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Outline

• One problem

• One algorithm

• One open problem
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• QPTAS [Adamaszek and Wiese, 2013]

• O(loglog n)-Approx                              

[Chalermsook and Chuzhoy, 2009]

• W[1]-Hard [Marx, 2005]

• PAS [Grandoni et al., 2019]

Independent Set of Rectangles

For any ε>0, there is an algorithm
• running in time:  f(k,ε)poly(n)
• outputs a set of (1-ε)min(k,opt) 

independent rectangles
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rectangles Qi fully contained in Ci, of size at least |Si|.  

Running time

           Naive:      2O(k3) nO(1/ε2)

�                Other:      kO(k/ε2) nO(1/ε2)
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Proof: Partition Lemma
An r-division:  An r–division of G is a decomposition into

• O(n/r) edge-disjoint pieces.
• each with ≤ r vertices, and
• O(√r) boundary vertices (i.e., vertices with edges in at least two 
pieces
  

Planar graph admits an r–division

[That is, total no. of boundary vertices is O(n/√r)]

For any n-vertex planar  graph G and 0<δ<1 , 
there exist δn vertices B such that the number 
of vertices in each  connected component of  

G-B is at most O(1/δ2). 
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Proof: Partition Lemma
We delete δ|R| vertices D1 s.t. 

each c.c in G1-D1 has size O(1/δ2)  

We construct a super 
graph  G2 of G1-D1  

We delete δ|R\ D1| vertices D2 s.t. 
each c.c has size O(1/δ2)  

|R\ D1 \ D2| ≥ (1-2δ)|R|.
The connected components of  G1-D1-D2 gives the required partition

Substitute δ = ε/2  
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  No. choices for Ci   is kO(1/ε2)

  One can get  kO(1/ε2) (1/ε2) 
rectangles containing a solution of 
size ≥(1-ε)k



kO(k/ε2) nO(1/ε2) 
time

(I,k)

Summary
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A (1-ε)-approx  
solution

Poly time
Algo

(I,k)
An opt solution

  (I’,k) 
where opt’≥ (1-ε)opt & 

|I’|=kO(1/ε2) (1/ε2) 

Parameterised Approximation Scheme (PAS)

Polynomial Size Approximate Kernelization 
Scheme (PSAKS)
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Open Problem

• Is there PTAS? Or at least a polynomial time 
constant factor approximation algorithm?

• The answer to the above question is most likely 
yes, as there is a QPTAS. But we don't have it 
yet.
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