Exact computation of the number of accepting paths of an NTM

Subrahmanyam Kalyanasundaram1 \quad Kenneth W. Regan2

1Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad

2Department of Computer Science and Engineering
University at Buffalo

Feburary 16, 2018
CALDAM 2018, IIT Guwahati
Exact computation of the number of accepting paths of an NTM

Subrahmanyam Kalyanasundaram1 \hspace{1cm} Kenneth W. Regan2

1Department of Computer Science and Engineering
Indian Institute of Technology Hyderabad

2Department of Computer Science and Engineering
University at Buffalo

February 16, 2018
CALDAM 2018, IIT Guwahati
Outline

1. Problem Statement & Background
2. BFS Approach
3. Block Trace Approach
4. Main Theorem
5. Conclusion
Trying to Understand Nondeterminism

▶ One of the fundamental goals is to understand the power of nondeterminism.
▶ Is nondeterministic computation really more powerful than deterministic computation?
▶ A concrete answer would resolve the P vs. NP question.
▶ In this paper, we study how fast we can count the number of accepting paths of an NTM.
Trying to Understand Nondeterminism

▶ One of the fundamental goals is to understand the power of nondeterminism.
▶ Is nondeterministic computation really more powerful than deterministic computation?
▶ A concrete answer would resolve the P vs. NP question.
▶ In this paper, we study how fast we can count the number of accepting paths of an NTM.
The question

Question

If an NTM N runs in time \(t = t(n) \), *how fast can we deterministically count the number of accepting computations?*

- We can count using the configuration graph.
- For a graph of size \(S \), this results in an \(O(S) \) algorithm.
- Typically \(S \sim a^{kt} \).

Our answer

We show that this can be done in time roughly square root of the size of the configuration graph.
The question

Question

If an NTM N runs in time \(t = t(n) \), how fast can we deterministically count the number of accepting computations?

- We can count using the configuration graph.
 - For a graph of size \(S \), this results in an \(O(S) \) algorithm.
 - Typically \(S \sim a^{kt} \).

Our answer

We show that this can be done in time roughly square root of the size of the configuration graph.
The question

Question

If an NTM N runs in time $t = t(n)$, *how fast can we deterministically count the number of accepting computations?*

- We can count using the configuration graph.
- For a graph of size S, this results in an $O(S)$ algorithm.
- Typically $S \sim a^{kt}$.

Our answer

We show that this can be done in time roughly *square root* of the size of the configuration graph.
The question

Question

If an NTM N runs in time $t = t(n)$, how fast can we deterministically count the number of accepting computations?

▶ We can count using the configuration graph.
▶ For a graph of size S, this results in an $O(S)$ algorithm.
▶ Typically $S \sim a^{kt}$.

Our answer

We show that this can be done in time roughly square root of the size of the configuration graph.

Kalyanasundaram & Regan

Exact count of accepting paths
The question

Question

If an NTM N runs in time $t = t(n)$, how fast can we deterministically count the number of accepting computations?

- We can count using the configuration graph.
- For a graph of size S, this results in an $O(S)$ algorithm.
- Typically $S \sim a^{kt}$.

Our answer

We show that this can be done in time roughly square root of the size of the configuration graph.
Given an NTM N, which runs in time t, we can count the number of accepting paths of N on a given input in time

$$a^{kt/2} H_a^{k \sqrt{t \log t}} q^{2 \text{poly}(\log q, k, t, a)}.$$
Main Result

Theorem

Given an NTM N, which runs in time t, we can count the number of accepting paths of N on a given input in time

$$a^{kt/2} H_a^{k \sqrt{t \log t}} q^2 \text{poly}(\log q, k, t, a).$$

<table>
<thead>
<tr>
<th>Parameters of NTM N</th>
<th>Denoted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tapes</td>
<td>k</td>
</tr>
<tr>
<td>Alphabet Size</td>
<td>a</td>
</tr>
<tr>
<td>Number of States</td>
<td>q</td>
</tr>
<tr>
<td>Running time</td>
<td>$t = t(n)$</td>
</tr>
</tbody>
</table>
Related Results: What is known already

- Counting variants of different problems behave differently.
 - Polynomial time: Kirchhoff’s matrix-tree theorem and Kasteleyn’s theorem.
 - \#P-complete: Perfect matchings in an arbitrary graph and satisfying assignments of a CNF formula.
 - FPRAS: Satisfying assignments of a DNF formula and perfect matchings in a bipartite graph.

- But no result for general nondeterministic machines.

- [vMS 05]: Faster simulation of probabilistic polytime machines in time $o(2^t)$.
 - Model of [vMS 05] restrict the amount of nondeterministic choices.
Our approach

- [KLRS 2011] showed that NTM simulation can be performed in $a^{kt/2}$ time.
- Combined two approaches: BFS and Block Trace.
- We extend the above to the problem of counting the number of accepting paths.
Outline

1. Problem Statement & Background
2. BFS Approach
3. Block Trace Approach
4. Main Theorem
5. Conclusion
Configuration Tree
The Naive Approach

<table>
<thead>
<tr>
<th>Parameters of NTM N</th>
<th>Denoted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tapes</td>
<td>k</td>
</tr>
<tr>
<td>Alphabet Size</td>
<td>a</td>
</tr>
<tr>
<td>Number of States</td>
<td>q</td>
</tr>
<tr>
<td>Running time</td>
<td>$t = t(n)$</td>
</tr>
</tbody>
</table>

- The straightforward approach; check each computation path.
- This approach takes c^t time, where c is the maximum degree of the computation tree.
The Naive Approach

<table>
<thead>
<tr>
<th>Parameters of NTM N</th>
<th>Denoted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tapes</td>
<td>k</td>
</tr>
<tr>
<td>Alphabet Size</td>
<td>a</td>
</tr>
<tr>
<td>Number of States</td>
<td>q</td>
</tr>
<tr>
<td>Running time</td>
<td>$t = t(n)$</td>
</tr>
</tbody>
</table>

- The straightforward approach; check each computation path.
- This approach takes c^t time, where c is the maximum degree of the computation tree.

Kalyanasundaram & Regan

Exact count of accepting paths
The Naive Approach

- The straightforward approach; check each computation path.
- This approach takes c^t time, where c is the maximum degree of the computation tree.

Parameters of NTM N

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Denoted by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of tapes</td>
<td>k</td>
</tr>
<tr>
<td>Alphabet Size</td>
<td>a</td>
</tr>
<tr>
<td>Number of States</td>
<td>q</td>
</tr>
<tr>
<td>Running time</td>
<td>$t = t(n)$</td>
</tr>
</tbody>
</table>
BFS on Configuration Graph

Kalyanasundaram & Regan

Exact count of accepting paths
BFS on Configuration Graph

- BFS can be used to count the number of shortest paths.
 - But each accepting path need not be a shortest path.
- We modify the configuration graph as follows:
 - In place of each configuration ρ, we have (ρ, i).
 - For a directed edge $\rho \to \rho'$, we have $(\rho, i) \to (\rho', i + 1)$.
 - All paths are shortest paths.
- Total no. of vertices is $S \cdot (t + 1) = a^k t^k q \cdot (t + 1)$.
BFS on Configuration Graph

- BFS can be used to count the number of shortest paths.
 - But each accepting path need not be a shortest path.
- We modify the configuration graph as follows:
 - In place of each configuration ρ, we have (ρ, i).
 - For a directed edge $\rho \to \rho'$, we have $(\rho, i) \to (\rho', i + 1)$.
 - All paths are shortest paths.
- Total no. of vertices is $S \cdot (t + 1) = a^{kt} t^k q \cdot (t + 1)$.
BFS on Configuration Graph

- BFS can be used to count the number of shortest paths.
 - But each accepting path need not be a shortest path.
- We modify the configuration graph as follows:
 - In place of each configuration ρ, we have (ρ, i).
 - For a directed edge $\rho \rightarrow \rho'$, we have $(\rho, i) \rightarrow (\rho', i + 1)$.
 - All paths are shortest paths.
- Total no. of vertices is $S \cdot (t + 1) = a^{kt} t^k q \cdot (t + 1)$.

Kalyanasundaram & Regan

Exact count of accepting paths
Total no. of vertices is $a^{kt} t^k q \cdot (t + 1)$.

- For each vertex (ρ, i), we compute the number of (shortest) paths from $(\rho_x, 0)$.
- Then sum up the number of accepting computation paths.

Theorem

This approach takes $a^{kt} q^2 (3at)^k \text{poly}(\log q, k, t, a)$ time.

- The dominant factor above comes from the number of configurations.
BFS on Configuration Graph

- Total no. of vertices is $a^{kt} t^k q \cdot (t + 1)$.
 - For each vertex (ρ, i), we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

Theorem

This approach takes $a^{kt} q^2 (3at)^k \text{poly}(\log q, k, t, a)$ time.

- The dominant factor above comes from the number of configurations.
BFS on Configuration Graph

- Total no. of vertices is $a^k t^k q \cdot (t + 1)$.
 - For each vertex (ρ, i), we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

Theorem

This approach takes $a^{kt} q^2 (3at)^k \text{poly}(\log q, k, t, a)$ time.

- The dominant factor above comes from the number of configurations.
BFS on Configuration Graph

- Total no. of vertices is $a^{kt} t^k q \cdot (t + 1)$.
 - For each vertex (ρ, i), we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

Theorem

This approach takes $a^{kt} q^2 (3at)^k \text{poly}(\log q, k, t, a)$ time.

- The dominant factor above comes from the number of configurations.
BFS on Configuration Graph

- Total no. of vertices is $a^{kt} t^k q \cdot (t + 1)$.
 - For each vertex (ρ, i), we compute the number of (shortest) paths from $(\rho_x, 0)$.
 - Then sum up the number of accepting computation paths.

Theorem

This approach takes $a^{kt} q^2 (3at)^k \text{poly}(\log q, k, t, a)$ time.

- The dominant factor above comes from the number of configurations.
Outline

1. Problem Statement & Background
2. BFS Approach
3. Block Trace Approach
4. Main Theorem
5. Conclusion

Kalyanasundaram & Regan

Exact count of accepting paths
A segment of block size d consists of the following over the next d steps:
- How far to the right do the tape heads go?
- How far to the left do the tape heads go?
- Where do the tape heads end up?
- What are contents of the cells traversed?

A block trace is a sequence of such segments.

Each computation path correspond to a distinct block trace witness.
Block Traces

- A segment of block size d consists of the following over the next d steps:
 - How far to the right do the tape heads go?
 - How far to the left do the tape heads go?
 - Where do the tape heads end up?
 - What are contents of the cells traversed?

- A block trace is a sequence of such segments.

- Each computation path correspond to a distinct block trace witness.
Block Traces

Kalyanasundaram & Regan

Exact count of accepting paths
Block Trace Approach

Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd} \text{poly} (\log q, k, t, a, d)$.

- We try all possible block traces and compute the number of accepting paths.
- Number of block traces = $a^{kt} 32^{kt/d}$.
- Optimizing for the block size d, we get the following:
Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd} \text{poly}(\log q, k, t, a, d)$.

- We try all possible block traces and compute the number of accepting paths.
- Number of block traces $= a^{kt} 32^{kt/d}$.
- Optimizing for the block size d, we get the following:
Block Trace Approach

Lemma

The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd} \text{poly}(\log q, k, t, a, d)$.

- We try all possible block traces and compute the number of accepting paths.
- Number of block traces = $a^{kt} 32^{kt/d}$.
- Optimizing for the block size d, we get the following:
The number of accepting computations on a given input that are compatible with a given block trace witness can be calculated in time $q^2 a^{3kd} \text{poly}(\log q, k, t, a, d)$.

- We try all possible block traces and compute the number of accepting paths.
- Number of block traces $= a^{kt} 32^{kt/d}$.
- Optimizing for the block size d, we get the following:
The number of accepting computation paths on a given input can be computed in time

\[a^{kt} C_a^{k\sqrt{t}} \cdot q^2 \text{poly}(\log q, k, t, a), \]

where \(C_a \) is a constant that depends only on \(a \).
The number of accepting computation paths on a given input can be computed in time

\[a^{kt} C_a^{k\sqrt{t}} \cdot q^{2\text{poly}(\log q, k, t, a)}, \]

where \(C_a \) is a constant that depends only on \(a \).
Outline

1. Problem Statement & Background
2. BFS Approach
3. Block Trace Approach
4. Main Theorem
5. Conclusion
Problem Statement & Background

BFS Approach

Block Trace Approach

Main Theorem

Conclusion

Idea: Combine the approaches

- Two approaches: BFS and Block Traces.
- Both have comparable running time with a^{kt} being the dominant factor.
- The idea is to mix the two cleverly.
In the BFS approach, a^{kt} factor was due to number of tape configurations.

Maximum possible tape usage is kt.

If the tape usage is less, then we could save time on the BFS approach.

First Observation

If the total tape use is $\leq kt/2$, then the BFS approach runs in time roughly $a^{kt/2}$.

But what if tape usage is more?
Tape Usage is Less than Half

- In the BFS approach, a^{kt} factor was due to number of tape configurations.
- Maximum possible tape usage is kt.
- If the tape usage is less, then we could save time on the BFS approach.

First Observation

If the total tape use is $\leq kt/2$, then the BFS approach runs in time roughly $a^{kt/2}$.

- But what if tape usage is more?
Tape Usage is Less than Half

- In the BFS approach, a^{kt} factor was due to number of tape configurations.
- Maximum possible tape usage is kt.
- If the tape usage is less, then we could save time on the BFS approach.

First Observation

If the total tape use is $\leq kt/2$, then the BFS approach runs in time roughly $a^{kt/2}$.

- But what if tape usage is more?
In Figures
In Figures

Kalyanasundaram & Regan

Exact count of accepting paths
Tape Usage is More than Half

- For every location visited, there is a last visit.
- If the total tape use is $\geq \frac{kt}{2}$, over half the visits are last visits.
- There is no need to write anything during the last visit.
- This saves a factor of $a^{kt/2}$ in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time roughly $a^{kt/2}$.
Tape Usage is More than Half

- For every location visited, there is a last visit.
- If the total tape use is \(\geq kt/2 \), over half the visits are last visits.
- There is no need to write anything during the last visit.
- This saves a factor of \(a^{kt/2} \) in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time roughly \(a^{kt/2} \).
Tape Usage is More than Half

- For every location visited, there is a last visit.
- If the total tape use is $\geq \frac{kt}{2}$, over half the visits are last visits.
- There is no need to write anything during the last visit.
- This saves a factor of $a^{\frac{kt}{2}}$ in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time roughly $a^{\frac{kt}{2}}$.
Tape Usage is More than Half

- For every location visited, there is a last visit.
- If the total tape use is \(\geq \frac{kt}{2} \), over half the visits are last visits.
- There is no need to write anything during the last visit.
- This saves a factor of \(\frac{a^{kt/2}}{} \) in the block trace approach.

Second Observation

Thus the block trace approach would yield a running time roughly \(a^{kt/2} \).
The Whole Algorithm

- List down all possible directional paths.
- Compare the total tape usage to $kt/2$.
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

$$a^{kt/2} H_{a}^{k \sqrt{t \log t}} q^{2 \text{poly} (\log q, k, t, a)}.$$
The Whole Algorithm

- List down all possible directional paths.
- Compare the total tape usage to $kt/2$.
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

$$a^{kt/2} H_{a}^{k\sqrt{t\log t}} q^2 \text{poly}(\log q, k, t, a).$$
The Whole Algorithm

- List down all possible directional paths.
- Compare the total tape usage to $kt/2$.
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

$$a^{kt/2} H^k_t \sqrt{\log t} q^2 \text{poly} \left(\log q, k, t, a \right).$$
The Whole Algorithm

- List down all possible directional paths.
- Compare the total tape usage to $kt/2$.
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

$$a^{kt/2} H_a^{k^{\sqrt{t\log t}}} q^2 \text{poly}(\log q, k, t, a).$$
The Whole Algorithm

- List down all possible directional paths.
- Compare the total tape usage to \(kt/2 \).
- Depending on the comparison, choose the approach.

Theorem (Main Theorem)

The number of accepting computations of an NTM on a given input can be computed in time

\[
a^{kt/2} H_a^{k \sqrt{\log t}} q^2 \text{poly}(\log q, k, t, a).\]

Kalyanasundaram & Regan

Exact count of accepting paths
Outline

1. Problem Statement & Background
2. BFS Approach
3. Block Trace Approach
4. Main Theorem
5. Conclusion
Concluding Remarks

- This implies a faster deterministic simulation of the following counting classes:
 - Parity classes $\oplus P$ and $\text{Mod}_k P$.
 - Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).

- Can we improve the exponent of the running time, to say $kt/3$?
- Could we extend this framework to simulate classes higher up in the polynomial hierarchy, like $\Sigma_2 P$?
This implies a faster deterministic simulation of the following counting classes:

- Parity classes $\oplus P$ and $\text{Mod}_k P$.
- Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).

Can we improve the exponent of the running time, to say $kt/3$?

Could we extend this framework to simulate classes higher up in the polynomial hierarchy, like $\Sigma_2 P$?
This implies a faster deterministic simulation of the following counting classes:

- Parity classes $\oplus P$ and $\text{Mod}_k P$.
- Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).

Can we improve the exponent of the running time, to say $kt/3$?

Could we extend this framework to simulate classes higher up in the polynomial hierarchy, like $\Sigma_2 P$?
Concluding Remarks

▶ This implies a faster deterministic simulation of the following counting classes:
 ▶ Parity classes $\oplus P$ and $\text{Mod}_k P$.
 ▶ Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).

▶ Can we improve the exponent of the running time, to say $kt/3$?
▶ Could we extend this framework to simulate classes higher up in the polynomial hierarchy, like $\Sigma_2 P$?
This implies a faster deterministic simulation of the following counting classes:

- Parity classes $\oplus P$ and $\text{Mod}_k P$.
- Probabilistic classes PP, BPP, ZPP and BQP (an improvement over [vMS 05]).

Can we improve the exponent of the running time, to say $kt/3$?

Could we extend this framework to simulate classes higher up in the polynomial hierarchy, like $\Sigma_2 P$?

Creative Commons Attribution-Noncommercial 3.0 United States License.