosen at random from a pairwise independent hash
family, then:

Pr
h
[h is not τ -independent for (A,B)] ≤ 1

τ 22k

Main Idea

Define shorthand δ2(u; x1, x2) = δ(δ(u; x1); x2). Then we have:

M2[u, v] = Pr
x1,x2

[δ2(u; x1, x2) = v]

Define Mh to be the following matrix:

Mh[u, v] = Pr
x1
[δ2(u; x1, h(x1)) = v]

How di�erent are M2 and Mh?

Main Idea

Define shorthand δ2(u; x1, x2) = δ(δ(u; x1); x2). Then we have:

M2[u, v] = Pr
x1,x2

[δ2(u; x1, x2) = v]

Define Mh to be the following matrix:

Mh[u, v] = Pr
x1
[δ2(u; x1, h(x1)) = v]

How di�erent are M2 and Mh?

Main Idea

Define shorthand δ2(u; x1, x2) = δ(δ(u; x1); x2). Then we have:

M2[u, v] = Pr
x1,x2

[δ2(u; x1, x2) = v]

Define Mh to be the following matrix:

Mh[u, v] = Pr
x1
[δ2(u; x1, h(x1)) = v]

How di�erent are M2 and Mh?

Main Idea

Lemma: Let D be an (m, k)−automaton, and M it’s transition
matrix. Then:

Pr
h∼Hk

[
∥∥M2 −Mh

∥∥
∞ ≥ ε] ≤

m7

ε22k

where ‖M‖∞ denotes the the largest row sum of abs values in the matrix.

Main Idea

Proof: Fix an entry u, v , and assume h has been picked from a
pairwise independent hash family. Then we have:

|M[u, v]−Mh[u, v]|

=

∣∣∣∣ Prx1,x2
[δ2(u; x1, x2) = v]− Pr

x
[δ2(u; x, h(x)) = v]

∣∣∣∣
=

∣∣∣∣∣
m∑

w=1

Pr
x1,x2

[δ(u; x1) = w ∧ δ(w; x2) = v]−
m∑

w=1

Pr
x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣∣
≤

m∑
w=1

∣∣∣∣ Prx1,x2
[δ(u; x1) = w ∧ δ(w; x2) = v]− Pr

x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣
≤

m∑
w=1

∣∣∣∣Prx1
[δ(u; x1) = w] Pr

x2
[δ(w; x2) = v]− Pr

x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣

Define Au,w = {x | δ(u; x) = w} and Bw,v = {x | δ(w; x) = v}.

Main Idea

Proof: Fix an entry u, v , and assume h has been picked from a
pairwise independent hash family. Then we have:

|M[u, v]−Mh[u, v]|

=

∣∣∣∣ Prx1,x2
[δ2(u; x1, x2) = v]− Pr

x
[δ2(u; x, h(x)) = v]

∣∣∣∣
=

∣∣∣∣∣
m∑

w=1

Pr
x1,x2

[δ(u; x1) = w ∧ δ(w; x2) = v]−
m∑

w=1

Pr
x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣∣
≤

m∑
w=1

∣∣∣∣ Prx1,x2
[δ(u; x1) = w ∧ δ(w; x2) = v]− Pr

x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣
≤

m∑
w=1

∣∣∣∣Prx1
[δ(u; x1) = w] Pr

x2
[δ(w; x2) = v]− Pr

x
[δ(u; x) = w ∧ δ(w; h(x)) = v]

∣∣∣∣
Define Au,w = {x | δ(u; x) = w} and Bw,v = {x | δ(w; x) = v}.

Main Idea

Suppose h is τ = (ε/m2)-indep for every (Au,w ,Bw,v).
Then by definition of τ -independence, and union bound, we get:

|M[u, v]−Mh[u, v]| ≤ m · (ε/m2) =
ε

m

From property of hash family:

Pr
h
[h is not τ -independent for Au,w ,Bw,v)] ≤

1
τ 22k

= m4/ε2

Union bound over all u,w, v to get:

Pr
h
[h is bad] ≤ m3 · m

4

ε2 =
m7

ε22k

Main Idea

In picking x ∈ {0, 1}k and an h ∈ Hk , did we really save a lot?

I Hash families with linear space descriptions are known.
I So choosing h ∈ Hk needs only O(k) bits of randomness.
I We could have chosen x2 directly instead?!

The idea of using hash functions scales extremely well:
Computing M4[u, v]:

I We pick x ∈ {0, 1}k and only two hash functions h1, h2.
I The strings we generate are x, h1(x), h2(x) and h1(h2(x)).

Computing M8[u, v]:

I We pick x ∈ {0, 1}k and only three hash functions h1, h2, h3.
I The strings we generate are:

x, h1(x), h2(x), h1h2(x), h3(x), h1h3(x), h2h3(x), h1h2h3(x).

Main Idea

In picking x ∈ {0, 1}k and an h ∈ Hk , did we really save a lot?

I Hash families with linear space descriptions are known.
I So choosing h ∈ Hk needs only O(k) bits of randomness.
I We could have chosen x2 directly instead?!

The idea of using hash functions scales extremely well:
Computing M4[u, v]:

I We pick x ∈ {0, 1}k and only two hash functions h1, h2.
I The strings we generate are x, h1(x), h2(x) and h1(h2(x)).

Computing M8[u, v]:

I We pick x ∈ {0, 1}k and only three hash functions h1, h2, h3.
I The strings we generate are:

x, h1(x), h2(x), h1h2(x), h3(x), h1h3(x), h2h3(x), h1h2h3(x).

Main Idea

In picking x ∈ {0, 1}k and an h ∈ Hk , did we really save a lot?

I Hash families with linear space descriptions are known.
I So choosing h ∈ Hk needs only O(k) bits of randomness.
I We could have chosen x2 directly instead?!

The idea of using hash functions scales extremely well:
Computing M4[u, v]:

I We pick x ∈ {0, 1}k and only two hash functions h1, h2.
I The strings we generate are x, h1(x), h2(x) and h1(h2(x)).

Computing M8[u, v]:

I We pick x ∈ {0, 1}k and only three hash functions h1, h2, h3.
I The strings we generate are:

x, h1(x), h2(x), h1h2(x), h3(x), h1h3(x), h2h3(x), h1h2h3(x).

Main Idea

In general, to compute M2s , we will use s many hash functions.
And we will still be very close to M2s :

Theorem

Pr
h1,h2,...,hs∼Hk

[∥∥M2s −Mh1,h2,...,hs

∥∥ > (2s − 1)ε
]
≤ s

m7

ε22k

Let’s calculate the number of pure random bits used for the general
case of estimating M2s :
I Picking x ∈ {0, 1}k needs k bits of randomness
I Picking h1, . . . hs needs O(sk) bits of randomness.

Think of s ∈ O(log n), and choose k ∈ O(s).
This gives number of random bits needed as O(s2) ∈ O(log2n).

Choosing ε ∈ 1/2O(s) works for the bounds.
Please see the paper for the exact choices!

Main Idea

In general, to compute M2s , we will use s many hash functions.
And we will still be very close to M2s :

Theorem

Pr
h1,h2,...,hs∼Hk

[∥∥M2s −Mh1,h2,...,hs

∥∥ > (2s − 1)ε
]
≤ s

m7

ε22k

Let’s calculate the number of pure random bits used for the general
case of estimating M2s :
I Picking x ∈ {0, 1}k needs k bits of randomness
I Picking h1, . . . hs needs O(sk) bits of randomness.

Think of s ∈ O(log n), and choose k ∈ O(s).
This gives number of random bits needed as O(s2) ∈ O(log2n).

Choosing ε ∈ 1/2O(s) works for the bounds.
Please see the paper for the exact choices!

Main Idea

In general, to compute M2s , we will use s many hash functions.
And we will still be very close to M2s :

Theorem

Pr
h1,h2,...,hs∼Hk

[∥∥M2s −Mh1,h2,...,hs

∥∥ > (2s − 1)ε
]
≤ s

m7

ε22k

Let’s calculate the number of pure random bits used for the general
case of estimating M2s :
I Picking x ∈ {0, 1}k needs k bits of randomness
I Picking h1, . . . hs needs O(sk) bits of randomness.

Think of s ∈ O(log n), and choose k ∈ O(s).
This gives number of random bits needed as O(s2) ∈ O(log2n).

Choosing ε ∈ 1/2O(s) works for the bounds.
Please see the paper for the exact choices!

Pseudorandom Generator

The generator from the paper is defined recursively:

G0(x) = x

Gx(x, h1, . . . , hk) = Gk−1(x, h1, . . . , hk−1) ◦Gk−1(hk(x), h1, . . . , hk−1)

The first few levels look like:

G0(x) = x

G1(x, h1) = x h1(x)

G2(x, h1, h2) = x h1(x) h2(x) h1(h2(x))

Pseudorandom Generator

The generator from the paper is defined recursively:

G0(x) = x

Gx(x, h1, . . . , hk) = Gk−1(x, h1, . . . , hk−1) ◦Gk−1(hk(x), h1, . . . , hk−1)

The first few levels look like:

G0(x) = x

G1(x, h1) = x h1(x)

G2(x, h1, h2) = x h1(x) h2(x) h1(h2(x))

Thank you!

