Conflict-Free Coloring: Graphs of Bounded Clique Width and Intersection Graphs

Sriram Bhyravarapu ${ }^{1}$, Tim A. Hartmann², Subrahmanyam Kalyanasundaram ${ }^{1}$ and I. Vinod Reddy ${ }^{3}$

IIT Hyderabad ${ }^{1}$, RWTH Aachen ${ }^{2}$, IIT Bhilai ${ }^{3}$

International Workshop on Combinatorial Algorithms, IWOCA 2021.
(5-7 July 2021)

- Introduce CONFLICT-FREE COLORING PROBLEM
- Our Results
- Discuss a couple of our results
- Open Questions/Present Status of our results

Conflict-Free Coloring problem

Definition (Conflict-free Coloring)

Given a graph $G=(V, E)$, a conflict-free coloring is an assignment of colors to a subset of V such that

- Every vertex in G has a uniquely colored vertex in its neighborhood.
The minimum number of colors required for such a coloring is called the conflict-free chromatic number.

Uniquely colored vertex in the neighborhood of a vertex v is the vertex which is distinctly colored among all neighbors of v.

Conflict-Free Coloring problem

Definition (Conflict-free Coloring on Open Neighborhoods)

Given a graph $G=(V, E)$, a conflict-free coloring with respect to open neighborhoods is an assignment of colors to a subset of V such that

- Every vertex has a uniquely colored vertex in its open neighborhood.
The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi_{O N}^{*}(G)$.
- Open Neighborhood of a vertex v is $N(v)=\{w \mid\{v, w\} \in E(G))\}$.
- CFON* COLORING PROBLEM.

Conflict-Free Coloring problem

Definition (Conflict-free Coloring on Closed Neighborhoods)

Given a graph $G=(V, E)$, a conflict-free coloring with respect to closed neighborhoods is an assignment of colors to a subset of V such that

- Every vertex has a uniquely colored vertex in its closed neighborhood.
The minimum number of colors required for such a coloring is called the conflict-free chromatic number denoted by $\chi_{C N}^{*}(G)$.
- Closed Neighborhood of a vertex v is $N[v]=N(v) \cup\{v\}$.
- CFCN* Coloring problem.

CFON* vS CFCN*

Figure 1: CFON* Coloring

Figure 2: CFCN* Coloring

CFON* vS CFCN*

Figure 1: CFON* Coloring

Figure 2: CFCN* Coloring

CFON* vS CFCN*

Figure 3: CFON* Coloring

CFON* vS CFCN*

Figure 3: CFON* Coloring

Figure 4: CFCN* Coloring

K_{n}^{*} : Subdivision graph of the Clique

- $\chi_{O N}^{*}\left(K_{n}^{*}\right)=n$.
- K_{n}^{*} is bipartite and hence $\chi_{C N}^{*}\left(K_{n}^{*}\right)=2$.

Motivation \& History

- Introduced by Even, Lotker, Ron and Smorodinsky in 2004, motivated by the Frequency Assignment Problem.
- The problem has been studied with respect to both the open neighborhoods and the closed neighborhoods.
- $\chi_{O N}^{*}(G)=\Theta(\sqrt{n})$ and $\chi_{C N}^{*}(G)=\Theta\left(\log ^{2} n\right)$.
- Geometric intersection graphs like disk, square, rectangle, interval graphs, etc have attracted special interest.
- Most of the variants are NP-complete.

Our Results (CFON*)

Graph Class	Upper Bound	Tight?	Complexity
$(G, \mathrm{cw}, \boldsymbol{k})$	-	-	FPT
Block graphs	3	3	P
Cographs	2	2	P
Interval graphs	3	3	-
Proper Interval graphs	2	2	-
Unit square	27	3	-
Unit disk	51	3	-
Kneser graphs $K(n, k)$	$k+1$	$k+1$	-
Split graphs	-	-	NP-complete

Our results are marked in red color.

Our Results (Interval graphs)

Interval Graph: A graph $G=(V, E)$ is an interval graph if there exists a set \mathcal{I} of intervals on the real line such that there is a bijection $f: V \rightarrow \mathcal{I}$ satisfying the following: $\left\{v_{1}, v_{2}\right\} \in E$ if and only if $f\left(v_{1}\right) \cap f\left(v_{2}\right) \neq \emptyset$.

Reddy [2018] studied the full coloring variant of the
 problem.
 Fekete and Keldenich [2017] showed that $\chi_{C N}(G) \leq 2$.
 We show that $\chi_{O N}^{*}(G) \leq 3$. We also show existence of
 interval graph G^{\prime} for which $\chi_{O N}^{*}\left(G^{\prime}\right)=3$, making the bound
 tight.
 Moreover the graph G^{\prime} is a tight example for the full coloring variant of the problem.

Our Results (Interval graphs)

Interval Graph: A graph $G=(V, E)$ is an interval graph if there exists a set \mathcal{I} of intervals on the real line such that there is a bijection $f: V \rightarrow \mathcal{I}$ satisfying the following: $\left\{v_{1}, v_{2}\right\} \in E$ if and only if $f\left(v_{1}\right) \cap f\left(v_{2}\right) \neq \emptyset$.

- Reddy [2018] studied the full coloring variant of the problem.

Our Results (Interval graphs)

Interval Graph: A graph $G=(V, E)$ is an interval graph if there exists a set \mathcal{I} of intervals on the real line such that there is a bijection $f: V \rightarrow \mathcal{I}$ satisfying the following: $\left\{v_{1}, v_{2}\right\} \in E$ if and only if $f\left(v_{1}\right) \cap f\left(v_{2}\right) \neq \emptyset$.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi_{C N}^{*}(G) \leq 2$.

$$
\begin{aligned}
& \text { We show that } \chi_{O N}^{*}(G) \leq 3 \text {. We also show existence of } \\
& \text { interval graph } G^{\prime} \text { for which } \chi_{O N}^{*}\left(G^{\prime}\right)=3 \text {, making the bound } \\
& \text { tight. } \\
& \text { Moreover the graph } G^{\prime} \text { is a tight example for the full } \\
& \text { coloring variant of the problem. }
\end{aligned}
$$

Our Results (Interval graphs)

Interval Graph: A graph $G=(V, E)$ is an interval graph if there exists a set \mathcal{I} of intervals on the real line such that there is a bijection $f: V \rightarrow \mathcal{I}$ satisfying the following: $\left\{v_{1}, v_{2}\right\} \in E$ if and only if $f\left(v_{1}\right) \cap f\left(v_{2}\right) \neq \emptyset$.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi_{C N}^{*}(G) \leq 2$.
- We show that $\chi_{O N}^{*}(G) \leq 3$. We also show existence of interval graph G^{\prime} for which $\chi_{O N}^{*}\left(G^{\prime}\right)=3$, making the bound tight.

> Moreover the graph G^{\prime} is a tight example for the full
> coloring variant of the problem.

Our Results (Interval graphs)

Interval Graph: A graph $G=(V, E)$ is an interval graph if there exists a set \mathcal{I} of intervals on the real line such that there is a bijection $f: V \rightarrow \mathcal{I}$ satisfying the following: $\left\{v_{1}, v_{2}\right\} \in E$ if and only if $f\left(v_{1}\right) \cap f\left(v_{2}\right) \neq \emptyset$.

- Reddy [2018] studied the full coloring variant of the problem.
- Fekete and Keldenich [2017] showed that $\chi_{C N}^{*}(G) \leq 2$.
- We show that $\chi_{O N}^{*}(G) \leq 3$. We also show existence of interval graph G^{\prime} for which $\chi_{O N}^{*}\left(G^{\prime}\right)=3$, making the bound tight.
Moreover the graph G^{\prime} is a tight example for the full coloring variant of the problem.

Interval graphs

Lemma

If G is an interval graph, then $\chi_{O N}^{*}(G) \leq 3$.
Proof: Let \mathcal{I} be the set of intervals. For each interval $I \in \mathcal{I}$, its right end point is denoted by $R(I) . C: \mathcal{I} \rightarrow\{0\} \cup\{1,2,3\}$.

Interval graphs

Lemma

If G is an interval graph, then $\chi_{O N}^{*}(G) \leq 3$.
Proof: Let \mathcal{I} be the set of intervals. For each interval $I \in \mathcal{I}$, its right end point is denoted by $R(I) . C: \mathcal{I} \rightarrow\{0\} \cup\{1,2,3\}$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration $1 \leq j \leq \ell$.
- Start with the interval I_{1} for which $R\left(I_{1}\right)$ is the least and assign $C\left(I_{1}\right)=1$.

Interval graphs

Lemma

If G is an interval graph, then $\chi_{O N}^{*}(G) \leq 3$.
Proof: Let \mathcal{I} be the set of intervals. For each interval $I \in \mathcal{I}$, its right end point is denoted by $R(I) . C: \mathcal{I} \rightarrow\{0\} \cup\{1,2,3\}$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration $1 \leq j \leq \ell$.
- Start with the interval I_{1} for which $R\left(I_{1}\right)$ is the least and assign $C\left(I_{1}\right)=1$.

Interval graphs

Lemma

If G is an interval graph, then $\chi_{O N}^{*}(G) \leq 3$.
Proof: Let \mathcal{I} be the set of intervals. For each interval $I \in \mathcal{I}$, its right end point is denoted by $R(I) . C: \mathcal{I} \rightarrow\{0\} \cup\{1,2,3\}$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration $1 \leq j \leq \ell$.
- Start with the interval I_{1} for which $R\left(I_{1}\right)$ is the least and assign $C\left(I_{1}\right)=1$.
- Choose an interval $I_{2} \in N\left(l_{1}\right)$ s.t. $R\left(l_{2}\right) \geq R(I), \forall I \in N\left(l_{1}\right)$ and assign $C\left(l_{2}\right)=2$.

Interval graphs

Lemma

If G is an interval graph, then $\chi_{O N}^{*}(G) \leq 3$.
Proof: Let \mathcal{I} be the set of intervals. For each interval $I \in \mathcal{I}$, its right end point is denoted by $R(I) . C: \mathcal{I} \rightarrow\{0\} \cup\{1,2,3\}$.

- Assign the colors 1, 2 and 3 alternately, one in each iteration $1 \leq j \leq \ell$.
- Start with the interval I_{1} for which $R\left(I_{1}\right)$ is the least and assign $C\left(I_{1}\right)=1$.
- Choose an interval $I_{2} \in N\left(I_{1}\right)$ s.t. $R\left(I_{2}\right) \geq R(I), \forall I \in N\left(I_{1}\right)$ and assign $C\left(l_{2}\right)=2$.

Interval graphs

- For $j \geq 3$, we do the following.
- Choose the interval $I_{j} \in N\left(I_{j-1}\right)$ s.t. $R\left(l_{j}\right) \geq R(I)$, for all $I \in N\left(I_{j-1}\right)$.
- Assign color $\{1,2,3\} \backslash\left\{C\left(I_{j-1}\right), C\left(I_{j-2}\right)\right\}$ to the interval I_{j}.

Interval graphs

- For $j \geq 3$, we do the following.
- Choose the interval $I_{j} \in N\left(I_{j-1}\right)$ s.t. $R\left(l_{j}\right) \geq R(I)$, for all $I \in N\left(I_{j-1}\right)$.
- Assign color $\{1,2,3\} \backslash\left\{C\left(I_{j-1}\right), C\left(I_{j-2}\right)\right\}$ to the interval I_{j}.
> - Note that the interval l_{ℓ} chosen in the last iteration ℓ, is such that $R\left(I_{\ell}\right)$ maximizes $R(I)$ amongst all $I \in \mathcal{I}$.
> - All the uncolored intervals are assianed the color 0.

Interval graphs

- For $j \geq 3$, we do the following.
- Choose the interval $I_{j} \in N\left(I_{j-1}\right)$ s.t. $R\left(l_{j}\right) \geq R(I)$, for all $I \in N\left(I_{j-1}\right)$.
- Assign color $\{1,2,3\} \backslash\left\{C\left(I_{j-1}\right), C\left(I_{j-2}\right)\right\}$ to the interval I_{j}.
> - Note that the interval l_{ℓ} chosen in the last iteration ℓ, is such that $R\left(I_{\ell}\right)$ maximizes $R(I)$ amongst all $I \in \mathcal{I}$.
> - All the uncolored intervals are assianed the color 0.

Interval graphs

- For $j \geq 3$, we do the following.
- Choose the interval $I_{j} \in N\left(I_{j-1}\right)$ s.t. $R\left(l_{j}\right) \geq R(I)$, for all $I \in N\left(I_{j-1}\right)$.
- Assign color $\{1,2,3\} \backslash\left\{C\left(I_{j-1}\right), C\left(I_{j-2}\right)\right\}$ to the interval I_{j}.
> - Note that the interval l_{ℓ} chosen in the last iteration ℓ, is such that $R\left(I_{\ell}\right)$ maximizes $R(I)$ amongst all $I \in \mathcal{I}$.
> - All the uncolored intervals are assianed the color 0.

Interval graphs

- For $j \geq 3$, we do the following.
- Choose the interval $l_{j} \in N\left(l_{j-1}\right)$ s.t. $R\left(l_{j}\right) \geq R(I)$, for all $I \in N\left(I_{j-1}\right)$.
- Assign color $\{1,2,3\} \backslash\left\{C\left(I_{j-1}\right), C\left(I_{j-2}\right)\right\}$ to the interval I_{j}.
- Note that the interval I_{ℓ} chosen in the last iteration ℓ, is such that $R\left(I_{\ell}\right)$ maximizes $R(I)$ amongst all $I \in \mathcal{I}$.
- All the uncolored intervals are assigned the color 0.

Correctness

- All vertices assigned the color 0 have a uniquely colored neighbor.
- All vertices assigned a non-zero color also have a uniquely colored neighbor.

Unit Interval graphs

Proper Interval Graph: An interval graph is a proper interval graph if it has an interval representation \mathcal{I} such that no interval in \mathcal{I} is properly contained in any other interval of \mathcal{I}.

Unit Interval Graph: An interval graph G is a unit interval graph if it has an interval representation \mathcal{I} where all the intervals are of unit length.

Unit Interval graphs

Proper Interval Graph: An interval graph is a proper interval graph if it has an interval representation \mathcal{I} such that no interval in \mathcal{I} is properly contained in any other interval of \mathcal{I}.

Unit Interval Graph: An interval graph G is a unit interval graph if it has an interval representation \mathcal{I} where all the intervals are of unit length.

- We show that $\chi_{O N}^{*}(G) \leq 2$.
- There is a unit interval graph K_{3} such that $\chi_{O N}^{*}\left(K_{3}\right)=2$, making the above bound tight.

Unit Interval graphs

Lemma

If G is a proper interval graph, then $\chi_{O N}^{*}(G) \leq 2$.
Proof: We denote the left endpoint of an interval $I \in \mathcal{I}$ by $L(I)$.

- We assign $C: \mathcal{I} \rightarrow\{0\} \cup\{1,2\}$
- At each iteration i, we pick two intervals $I_{1}^{i}, l_{2}^{i} \in \mathcal{I}$.
- l_{1}^{i} is the interval whose $L\left(l_{1}^{i}\right)$ is the least among intervals for which C has not been assigned.
- The interval $l_{2}^{i} \in N\left(l_{1}^{i}\right)$, whose $L\left(l_{2}^{i}\right)$ is the greatest.
- All other intervals in $N\left(I_{1}^{i} \cup I_{2}^{i}\right)$ are assigned the color 0 .

Unit Interval graphs

Lemma

If G is a proper interval graph, then $\chi_{O N}^{*}(G) \leq 2$.
Proof: We denote the left endpoint of an interval $I \in \mathcal{I}$ by $L(I)$.

- We assign $C: \mathcal{I} \rightarrow\{0\} \cup\{1,2\}$
- At each iteration i, we pick two intervals $I_{1}^{i}, l_{2}^{i} \in \mathcal{I}$.
- l_{1}^{i} is the interval whose $L\left(l_{1}^{i}\right)$ is the least among intervals for which C has not been assigned.
- The interval $l_{2}^{i} \in N\left(l_{1}^{i}\right)$, whose $L\left(l_{2}^{i}\right)$ is the greatest.
- All other intervals in $N\left(l_{1}^{i} \cup l_{2}^{i}\right)$ are assigned the color 0 .

Unit Interval graphs

Lemma

If G is a proper interval graph, then $\chi_{O N}^{*}(G) \leq 2$.
Proof: We denote the left endpoint of an interval $I \in \mathcal{I}$ by $L(I)$.

- We assign $C: \mathcal{I} \rightarrow\{0\} \cup\{1,2\}$
- At each iteration i, we pick two intervals $I_{1}^{i}, l_{2}^{i} \in \mathcal{I}$.
- l_{1}^{i} is the interval whose $L\left(l_{1}^{i}\right)$ is the least among intervals for which C has not been assigned.
- The interval $I_{2}^{i} \in N\left(l_{1}^{i}\right)$, whose $L\left(I_{2}^{i}\right)$ is the greatest.
- All other intervals in $N\left(l_{1}^{i} \cup l_{2}^{i}\right)$ are assigned the color 0 .

Unit Interval graphs

- l_{2}^{i} does not exist? All neighbors of l_{1}^{i} are already colored. This can happen only in the very last iteration ℓ of the algorithm.

- Correctness when l_{2}^{ℓ} exists for the last iteration ℓ
- l_{1}^{i} and l_{2}^{i} act as the uniquely colored neighbors for each other in each iteration i.

Unit Interval graphs

- l_{2}^{i} does not exist? All neighbors of l_{1}^{i} are already colored. This can happen only in the very last iteration ℓ of the algorithm.

- Correctness when l_{2}^{ℓ} exists for the last iteration ℓ
- l_{1}^{i} and l_{2}^{i} act as the uniquely colored neighbors for each other in each iteration i.
- All intervals that are assigned color 0 are adjacent to either l_{1}^{i} or l_{2}^{i}, and thus will have a uniquely colored neighbor.

Unit Interval graphs

- l_{2}^{i} does not exist? All neighbors of l_{1}^{i} are already colored. This can happen only in the very last iteration ℓ of the algorithm.
- Correctness when l_{2}^{ℓ} exists for the last iteration ℓ
- I_{1}^{i} and l_{2}^{i} act as the uniquely colored neighbors for each other in each iteration i.
- All intervals that are assigned color 0 are adjacent to either l_{1}^{i} or l_{2}^{i}, and thus will have a uniquely colored neighbor.
- The vertices l_{1}^{i} (or l_{2}^{i}) and l_{1}^{i+1} (or I_{2}^{i+1}) are assigned the same color.

Unit Interval graphs

- l_{2}^{i} does not exist? All neighbors of l_{1}^{i} are already colored. This can happen only in the very last iteration ℓ of the algorithm.
- Correctness when l_{2}^{ℓ} exists for the last iteration ℓ
- l_{1}^{i} and l_{2}^{i} act as the uniquely colored neighbors for each other in each iteration i.
- All intervals that are assigned color 0 are adjacent to either l_{1}^{i} or I_{2}^{i}, and thus will have a uniquely colored neighbor.
- The vertices l_{1}^{i} (or l_{2}^{i}) and l_{1}^{i+1} (or l_{2}^{i+1}) are assigned the same color. This is fine as there is no interval that intersects both l_{1}^{i} and l_{1}^{i+1}.

Unit Interval graphs

Figure 5: Before

- l_{2}^{i} does not exist
- This can happen only during the last iteration $i=\ell$.
- ℓ_{1}^{ℓ} is the only interval for which C is yet to be assigned.
- Choose an interval $I_{m} \in N\left(I_{2}^{-1}\right) \cap N\left(I_{1}^{l}\right)$. Such an I_{m} ex
- We reassign $C\left(l_{1}^{\ell-1}\right)=0, C\left(l_{2}^{\ell-1}\right)=1, C\left(I_{m}\right)=2$ and assign $C\left(l_{1}^{\ell}\right)=0$.
- Any effect for reassigning $C\left(l_{1}^{-1}\right)=0$?

Unit Interval graphs

Figure 5: Before

- l_{2}^{i} does not exist
- This can happen only during the last iteration $i=\ell$.
- ℓ_{1}^{ℓ} is the only interval for which C is yet to be assigned.
- Choose an interval $I_{m} \in N\left(I_{2}^{\ell-1}\right) \cap N\left(I_{1}^{\ell}\right)$. Such an I_{m} exists ?
- We reassign $C\left(I_{1}^{l-1}\right)=0, C\left(I_{2}^{l-1}\right)=1, C\left(I_{m}\right)=2$ and assign $C\left(l_{1}^{\ell}\right)=0$.
- Any effect for reassigning $C\left(l_{1}^{l^{-1}}\right)=0$?

Unit Interval graphs

Figure 5: Before

Figure 6: After

- l_{2}^{i} does not exist
- This can happen only during the last iteration $i=\ell$.
- ℓ_{1}^{ℓ} is the only interval for which C is yet to be assigned.
- Choose an interval $I_{m} \in N\left(I_{2}^{\ell-1}\right) \cap N\left(I_{1}^{\ell}\right)$. Such an I_{m} exists ?
- We reassign $C\left(l_{1}^{\ell-1}\right)=0, C\left(I_{2}^{\ell-1}\right)=1, C\left(I_{m}\right)=2$ and assign $C\left(\ell_{1}^{\ell}\right)=0$.

Unit Interval graphs

Figure 5: Before

Figure 6: After

- l_{2}^{i} does not exist
- This can happen only during the last iteration $i=\ell$.
- ℓ_{1}^{ℓ} is the only interval for which C is yet to be assigned.
- Choose an interval $I_{m} \in N\left(I_{2}^{\ell-1}\right) \cap N\left(I_{1}^{\ell}\right)$. Such an I_{m} exists ?
- We reassign $C\left(I_{1}^{\ell-1}\right)=0, C\left(I_{2}^{\ell-1}\right)=1, C\left(I_{m}\right)=2$ and assign $C\left(l_{1}^{\ell}\right)=0$.
- Any effect for reassigning $C\left(\iota_{1}^{\ell-1}\right)=0$?

Present Status of Our Results

Graph Class	Upper Bound	Tight?	Complexity
(G, cw, k)	-	-	FPT
Block graphs	3	3	P
Cographs	2	2	P
Interval graphs	3	3	-
Proper Interval graphs	2	2	-
Unit square	27	3	NP-complete
Unit disk	51	3	NP-complete
Kneser graphs $K(n, k)$	$k+1$	$k+1$	-
Split graphs	-	-	NP-complete

THANK YOU

Questions?

