Parameterized Approx-Scheme for Independent Set of Rectangles

Fahad Panolan

Department of Computer Science \& Engineering IIT Hyderabad

19 Aug 2020

Outline

- One problem
- One algorithm
- One open problem

Independent Set of Rectangles

and an integer k

Independent Set of Rectangles

and an integer k

Independent Set of Rectangles

- QPTAS [Adamaszek and Wiese, 2013]
- O(loglog n)-Approx
[Chalermsook and Chuzhoy, 2009]
- W[1]-Hard [Marx, 2005]
- PAS [Grandoni et al., 2019]

For any $\varepsilon>0$, there is an algorithm

- running in time: $f(k, \varepsilon)$ poly (n)
- outputs a set of $(1-\varepsilon) \min (k, o p t)$ independent rectangles

Algorithm

If $>\mathrm{k}+1$ lines, then we get a solution of size k

If $>k+1$
 horizontal lines, then we get a solution of size k

Partition Lemma

Let R be a solution of size k . Then, there exits $\mathrm{S} \subseteq \mathrm{R}$ s.t.

- $|S| \geq(1-\varepsilon)|R|$

Partition Lemma

Let R be a solution of size k . Then, there exits $\mathrm{S} \subseteq \mathrm{R}$ s.t.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $\mathrm{S}_{1} \uplus \mathrm{~S}_{2} \uplus \ldots \uplus \mathrm{~S}_{\mathrm{l}}=\mathrm{S}$ s.t.

$\rightarrow \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\checkmark Any cell g in the grid intersects rectangles of S from a block only

Partition Lemma

Let C_{i} be the set of cells that intersects rectangles in S_{i}. Guess C_{i} for all i. They are disjoint. Find disjoint rectangles Q_{i} fully contained in C_{i}, of size at least $\left|\mathrm{S}_{\mathrm{i}}\right|$.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $\mathrm{S}_{1} \uplus \mathrm{~S}_{2} \uplus \ldots \uplus \mathrm{~S}_{\mathrm{l}}=\mathrm{S}$ s.t.

$\checkmark \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\checkmark Any cell g in the grid intersects rectangles of S from a block only

Partition Lemma

Let C_{i} be the set of cells that intersects rectangles in S_{i}. Guess C_{i} for all i. They are disjoint. Find disjoint rectangles Q_{i} fully contained in C_{i}, of size at least $\left|\mathrm{S}_{\mathrm{i}}\right|$.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $\mathrm{S}_{1} \uplus \mathrm{~S}_{2} \uplus \ldots \uplus \mathrm{~S}_{\mathrm{l}}=\mathrm{S}$ s.t.
$\rightarrow \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\checkmark Any cell g in the gri \star

S from a block only

Running time
Naive: $\quad 2^{\mathrm{O}\left(\mathrm{k}^{3}\right)} \mathrm{n}^{\mathrm{O}\left(1 / \varepsilon^{2}\right)}$

Partition Lemma

Let C_{i} be the set of cells that intersects rectangles in S_{i}. Guess C_{i} for all i. They are disjoint. Find disjoint rectangles Q_{i} fully contained in C_{i}, of size at least $\left|\mathrm{S}_{\mathrm{i}}\right|$.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $\mathrm{S}_{1} \uplus \mathrm{~S}_{2} \uplus \ldots \uplus \mathrm{~S}_{\mathrm{l}}=\mathrm{S}$ s.t.

$\checkmark \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\star Any cell g in the gri \star S from a block only

Running time
Naive: $\quad 2^{\mathrm{O}\left(\mathrm{k}^{3}\right)} \mathbf{n}^{\mathrm{O}\left(1 / \varepsilon^{2}\right)}$
Other: $\quad k^{\mathrm{O}\left(\mathrm{k} / \varepsilon^{2}\right)} \mathbf{n}^{\mathrm{O}\left(1 / \varepsilon^{2}\right)}$

Proof: Partition Lemma

Let R be a solution of size k . Then, there exits $\mathrm{S} \subseteq \mathrm{R}$ s.t.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $\mathrm{S}_{1} \uplus \mathrm{~S}_{2} \uplus \ldots \uplus \mathrm{~S}_{\mathrm{l}}=\mathrm{S}$ s.t.

$\downarrow \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\checkmark Any cell g in the grid intersects rectangles of S from a block only

Proof: Partition Lemma

Proof: Partition Lemma

Proof: Partition Lemma

An r-division: An r-division of G is a decomposition into

- $\mathrm{O}(\mathrm{n} / \mathrm{r})$ edge-disjoint pieces,
- each with $\leq \mathrm{r}$ vertices and
- $\mathrm{O}(\sqrt{ } \mathrm{r})$ boundary vertices (i.e., vertices with edges in at least two pieces). [That is, total no. of boundary vertices is $O(n / \sqrt{ } r)$]

Proof: Partition Lemma

An r-division: An r-division of G is a decomposition into

- $\mathrm{O}(\mathrm{n} / \mathrm{r})$ edge-disjoint pieces,
- each with $\leq r$ vertices and
- $\mathrm{O}(\sqrt{ } \mathrm{r})$ boundary vertices (i.e., vertices with edges in at least two pieces). [That is, total no. of boundary vertices is $O(n / \sqrt{ } r)$]

Proof: Partition Lemma

An r-division: An r-division of G is a decomposition into

- $\mathrm{O}(\mathrm{n} / \mathrm{r})$ edge-disjoint pieces,
- each with $\leq r$ vertices and
- $\mathrm{O}(\sqrt{ } \mathrm{r})$ boundary vertices (i.e., vertices with edges in at least two pieces). [That is, total no. of boundary vertices is $O(n / \sqrt{ } r)$]

Planar graph admits an \mathbf{r}-division

Proof: Partition Lemma

An r-division: An r-division of G is a decomposition into

- $\mathrm{O}(\mathrm{n} / \mathrm{r})$ edge-disjoint pieces,
- each with $\leq r$ vertices and
- $\mathrm{O}(\sqrt{ } \mathrm{r})$ boundary vertices (i.e., vertices with edges in at least two pieces). [That is, total no. of boundary vertices is $O(n / \sqrt{ })$]

For any n-vertex planar graph G and an integer r, there exists $(n / \sqrt{ })$ vertices B such that the number of vertices in each connected component of $\mathrm{G}-\mathrm{B}$ is at most $\mathrm{O}(\mathrm{r})$.

Planar graph admits an r-division

Proof: Partition Lemma

An r-division: An r-division of G is a decomposition into

- $\mathrm{O}(\mathrm{n} / \mathrm{r})$ edge-disjoint pieces.
- each with $\leq \mathrm{r}$ vertices, and
- $\mathrm{O}(\sqrt{ } \mathrm{r})$ boundary vertices (i.e., vertices with edges in at least two pieces [That is total no of houndary vertices is $\mathrm{O}(\mathrm{n} / \sqrt{ } \mathrm{r})$]

For any n -vertex planar graph G and $0<\delta<1$, there exist δ n vertices B such that the number of vertices in each connected component of G -B is at most $\mathrm{O}\left(1 / \delta^{2}\right)$.

Planar graph admits an r-division

Proof: Partition Lemma

We construct a planar graph G_{1} with vertex set R

Proof: Partition Lemma

We construct a planar graph G_{1} with vertex set R

Proof: Partition Lemma

We construct a planar graph G_{1} with vertex set R

Proof: Partition Lemma

We delete $\delta \mid \mathrm{Rl}$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

Proof: Partition Lemma

Proof: Partition Lemma

We delete $\delta|\mathrm{R}|$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

We construct a super graph G_{2} of $G_{1}-D_{1}$

Proof: Partition Lemma

We delete $\delta|\mathrm{R}|$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

We construct a super graph G_{2} of $G_{1}-D_{1}$

Proof: Partition Lemma

We delete $\delta|\mathrm{R}|$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

We delete $\delta\left|R \backslash D_{1}\right|$ vertices D_{2} s.t. each c.c has size $O\left(1 / \delta^{2}\right)$

We construct a super graph G_{2} of $\mathrm{G}_{1}-\mathrm{D}_{1}$

Proof: Partition Lemma

We delete $\delta|\mathrm{R}|$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

We delete $\delta\left|R \backslash D_{1}\right|$ vertices D_{2} s.t. each c.c has size $O\left(1 / \delta^{2}\right)$

Proof: Partition Lemma

We delete $\delta|\mathrm{R}|$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

We delete $\delta\left|R \backslash D_{1}\right|$ vertices D_{2} s.t. each c.c has size $O\left(1 / \delta^{2}\right)$

$$
\left|R \backslash D_{1} \backslash D_{2}\right| \geq(1-2 \delta)|R|
$$

The connected components of $G_{1}-D_{1}-D_{2}$ gives the required partition

Proof: Partition Lemma

We delete $\delta \mid \mathrm{Rl}$ vertices D_{1} s.t. each c.c in $\mathrm{G}_{1}-\mathrm{D}_{1}$ has size $\mathrm{O}\left(1 / \delta^{2}\right)$

> We delete $\delta\left|R \backslash D_{1}\right|$ vertices D_{2} s.t. each c.c has size $O\left(1 / \delta^{2}\right)$

We construct a super graph G_{2} of $G_{1}-D_{1}$

Substitute $\delta=\varepsilon / 2$

$$
\left|\mathrm{R} \backslash \mathrm{D}_{1} \backslash \mathrm{D}_{2}\right| \geq(1-2 \delta)|\mathrm{R}| .
$$

The connected components of $\mathrm{G}_{1}-\mathrm{D}_{1}-\mathrm{D}_{2}$ gives the required partition

Partition Lemma

Let R be a solution of size k . Then, there exits $\mathrm{S} \subseteq \mathrm{R}$ s.t.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $S_{1} \uplus S_{2} \uplus \ldots \uplus S _l=S$ s.t.

$\rightarrow \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\checkmark Any cell g in the grid intersects rectangles of S from a block only

Partition Lemma

Let C_{i} be the set of cells that intersects rectangles in S_{i}.
Guess C_{i} for all i . They are disjoint. Find disjoint rectangles Q_{i} contains in C_{i} of size at least $\left|S_{i}\right|$.

Then, there exits $\mathrm{S} \subseteq \mathrm{R}$ s.t.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $S_{1} \uplus S_{2} \uplus \ldots \uplus S_{-}=S$ s.t.
$\rightarrow \quad\left|S_{i}\right|=O\left(1 / \varepsilon^{2}\right)$
\uparrow Any cell g in the 4 grid intersects rectangles of S from a block only

Partition Lemma

Let C_{i} be the set of cells that intersects rectangles in S_{i}.
Guess C_{i} for all i. They are disjoint. Find disjoint rectangles Q_{i} contains in C_{i} of size at least $\left|\mathrm{S}_{\mathrm{i}}\right|$.

Then, there exits $\mathrm{S} \subseteq \mathrm{R}$ s.t.

- $|S| \geq(1-\varepsilon)|R|$
- There is partition of S, $\mathrm{S}_{1} \uplus \mathrm{~S}_{2} \uplus \ldots \uplus \mathrm{~S} _\mathrm{l}=\mathrm{S}$ s.t \star No. choices for C_{i} is $\mathrm{k}^{\mathrm{O}\left(1 / \varepsilon^{2}\right)}$
$\downarrow \quad\left|\mathrm{S}_{\mathrm{i}}\right|=\mathrm{O}\left(1 / \varepsilon^{2}\right) \quad \star$ One can get $\mathrm{k}^{\mathrm{O}\left(1 / \varepsilon^{2}\right)}\left(1 / \varepsilon^{2}\right)$
- Any cell g in theagri rectangles containing a solution of S from a block only

Summary

Summary

Parameterised Approximation Scheme (PAS)

Polynomial Size Approximate Kernelization Scheme (PSAKS)

Open Problem

- Is there PTAS? Or at least a polynomial time constant factor approximation algorithm?

Open Problem

- Is there PTAS? Or at least a polynomial time constant factor approximation algorithm?
- The answer to the above question is most likely yes, as there is a QPTAS. But we don't have it yet.

