Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs

Sriram Bhyravarapu¹, Tim A. Hartmann², Subrahmanyam Kalyanasundaram¹ and I. Vinod Reddy³

IIT Hyderabad¹, RWTH Aachen², IIT Bhilai³

International Workshop on Combinatorial Algorithms, IWOCA 2021. (5-7 July 2021)

- Introduce CONFLICT-FREE COLORING PROBLEM
- Our Results
- Discuss a couple of our results
- Open Questions/Present Status of our results

Definition (Conflict-free Coloring)

Given a graph G = (V, E), a conflict-free coloring is an assignment of colors to a subset of *V* such that

• Every vertex in *G* has a uniquely colored vertex in its neighborhood.

The minimum number of colors required for such a coloring is called the conflict-free chromatic number.

Uniquely colored vertex in the neighborhood of a vertex v is the vertex which is distinctly colored among all neighbors of v.

Definition (Conflict-free Coloring on Open Neighborhoods)

Given a graph G = (V, E), a conflict-free coloring with respect to open neighborhoods is an assignment of colors to a subset of V such that

• Every vertex has a uniquely colored vertex in its open neighborhood.

The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi^*_{ON}(G)$.

- Open Neighborhood of a vertex v is $N(v) = \{w \mid \{v, w\} \in E(G))\}.$
- CFON* COLORING PROBLEM.

Definition (Conflict-free Coloring on Closed Neighborhoods)

Given a graph G = (V, E), a conflict-free coloring with respect to closed neighborhoods is an assignment of colors to a subset of V such that

• Every vertex has a uniquely colored vertex in its closed neighborhood.

The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi^*_{CN}(G)$.

- Closed Neighborhood of a vertex v is $N[v] = N(v) \cup \{v\}$.
- CFCN* COLORING PROBLEM.

Figure 1: CFON* Coloring

Figure 2: CFCN* Coloring

Figure 1: CFON* Coloring

Figure 2: CFCN* Coloring

Figure 3: CFON* Coloring

Figure 4: CFCN* Coloring

Conflict-Free Coloring

Figure 3: CFON* Coloring

Figure 4: CFCN* Coloring

Conflict-Free Coloring

• $\chi^*_{ON}(K^*_n) = n.$

• K_n^* is bipartite and hence $\chi_{CN}^*(K_n^*) = 2$.

- Introduced by Even, Lotker, Ron and Smorodinsky in 2004, motivated by the Frequency Assignment Problem.
- The problem has been studied with respect to both the open neighborhoods and the closed neighborhoods.

•
$$\chi^*_{ON}(G) = \Theta(\sqrt{n})$$
 and $\chi^*_{CN}(G) = \Theta(\log^2 n)$.

- Geometric intersection graphs like disk, square, rectangle, interval graphs, etc have attracted special interest.
- Most of the variants are NP-complete.

Our Results (CFON*)

Graph Class	Upper Bound	Tight?	Complexity
(<i>G</i> , cw, <i>k</i>)	-	-	FPT
Block graphs	3	3	Р
Cographs	2	2	Р
Interval graphs	3	3	-
Proper Interval graphs	2	2	-
Unit square	27	3	-
Unit disk	51	3	-
Kneser graphs $K(n, k)$	<i>k</i> + 1	<i>k</i> + 1	-
Split graphs	-	-	NP-complete

Our results are marked in red color.

Conflict-Free Coloring

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi^*_{CN}(G) \leq 2$.
- We show that χ^{*}_{ON}(G) ≤ 3. We also show existence of interval graph G' for which χ^{*}_{ON}(G') = 3, making the bound tight.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi^*_{CN}(G) \leq 2$.
- We show that *χ*^{*}_{ON}(*G*) ≤ 3. We also show existence of interval graph *G*' for which *χ*^{*}_{ON}(*G*') = 3, making the bound tight.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi^*_{CN}(G) \leq 2$.
- We show that *χ*^{*}_{ON}(*G*) ≤ 3. We also show existence of interval graph *G*' for which *χ*^{*}_{ON}(*G*') = 3, making the bound tight.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi^*_{CN}(G) \leq 2$.
- We show that χ^{*}_{ON}(G) ≤ 3. We also show existence of interval graph G' for which χ^{*}_{ON}(G') = 3, making the bound tight.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi^*_{CN}(G) \leq 2$.
- We show that χ^{*}_{ON}(G) ≤ 3. We also show existence of interval graph G' for which χ^{*}_{ON}(G') = 3, making the bound tight.

If G is an interval graph, then $\chi^*_{ON}(G) \leq 3$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration 1 ≤ j ≤ ℓ.
- Start with the interval I_1 for which $R(I_1)$ is the least and assign $C(I_1) = 1$.
- Choose an interval $l_2 \in N(l_1)$ s.t. $R(l_2) \ge R(l), \forall l \in N(l_1)$ and assign $C(l_2) = 2$.

If G is an interval graph, then $\chi^*_{ON}(G) \leq 3$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration 1 ≤ *j* ≤ *ℓ*.
- Start with the interval I_1 for which $R(I_1)$ is the least and assign $C(I_1) = 1$.
- Choose an interval $l_2 \in N(l_1)$ s.t. $R(l_2) \ge R(l), \forall l \in N(l_1)$ and assign $C(l_2) = 2$.

If G is an interval graph, then $\chi^*_{ON}(G) \leq 3$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration 1 ≤ j ≤ ℓ.
- Start with the interval I_1 for which $R(I_1)$ is the least and assign $C(I_1) = 1$.
- Choose an interval $l_2 \in N(l_1)$ s.t. $R(l_2) \ge R(l), \forall l \in N(l_1)$ and assign $C(l_2) = 2$.

If G is an interval graph, then $\chi^*_{ON}(G) \leq 3$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration 1 ≤ *j* ≤ *ℓ*.
- Start with the interval I_1 for which $R(I_1)$ is the least and assign $C(I_1) = 1$.
- Choose an interval $I_2 \in N(I_1)$ s.t. $R(I_2) \ge R(I), \forall I \in N(I_1)$ and assign $C(I_2) = 2$.

If G is an interval graph, then $\chi^*_{ON}(G) \leq 3$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration 1 ≤ j ≤ ℓ.
- Start with the interval I_1 for which $R(I_1)$ is the least and assign $C(I_1) = 1$.
- Choose an interval *I*₂ ∈ *N*(*I*₁) s.t. *R*(*I*₂) ≥ *R*(*I*), ∀*I* ∈ *N*(*I*₁) and assign *C*(*I*₂) = 2.

- For $j \ge 3$, we do the following.
 - Choose the interval $I_j \in N(I_{j-1})$ s.t. $R(I_j) \ge R(I)$, for all $I \in N(I_{j-1})$.
 - Assign color $\{1, 2, 3\} \setminus \{C(I_{j-1}), C(I_{j-2})\}$ to the interval I_j .
- Note that the interval *l*_ℓ chosen in the last iteration ℓ, is such that *R*(*l*_ℓ) maximizes *R*(*l*) amongst all *l* ∈ *I*.
- All the uncolored intervals are assigned the color 0.

- For $j \ge 3$, we do the following.
 - Choose the interval $I_j \in N(I_{j-1})$ s.t. $R(I_j) \ge R(I)$, for all $I \in N(I_{j-1})$.
 - Assign color $\{1, 2, 3\} \setminus \{C(I_{j-1}), C(I_{j-2})\}$ to the interval I_j .
- Note that the interval *I*_ℓ chosen in the last iteration ℓ, is such that *R*(*I*_ℓ) maximizes *R*(*I*) amongst all *I* ∈ *I*.
- All the uncolored intervals are assigned the color 0.

- For $j \ge 3$, we do the following.
 - Choose the interval $I_j \in N(I_{j-1})$ s.t. $R(I_j) \ge R(I)$, for all $I \in N(I_{j-1})$.
 - Assign color $\{1, 2, 3\} \setminus \{C(I_{j-1}), C(I_{j-2})\}$ to the interval I_j .
- Note that the interval *I*_ℓ chosen in the last iteration ℓ, is such that *R*(*I*_ℓ) maximizes *R*(*I*) amongst all *I* ∈ *I*.
- All the uncolored intervals are assigned the color 0.

- For $j \ge 3$, we do the following.
 - Choose the interval $I_j \in N(I_{j-1})$ s.t. $R(I_j) \ge R(I)$, for all $I \in N(I_{j-1})$.
 - Assign color $\{1, 2, 3\} \setminus \{C(I_{j-1}), C(I_{j-2})\}$ to the interval I_j .
- Note that the interval *I*_ℓ chosen in the last iteration ℓ, is such that *R*(*I*_ℓ) maximizes *R*(*I*) amongst all *I* ∈ *I*.
- All the uncolored intervals are assigned the color 0.

- For $j \ge 3$, we do the following.
 - Choose the interval $I_j \in N(I_{j-1})$ s.t. $R(I_j) \ge R(I)$, for all $I \in N(I_{j-1})$.
 - Assign color $\{1, 2, 3\} \setminus \{C(I_{j-1}), C(I_{j-2})\}$ to the interval I_j .
- Note that the interval *I*_ℓ chosen in the last iteration ℓ, is such that *R*(*I*_ℓ) maximizes *R*(*I*) amongst all *I* ∈ *I*.
- All the uncolored intervals are assigned the color 0.

- All vertices assigned the color 0 have a uniquely colored neighbor.
- All vertices assigned a non-zero color also have a uniquely colored neighbor.

Proper Interval Graph: An interval graph is a *proper interval* graph if it has an interval representation \mathcal{I} such that no interval in \mathcal{I} is properly contained in any other interval of \mathcal{I} .

Unit Interval Graph: An interval graph *G* is a *unit interval graph* if it has an interval representation \mathcal{I} where all the intervals are of unit length.

- We show that $\chi^*_{ON}(G) \leq 2$.
- There is a unit interval graph K_3 such that $\chi^*_{ON}(K_3) = 2$, making the above bound tight.

Proper Interval Graph: An interval graph is a *proper interval* graph if it has an interval representation \mathcal{I} such that no interval in \mathcal{I} is properly contained in any other interval of \mathcal{I} .

Unit Interval Graph: An interval graph *G* is a *unit interval* graph if it has an interval representation \mathcal{I} where all the intervals are of unit length.

- We show that $\chi^*_{ON}(G) \leq 2$.
- There is a unit interval graph K_3 such that $\chi^*_{ON}(K_3) = 2$, making the above bound tight.

If G is a proper interval graph, then $\chi^*_{ON}(G) \leq 2$.

Proof: We denote the left endpoint of an interval $I \in \mathcal{I}$ by L(I).

- We assign $C : \mathcal{I} \to \{0\} \cup \{1, 2\}$
- At each iteration *i*, we pick two intervals $I_1^i, I_2^i \in \mathcal{I}$.
 - l_1^i is the interval whose $L(l_1^i)$ is the least among intervals for which *C* has not been assigned.
 - The interval $I_2^i \in N(I_1^i)$, whose $L(I_2^i)$ is the greatest.
 - All other intervals in $N(I_1^i \cup I_2^i)$ are assigned the color 0.

If G is a proper interval graph, then $\chi^*_{ON}(G) \leq 2$.

Proof: We denote the left endpoint of an interval $I \in \mathcal{I}$ by L(I).

- We assign $C : \mathcal{I} \to \{0\} \cup \{1, 2\}$
- At each iteration *i*, we pick two intervals $I_1^i, I_2^i \in \mathcal{I}$.
 - l_1^i is the interval whose $L(l_1^i)$ is the least among intervals for which *C* has not been assigned.
 - The interval $I_2^i \in N(I_1^i)$, whose $L(I_2^i)$ is the greatest.
 - All other intervals in $N(I_1^i \cup I_2^i)$ are assigned the color 0.

If G is a proper interval graph, then $\chi^*_{ON}(G) \leq 2$.

Proof: We denote the left endpoint of an interval $I \in \mathcal{I}$ by L(I).

- We assign $C : \mathcal{I} \to \{0\} \cup \{1, 2\}$
- At each iteration *i*, we pick two intervals $I_1^i, I_2^i \in \mathcal{I}$.
 - l_1^i is the interval whose $L(l_1^i)$ is the least among intervals for which *C* has not been assigned.
 - The interval $I_2^i \in N(I_1^i)$, whose $L(I_2^i)$ is the greatest.
 - All other intervals in $N(I_1^i \cup I_2^i)$ are assigned the color 0.

*I*ⁱ₂ does not exist ? All neighbors of *I*ⁱ₁ are already colored. This can happen only in the very last iteration ℓ of the algorithm.

- Correctness when I_2^{ℓ} exists for the last iteration ℓ
 - I_1^i and I_2^i act as the uniquely colored neighbors for each other in each iteration *i*.
 - All intervals that are assigned color 0 are adjacent to either l_1^i or l_2^i , and thus will have a uniquely colored neighbor.
 - The vertices Iⁱ₁ (or Iⁱ₂) and Iⁱ⁺¹₁ (or Iⁱ⁺¹₂) are assigned the same color. This is fine as there is no interval that intersects both Iⁱ₁ and Iⁱ⁺¹₁.

*I*ⁱ₂ does not exist ? All neighbors of *I*ⁱ₁ are already colored. This can happen only in the very last iteration ℓ of the algorithm.

- Correctness when I_2^{ℓ} exists for the last iteration ℓ
 - I_1^i and I_2^i act as the uniquely colored neighbors for each other in each iteration *i*.
 - All intervals that are assigned color 0 are adjacent to either l_1^i or l_2^i , and thus will have a uniquely colored neighbor.
 - The vertices lⁱ₁ (or lⁱ₂) and lⁱ⁺¹₁ (or lⁱ⁺¹₂) are assigned the same color. This is fine as there is no interval that intersects both lⁱ₁ and lⁱ⁺¹₁.

• I_2^i does not exist ? All neighbors of I_1^i are already colored. This can happen only in the very last iteration ℓ of the algorithm.

- Correctness when I_2^{ℓ} exists for the last iteration ℓ
 - I_1^i and I_2^i act as the uniquely colored neighbors for each other in each iteration *i*.
 - All intervals that are assigned color 0 are adjacent to either l_1^i or l_2^i , and thus will have a uniquely colored neighbor.
 - The vertices lⁱ₁ (or lⁱ₂) and lⁱ⁺¹₁ (or lⁱ⁺¹₂) are assigned the same color. This is fine as there is no interval that intersects both lⁱ₁ and lⁱ⁺¹₁.

• I_2^i does not exist ? All neighbors of I_1^i are already colored. This can happen only in the very last iteration ℓ of the algorithm.

- Correctness when I_2^{ℓ} exists for the last iteration ℓ
 - I_1^i and I_2^i act as the uniquely colored neighbors for each other in each iteration *i*.
 - All intervals that are assigned color 0 are adjacent to either l_1^i or l_2^i , and thus will have a uniquely colored neighbor.
 - The vertices Iⁱ₁ (or Iⁱ₂) and Iⁱ⁺¹₁ (or Iⁱ⁺¹₂) are assigned the same color. This is fine as there is no interval that intersects both Iⁱ₁ and Iⁱ⁺¹₁.

- This can happen only during the last iteration $i = \ell$.
- I_1^{ℓ} is the only interval for which *C* is yet to be assigned.
- Choose an interval $I_m \in N(I_2^{\ell-1}) \cap N(I_1^{\ell})$. Such an I_m exists ?
- We reassign $C(I_1^{\ell-1}) = 0$, $C(I_2^{\ell-1}) = 1$, $C(I_m) = 2$ and assign $C(I_1^{\ell}) = 0$.
- Any effect for reassigning $C(I_1^{\ell-1}) = 0$?

- This can happen only during the last iteration $i = \ell$.
- I_1^{ℓ} is the only interval for which *C* is yet to be assigned.
- Choose an interval $I_m \in N(I_2^{\ell-1}) \cap N(I_1^{\ell})$. Such an I_m exists ?
- We reassign $C(I_1^{\ell-1}) = 0$, $C(I_2^{\ell-1}) = 1$, $C(I_m) = 2$ and assign $C(I_1^{\ell}) = 0$.
- Any effect for reassigning $C(I_1^{\ell-1}) = 0$?

- This can happen only during the last iteration $i = \ell$.
- I_1^{ℓ} is the only interval for which *C* is yet to be assigned.
- Choose an interval $I_m \in N(I_2^{\ell-1}) \cap N(I_1^{\ell})$. Such an I_m exists ?
- We reassign $C(l_1^{\ell-1}) = 0$, $C(l_2^{\ell-1}) = 1$, $C(l_m) = 2$ and assign $C(l_1^{\ell}) = 0$.
- Any effect for reassigning $C(l_1^{\ell-1}) = 0$?

- This can happen only during the last iteration $i = \ell$.
- I_1^{ℓ} is the only interval for which *C* is yet to be assigned.
- Choose an interval $I_m \in N(I_2^{\ell-1}) \cap N(I_1^{\ell})$. Such an I_m exists ?
- We reassign $C(l_1^{\ell-1}) = 0$, $C(l_2^{\ell-1}) = 1$, $C(l_m) = 2$ and assign $C(l_1^{\ell}) = 0$.
- Any effect for reassigning $C(I_1^{\ell-1}) = 0$?

Graph Class	Upper Bound	Tight?	Complexity
(G, cw, k)	-	-	FPT
Block graphs	3	3	Р
Cographs	2	2	Р
Interval graphs	3	3	-
Proper Interval graphs	2	2	-
Unit square	27	3	NP-complete
Unit disk	51	3	NP-complete
Kneser graphs $K(n, k)$	k+1	<i>k</i> + 1	_
Split graphs	-	-	NP-complete

THANK YOU

Questions?

Conflict-Free Coloring