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Abstract—We propose a new approach for coordinating traffic
flows in large cities that helps in reducing the travel time and
carbon emissions from vehicles. We use the UPPAAL STRAT-
EGO tool chain that leverages statistical model checking and
machine learning for synthesizing optimal traffic coordination
strategies. Our approach employs a hierarchical view of the
city with two levels — individual traffic intersections and area
controllers. While the choice of a phase at an intersection is
decided locally, the phase threshold is decided at the level of
an area consisting of several intersections. The algorithm and
models that we report in this paper are a nontrivial generalization
of previous approaches that used UPPAAL STRATEGO. This
generalization allows scaling to large cities with several traffic
intersections, with improved results.

We compare our approach against other techniques including
fixed-time and fully-actuated controllers. Experiments show that
the it performs better in terms of waiting time and carbon
emissions, especially in scenarios of changing traffic loads. Our
approach also reduces overall and individual delays at intersec-
tions.

Index Terms—traffic light controller, model checking, hierar-
chical controller, UPPAAL STRATEGO

I. INTRODUCTION

Traffic management in large cities is a universal concern.
Good coordination between traffic intersections, resulting in
better traffic management, has several benefits: reduced indi-
vidual time, higher throughput and reduced emissions. For ex-
ample, if most vehicles encounter a “green wave”–a sequence
of green signals during their journey–so that they do not have
to stop at any intersection, we would achieve many of these
objectives. The problem is exacerbated in heterogeneous traffic
scenarios. Accounting for vehicles with different acceleration,
speed profiles and space requirements poses unique modeling
challenges.

Due to the obvious benefits, this problem has attracted a
lot of research attention in the past few decades. Several
approaches have been suggested from various standpoints.
While many earlier approaches modelled it as an optimization
problem, recent ones have also used ideas in machine learning
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with varying degrees of success. Of the several approaches
that have been reported in scientific literature, some have
found their way to implementation and deployment–examples
being the Split Cycle and Offset Optimisation Technique
(SCOOT) [1] and the Sydney Coordinated Adaptive Traffic
System (SCAT) [2].

The possibility of using formal methods for traffic man-
agement has been explored in the past, albeit for severely
restricted scenarios. Eriksen et al. [3] used statistical model
checking and reinforcement learning (through the UPPAAL
STRATEGO tool) for reducing waiting times at a single
intersection with homogeneous traffic. Thamilselvam et al. [4]
extended it to coordination between two intersections with
homogeneous traffic. The idea behind the coordination was
a threshold based adjustment of the maximum phase duration
and cycle length at the two intersections. The phase threshold,
defined as the maximum time for which the same phase can
continue at an intersection, was found by trial and error based
on traffic volumes at the two intersections.

For a large city with several intersections, finding such
thresholds by trial and error does not scale well. But if we
make the model to support coordination (to find the phase
thresholds for intersections in a neighborhood) and optimisa-
tion (to optimise the flow in an isolated intersection) at two
levels, scaling to large cities is possible. The present work
opens up the use of formal methods in traffic management
beyond toy scenarios. While it remains to be seen how it
compares with various optimization approaches (cf [5]–[7]),
in this paper we show superiority of this approach over
some simple yet widely used traffic controllers. Our proposed
approach involves coordination (phase threshold finding) and
optimization (optimizing the flow locally at every intersection)
at the intersection level and the area level. In addition to
this main methodological innovation, we also incorporate
heterogeneous traffic scenarios where the model is not agnostic
of the type of a vehicle. We also show that our method works
well when the traffic fluctuates rapidly, since we adaptively
change the phase threshold over an area.

As in the works mentioned above, we use the UPPAAL
STRATEGO tool chain that combines statistical model check-



ing for analysis of stochastic systems and reinforcement learn-
ing for strategy optimization, in conjunction with the urban
traffic simulator SUMO. However, the generalization necessi-
tates a nontrivial algorithmic and modeling improvement. We
give evidence that the approach yields a considerable reduction
in waiting time, queue lengths, carbon emissions as well as
the overall vehicle delay and delay at intersections.

This paper is arranged as follows. The next section briefly
discusses previous work in the area of coordinated traffic
controllers and some preliminaries needed for this paper.
Section III describes our approach including the modeling,
analysis and implementation details. Section IV discusses
the experiment setup and results. We conclude with a brief
summary of our work and future directions in Section V.

II. RELATED WORK

We begin this section by introducing some terminology that
is used in the rest of the paper.

• Phase of an intersection: A conflict-free assignment to
lights in all directions at an intersection that allows flow
in at least one direction.

• Phase duration: The time interval for which the phase of
an intersection remains unchanged.

• Phase Threshold: The maximum time for which a phase
can last at an intersection. In general, this should be
periodically reassessed for an area.

• Cycle: comprises of a sequence of phases which repeats
periodically at an intersection.

• Cycle time: the duration for one cycle. That is, sum of
all phase durations.

• Offset: The time between the starting of green phase of
two consecutive intersections with a reference point.

We now discuss briefly some existing literature addressing
the problem of traffic management. Ye, Wu, and Mao [8]
developed a novel method that handles large road networks by
classifying the principal arterial roads based on their priority.
The idea behind their coordination approach is to transform
the problem of coordinating traffic lights into coordinating the
principle major roads and isolated intersections. The paper
dealt with only homogeneous traffic demand and did not
include uncertainty in traffic flow.

One of the popular ideas in traffic management is to
maintain green waves on arterial roads. Zhao-Meng, Xiao-
Ming, and Wen-Xiang [9] proposed the integration of traffic-
actuated control and variable cycle time of green waves. This
accommodates dynamic fluctuation of traffic flow rate in a
particular direction or phase. Green phase is calculated based
on the vehicles arriving and waiting in each intersection. They
used two types of algorithms called green early-start and
green late-start to handle different traffic scenarios such as
low or high traffic demand. They showed an improvement of
expansion of green wave bandwidth and reduction in length
of queue.

Recent studies show the advantage of using reinforcement
learning to solve complex optimization problems like traffic
phase calculations. Some distributed constraint optimization

approaches have also been used in the past. Pham et al. [10]
provide a comparison of these two techniques and suggest
algorithms that were tested in real-world situations.

Van der Pol and Oliehoek [11] formulate the problem as a
Markov Decision Process and use transfer learning and Max-
Plus coordination algorithm of Kok and Vlassis [12] to scale
to large road networks. Later, van der Pol [13] showed that
a new reward function in the multi-agent deep reinforcement
learning paradigm gives a considerable reduction in travel time
in comparison to their previous work. Medina and Beneko-
hal [14] model an isolated intersection as a single agent.
The coordination mechanism of the Max-Plus algorithm is
combined with reinforcement learning to take the traffic signal
decision among neighbouring intersections.

Hierarchical control techniques have been used in the past
to improve and decide the traffic signal timing by dividing
geographic regions into sub-regions and improving the traffic
flow characteristics, see for instance [15]. They divide the sub-
regions by characterizing the traffic demands between intersec-
tions. Average travel time and cycle length can be optimized
using model-based algorithms and Q-Learning. Wang et al.
[15] show that the performance of algorithm works better in
medium and heavy traffic flow but does not work well for low
traffic flows.

We mentioned earlier about SCOOT and SCAT as examples
of systems already having been deployed. SCOOT is used
to optimise signal timing by adjusting three optimisation
procedures such as Offset optimiser, Cycle time optimiser and
Split optimiser based on the sensor data collected. It is shown
that it reduces an average delay by 20% against fixed-time
controller [16]. SCAT [2] supports two levels of hierarchy
of traffic light control system, the local and master units.
The local unit is situated at the roadside and collects detector
data and processes the traffic information. The master unit is
remotely located, and controls the local units at every cycle.
It does not optimise cycle length. Instead it adjusts the signal
timing based on changes in traffic flow by acting as a heuristic
feedback system.

A. Preliminaries

This work uses tools from statistical model checking and
traffic simulators, which we introduce briefly. The interested
reader is encouraged to read the references provided.

Model checking is a verification paradigm to algorithmically
check if a system described in a mathematically precise
formalism, say a timed automaton [17], satisfies a property
expressed in a precise language, say TCTL [18], [19]. Asarin
et al. [20] and Maler et al. [21] proposed ideas to synthesize
models that satisfy certain requirements, called controllers1.
The synthesized controllers would typically be in terms of
nondeterministic or stochastic choices of actions allowed at
each state in the automaton. While these controllers would
satisfy the given property, it remained to choose a controller

1This controller is different from the traffic controllers that we discuss later.
The difference will be clear from the context.



Scenarios

Fixed-Time Controller Actuated Controller
Green Time

Yellow Cycle
Length

Green Time
YellowDirection Direction

N E S W N E S W
Low 25 20 25 20 4× 5 110 30 25 30 25 4× 5
Med 35 25 35 25 4× 5 120 40 30 40 30 4× 5
High 45 35 45 35 4× 5 160 55 45 55 45 4× 5

TABLE I
GREEN TIME FOR FIXED-TIME AND ACTUATED CONTROLLERS

that satisfied additional requirements like those of perfor-
mance. The UPPAAL STRATEGO tool chain implements
these. While there exist several model checking tools available
that are appropriate to different settings, we briefly discuss the
UPPAAL tool suite, which we use in this paper.

UPPAAL STRATEGO: UPPAAL is a tool for model check-
ing timed automata against properties expressed in TCTL [22].
UPPAAL-SMC was added to this tool-suite David et al. [23]
for model-checking stochastic priced timed automata. How-
ever, these were restricted to checking if a property was
satisfied by the system or not. UPPAAL-TIGA implements
model synthesis ideas [24]–models that satisfy functional
specifications can be synthesized. Using ideas from David et
al. [25], [26], and the previously mentioned tools in the chain,
David et al. [27] reported the addition UPPAAL STRATEGO
to the suite, which (i) uses reinforcement learning to take non-
deterministic strategies as input and give out a deterministic
strategy that is optimized for some objective functions, and (ii)
uses (statistical) model checking to check other properties.

This tool chain has been used to analyze several systems
in the past. For example, it was used to learn strategies for
controlling the floor heating in a home [28], which resulted
in a significant reduction of a “comfort penalty”, the distance
between desired and simulated temperatures.

More relevantly to this work, UPPAAL STRATEGO was
used to find the next phase information in controlling the traffic
light at a single intersection based on traffic volume [3]. It was
subsequently improved to two intersections with homogeneous
traffic by Thamilselvam et al. [4].

SUMO: Simulation of Urban MObility (SUMO) [29] is
an open source, microscopic road traffic simulation package.
SUMO supports the modelling and measurement of various
road network parameters like traffic demand, vehicle types,
emission etc. We use TRAffic Control Interface (Traci) to
control SUMO simulator. Traci [30] is a Python package which
supports to interact and retrieve all objects involved in SUMO.

SUMO also supports measurement and monitoring of a
large number of traffic parameters including pollutant emis-
sions of vehicles, and details of each vehicle’s journey. Addi-
tionally, it allows simulation of various detectors and detector
outputs–the lane area detector and loop detectors. Indeed, we
use area and loop detectors for collecting the arrival and
waiting vehicles list to improve the controller as shown in
Fig 1.

For our intersections, we consider four phases–each phase
allows the left, right turn and straight of corresponding lane.
We do not consider pedestrian phase in this model. Our

Fig. 1. Area and Loop Detectors at Intersection

techniques easily generalize to other polyphasic traffic models.
There are two important devices that detect vehicles on the
street: a) Loop detectors, which count the number of vehicles
crossing the detector in unit time and b) Area detectors, which
detect the waiting and arriving vehicles, along its length, which
is typically 300 meters.

Using these devices, some straightforward techniques have
been proposed for traffic light controllers in the past.

In this paper, we do a comparison of five types of con-
trollers, including ours:

• The Fixed-Time Controller: Here, the controller has
fixed cycle length and phase duration. SUMO supports
xml file (named tll.xml) for encoding the phase informa-
tion for different traffic loads. We consider Phase - 1 as
N, Phase - 2 as E, Phase - 3 as S and Phase - 4 as W
as shown in Figure 1. The phase and cycle length details
for a given direction in table I.

• The Actuated Controller uses the induction loops and
area detectors for detecting the vehicles. Loop detectors
are fixed in the range of 70 meters to 80 meters from
the intersections in all roads. Area detectors length of 10
meters are located 1 meter away from the intersection
to detect the presence of vehicles nearby. The minimum
green green time for the phase is 8 seconds. The con-
troller works as follows in all intersections:

– The controller normally goes green in N directions
always if no vehicles present in all other directions.

– If vehicles are detected from loop and area detectors
in any directions, green phase gets extended for 4
seconds in relevant directions until it reaches its
maximum green time. The maximum green time for
all directions is in table I

– The direction which triggers the current green time to
extend will be served as next phase. If there are more
than one directions trigger,then FCFS (First Come
First Service) will be applied.



• UPPAAL STRATEGO based Single Intersection Con-
troller (USSIC) of Eriksen et al [3]: We consider all
vehicle types are equal and split phase into 4 phases
without changing the model mentioned in their work.
Area detector are fixed in all roads.

• We call the controller that we design in this paper, the
coordinated intelligent controller. We discuss this in the
next section.

• UnCoordinated Intelligent Controller (UCI): Finally,
we use our model without coordination among intersec-
tions, we call it as an UnCoordinated Intelligent Con-
troller. Considering this variant allows us to see the ad-
vantage in having an additional level of area coordination.

III. OUR APPROACH

We begin by giving an informal but intuitive description
of our approach. The main insight behind our approach is as
follows. Traffic light management boils down to chiefly to two
activities:

• Setting the phase threshold for intersections and
• Deciding whether or not to increase a phase at an

intersection.
Naturally, the phase threshold has to be adaptive to the

changes in the traffic patterns in an area. Therefore, this
threshold is updated periodically by UPPAAL STRATEGO
using an Area Level Timed Automata Network (ALTAN), and
data from a neighborhood of intersections. We will refer to
the duration between two consecutive updates as an epoch.

For every intersection, a decision whether to continue with
the current phase or change to another phase is taken by
UPPAAL STRATEGO using the Intersection Level Timed
Automata Network (ILTAN) model and data and parameters
pertaining to that intersection. Continuation of the same phase
cannot extend beyond the phase threshold in place for the
current epoch.

We now describe the architecture of the solution, before
moving on to the algorithm itself.

1) Traffic data (from area and loop detectors) is first
acquired from SUMO through the Traci interface.

2) This data is updated in the timed game automata model.
3) UPPAAL STRATEGO synthesizes the strategy using the

updated model and query file.
4) The current phase information from synthesized strategy

is passed to Traci, which then updates the SUMO traffic
light phases.

Indeed, this architecture is followed in earlier works [3], [4]
as well.

The algorithm, listed in Algorithm 1, works by invoking the
ILTAN and ALTAN. Since ILTAN is about tactical decision
making as to whether or not to extend the current phase at
an intersection, it is invoked more frequently (e.g every 10
seconds). On the other hand, ALTAN concerns a strategic
decision regarding the phase threshold for an epoch, it is
invoked less frequently. In both cases, the strategy suggested
by UPPAAL STRATEGO is conveyed to SUMO through

the Traci interface. If only ILTAN is used, and the phase
threshold is set manually, we get the UnCoordinated Intelligent
Controller, or the UCI.

Algorithm 1: High level algorithm for the Coordi-
nated Intelligent controller
Input: Vehicle waiting count with type, queue length

and phase from SUMO
Output: Next signal phase and updated phase

threshold from UPPAAL STRATEGO
Simulation Step ← 0
for All intersections do

ExtendGreen← FALSE
end for
while Simulation Step < Maximum Simulation Step do

Read detector data from SUMO
ILTAN: At every 5th Simulation Step
for All intersections do

if ExtendGreen=TRUE then
Run Extend Green Model–To find whether to
extend the current green phase or go to yellow
phase (Figure 2)
//Updates current phase and current green time

else
Run Yellow Model (Figure 3)–To find which
directions green phase has to be given
//Resets current green time

end if
end for
ALTAN: At randomly chosen time steps in the
simulation:
for All Areas do

Run the Area models in Figures 5 6, 7–Coordinate
among all traffic lights within the area.
//Updates phase threshold of phases in all directions
for the next epoch

end for
Simulation step ++

end while

Now, we discuss each Timed Automata Network in detail.

A. The Timed Game Automata Model

1) the ILTAN: Each intersection is modeled by two au-
tomata:

• the Extend Green automaton (Fig 2): This model
is used to find whether the current phase at the
intersection needs to be extended or changed. UP-
PAAL STRATEGO arrives at this decision through
simulating this model and reinforcement learning.
The function Initialize() updates the direction-wise
waiting vehicle count (Bus, Car, 3-Wheeler, 2-
Wheeler), queue length and all the phases in the
model while moving to the commit location shown
at the center. From that location, it has five lo-



cations to explore. While these choices are non-
deterministic in the timed game automaton, UP-
PAAL STRATEGO combines statistical sampling
and reinforcement learning to choose simulation
paths. When it takes greenAgain, then it will con-
tinue flow of vehicles in the current phase (say
northward), provided that the current phase green
time has not exceeded the phase threshold of that
epoch. Similarly, when it takes goYellow i, for some
1 ≤ i ≤ 3, then it will allow flows of vehicle in
phase i. The function flow(.,.) takes as input two
parameters, delay–how much time the traffic flow
should be, and phase–which directions the traffic
flow should move and calculates the flow of the
traffic. Once it reaches End location, it outputs the
best choice of phase.
The timer variable MAX_GREEN carries the phase
threshold and is updated by ALTAN.

• The Yellow automaton (Fig 3): When the green
phase in a direction is not extended, the intersection
enters the yellow phase. At this point, a green phase
has to be chosen for one among the four directions,
including the one that just relinquished the green
phase. UPPAAL STRATEGO simulates and learns
the best strategy to decide this. Whenever a direction
is chosen for green phase, the remaining directions
will not be given green for a threshold horizon.

2) The ALTAN: As mentioned earlier, the area controller
combines some “adjacent” intersections into an “area”.
Figure 4 shows four areas, for example. The Area
Controller is modeled by three automata:

• The Polling automaton (Figure 5) polls all the
intersections in the same area one by one and the
next automaton (Figure 6) is invoked to run for a
duration of a time horizon H . This is repeated until
an end horizon EH is reached, at which time, the
simulation ends.

• Each intersection in the area is modeled by an
instance of the automaton shown in Figure 6 and is
identified by a unique id. The function Initialize()
initializes all the vehicles count for this intersection.
The automaton synchronizes with the automaton
given in Figure 7, which in turn provides the max-
imum green times in a direction. At the central
committed location (labelled by C in Fig 6) in the
automaton, there are six choices (locations)–four
of them (labeled by N, E, W and S respectively)
indicate in which direction the green phase has to
be activated for this intersection in the area. The fifth
location is for updating the arrival list (by invoking
the updateArrivalList(), discussed later), the end
of the current horizon and the sixth is End location.

• Maximum Green Selection (Fig 7): This automaton
is used to select the maximum green time. The main
area controller calls it and updates maximum green

time of all neighbour junctions. Every run has differ-
ent maximum green time, Area main coordination
model searches the best maximum green time by
simulating several time and updates the maximum
green time of local controller.

We now explain coordination among the neighbours.

Fig. 2. Extend Green Model

Fig. 3. Yellow Model

1) Coordination of Traffic Light in Area controller: We
seek to coordinate and synchronize multiple signalised inter-
sections to enhance throughput in one or more directions.

The update rules in the Area Controller Automata are
implemented in the updateArrivalList() function. This function
updates the list of vehicles arriving at a neighboring intersec-
tion, based on the current phase and the offset value to it.

We illustrate this using an example. Fig 8 shows two
neighboring intersections J1 and J2. A sample run is shown



Fig. 4. City with 23 Intersections

Fig. 5. The Area Polling Automaton

in II. Time progresses from left to right in intervals of 5
seconds. The second and the seventh rows specify which phase
is active at intersection J1 and J2 respectively. Rows 3–6 and
8-11 specify the number of vehicles waiting in the North, East,
West and South directions at each junctions respectively. An
increase in the number of vehicles at an intersection due to
an inflow from the neighbour is showed in italics, whereas
a decrease due to an outflow (when the green phase occurs
in a particular direction) is shown in bold. A combination of
inflow and outflow is shown in both italics and bold.

The updateArrivalList() function works as follows. An area
controller has three main variables: the global variable -
EndHorizon (the time at which an area controller automata
ends), the local variables Horizon for each intersection and
Current step (current time step of an intersection). An area
controller polls an intersection one by one at the Horizon time
interval in round robin method up to the Current step reaches
the EndHorizon. The updateArrivalList() is called at every
time when the intersection is switched over and it updates
the arrival list of neighbours only if the offset(time to reach

Fig. 6. Area Controller: Main Coordination Model

Fig. 7. Area Controller: Maximum Green Selection Model

neighbour junction) value crossed the Current step.
The system will be simulated several times to choose the

best combination of phase which gives the best performance,
here minimum number of waiting vehicles. The best run is
found by the reinforcement learning subroutine of UPPAAL
STRATEGO.

UPPAAL STRATEGO finds the optimum strategy for this
Area Controller, based on the traffic volume of the neighbor.

Fig. 8. Two Signalised Intersection with Detector Data



Time 0 5 10 15 20 25 30 35 40 Sum of Waiting
Vehicles

J1 - Phase S E S W W S W W W
J1 - E 10 10 10 10 10 10 12 13 15 100
J1 - S 8 8 5 5 5 5 5 5 5 51
J1 - W 20 17 17 14 14 14 11 11 11 129
J1 - N 15 15 15 15 12 9 9 6 3 99
J2 - Phase N W N E E S S E E
J2 - E 6 3 3 0 0 0 0 0 0 12
J2 - S 30 30 30 30 27 24 24 24 21 240
J2 - W 13 13 13 13 13 13 12 10 12 112
J2 - N 15 15 12 12 12 12 12 12 12 114
Total Number of Waiting Vehicles 857

TABLE II
ONE SAMPLE RUN

Features
USSIC

[3]
Coordinated UPPAAL

STRATEGO [4]
Coordinated Intelligent

This Paper
Heterogeneous
Vehicle Type

No No Yes

Phases 2 - Phases 2 - Phases 4 - Phases
Number of

Intersections
1 2 23

Coordination No Yes Yes
Scalability No No Yes

Input Vehicle counts Vehicle counts
Vehicle counts,
queue length

Optimization
Parameter

Delay Delay Delay, queue length

Spatial
Priority

No No Yes

TABLE III
FEATURE COMPARISON WITH OTHER CONTROLLERS

For example, one can now ask the following query to obtain
the optimum strategy. In the interest of space, we omit the
syntax and semantics of the query language and refer the
reader to David et al. [27].
strategy Opt = minE (globalWaitingVehicles)
[ ≤ NoOfNeighbors × EndHorizon ] : <>
trafficLight.End.

The query seeks to minimize the expected global total
waiting time of the vehicles over all strategies within the end
horizon. Then we simulate the model to get the phase of traffic
light using the strategy obtained by query.

We employ a coordinated intelligent traffic light controller,
where all the local decisions of traffic lights are updated into
common and shared variable. These variables can be accessed
by neighboring lights in order to arrive at an optimized
decision. Coordination among traffic lights ensures smooth
traffic flow and reduces the delay and emission.

B. Comparison of features

We compare our model features with two different models
designed in Eriksen et al. [3] and Thamilselvam et al. [4] in
Table III.

IV. SIMULATION SETUP AND RESULT ANALYSIS

We use the SUMO simulator for real-time
microscopic traffic simulation. From the OpenStreetMap
(www.openstreetmap.org) database, we downloaded the
Ahmedabad city road map. This is converted into the SUMO
network file using the NETCONVERT application. The 23

Acceleration
(m/s2)

Deceleration
(m/s2)

Max Speed
(km/hr) Width(m) Length(m) Space

Headway (m)
Bus 0.5 3.5 50 2.45 10.1 1.0
Car 0.8 4.5 70 1.5 3.6 0.5

3-wheeler 0.6 3.6 55 1.25 2.6 0.3
2-wheeler 0.9 3.5 60 0.7 1.85 0.15

TABLE IV
VEHICLE PHYSICAL PROPERTIES

main signalized intersections in the city of Ahmedabad, are
taken into account for the experiment mentioned in Fig 4. All
the other are set to be non-signalized intersections. The traffic
flow values with the various origins and destinations and
different vehicle type are taken from the Operations Document
of Ahmedabad Traffic Management and Information Control
Centre [31]. In all the SUMO simulations, we use seconds as
the time unit. This can be scaled. We use this information to
generate traffic demand. The discrete time interval is set to be
1 second and the whole simulation period is 1200 seconds.
We measure the following parameters.
Delay: Cumulative waiting time of vehicles. If 10 vehicles are
waiting for 10 seconds, then waiting time is 100 seconds.
Queue Length: Cumulative waiting vehicle length. If one 3
meter vehicle and one 5 meter vehicle are waiting in queue
for 10 seconds then queue length is 80 meter seconds.
Throughput: Total number of vehicles crossed in all the 23
intersections per second.
CO and CO2 emission: This is the cumulative value calcu-
lated from all individual vehicles at every time step and added
together.

The source code used for simulation is
available for download at the following URL:
https://github.com/ThamilselvamB/Intelligent-Traffic-Light-
Controller-using-Uppaal-Stratego.

A. Traffic Demand Generation

We generate the traffic demand based on Poisson distribu-
tion mentioned in the following equation.

P (k cars in an hour) =
λke−λ

k!
,

where λ is the average number of vehicles per hour in the
direction (as per data from [31]). In order to generate medium
and low traffic demand we multiply λ by 60% and 30%
respectively. For generating the corresponding SUMO route
file, we sample by repeated Bernoulli trials.

B. Vehicle Parameters and Sublane

We consider standard values for the vehicle properties
mentioned in the Table IV. We use the notion of sublanes to
make the simulation more realistic. This models the situation
where more than one vehicle in parallel can be situated in
a single lane if its width fits. This also allows the vehicles
overtake other vehicles on a single lane. We simulate the
demand using the open source traffic simulator SUMO. Using
this, we adjust the parameters to generate traffic demand for
our scenarios.



Controllers Delay
(Hour)

Queue Length
(Km)

CO
(Kg)

CO2
(Kg)

Throughput
(Veh / Sec)

Fixed-Time 891.2 10.1 267.7 4576.6 7.6
Actuated 835.1 9.5 242.6 4019.6 7.2
USSIC 722.0 9.2 223.3 3840.7 8.17
UCI 623.0 9.8 192.7 3408.7 8.24
Coordinated 612.3 9.6 189.7 3356.4 8.3

TABLE V
RESULTS FOR CONSTANT HIGH TRAFFIC

Controllers Delay
(Hour)

Queue
Length (Km)

CO
(Kg)

CO2
(Kg)

Throughput
(Veh / Sec)

Fixed-Time 583.8 6.63 175.7 3054.8 6.11
Actuated 560.5 6.24 179.7 2982.2 6.1
USSIC 414.2 4.81 125.6 2288.9 7.12
UCI 358.5 5.43 113.6 1944.2 7.35
Coordinated 355.9 5.48 109.2 2034.1 7.45

TABLE VI
RESULTS FOR VARYING TRAFFIC DEMAND

C. Traffic Load Scenarios

Different traffic demands are generated based on origin
and destination points of Ahmedabad from [31]. We consider
three cases of load scenarios – High, Medium and Low traffic
demands. High traffic has 100% of traffic demand mentioned
in Ahmedabad city document, Medium has 60% and Low
traffic has 30% of the traffic demand. We consider four types
of vehicles, passenger bus, car, 3-wheeler and 2-wheeler. The
distribution of these types are also according to the distribution
occurring in Ahmedabad city, as provided in [31].

D. Results

We report results for two scenarios. In both scenarios, un-
surprisingly, the uncoordinated and cooordinated approaches
proposed in this paper outperform traditional Fixed Time and
Actuated strategies. The first experiment concerns the high
traffic scenario for 1200 seconds. The results are shown in
Table V. The advantage of using a two level hierarchy for local
and area-wise decision making is evident on all parameters.
The waiting time for each intersection with the five different
controllers is shown in Fig 9. The scatter plot for the vehicle
trip delay is given in Fig 11. The cumulative delays for the five
different controllers at every 2 seconds are plotted in Fig 10.

Fig. 9. Delay at the intersections with five different controllers and their mean
delay.

Fig. 10. Cumulative waiting time of vehicle with time.

Fig. 11. Individual vehicle waiting time.

We see that in all the cases, there is a reduction in emissions,
waiting times and queue lengths. Since the area controllers
update local coordinated controllers’ phase threshold dynami-
cally, the decision taken by the the coordinated controller will
ensure that the traffic flow is smooth. Therefore, we observe
a reduction in emissions.

The second experiment is performed with a varying traffic
load starting from low traffic, increasing through medium to
high, and returning to low at intervals of 200 seconds. Results
for this “triangle” shaped traffic load is shown in Table VI. It
can be seen that there is an improvement over and above the
UCI for the coordinated approach. This is in spite of carefully
choosing a phase threshold for the UCI approach. The increase
in the queue length in both UCI and coordinated approach can
be explained by the heterogeneity of the vehicles considered
in these two models.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a solution for the traffic man-
agement problem that scales to two levels of hierarchy. We
leave the question open whether a multi-level generalization of
our technique helps in achieving better accuracy or scalability
in terms of the sizes of cities that can be handled. Further
generalizations would incorporate pedestrian traffic and driver
characteristics.
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