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CONFLICT-FREE COLORING PROBLEM

Definition (Conflict-free Coloring)

Given a graph G = (V ,E), a conflict-free coloring is an
assignment of colors to a subset of V such that
• Every vertex in G has a uniquely colored vertex in its

neighborhood.
The minimum number of colors required for such a coloring is
called the conflict-free chromatic number.

Uniquely colored vertex in the neighborhood of a vertex v is
the vertex which is distinctly colored among all neighbors of v .
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CONFLICT-FREE COLORING PROBLEM

Definition (Conflict-free Coloring on Open Neighborhoods)

Given a graph G = (V ,E), a conflict-free coloring with respect
to open neighborhoods is an assignment of colors to a subset
of V such that
• Every vertex has a uniquely colored vertex in its open

neighborhood.

The minimum number of colors required for such a coloring is
called the conflict-free chromatic number denoted by χ∗ON(G).

• Open Neighborhood of a vertex v is
N(v) = {w | {v ,w} ∈ E(G))}.
• CFON* COLORING PROBLEM.
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CONFLICT-FREE COLORING PROBLEM

Definition (Conflict-free Coloring on Closed Neighborhoods)

Given a graph G = (V ,E), a conflict-free coloring with respect
to closed neighborhoods is an assignment of colors to a subset
of V such that
• Every vertex has a uniquely colored vertex in its closed

neighborhood.

The minimum number of colors required for such a coloring is
called the conflict-free chromatic number denoted by χ∗CN(G).

• Closed Neighborhood of a vertex v is N[v ] = N(v) ∪ {v}.
• CFCN* COLORING PROBLEM.
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K ∗n : Subdivision graph of the Clique
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• χ∗ON(K ∗n ) = n.
• K ∗n is bipartite and hence χ∗CN(K ∗n ) = 2.
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Motivation & History

• Introduced by Even, Lotker, Ron and Smorodinsky in 2004,
motivated by the Frequency Assignment Problem.
• The problem has been studied with respect to both the

open neighborhoods and the closed neighborhoods.
• χ∗ON(G) = Θ(

√
n) and χ∗CN(G) = Θ(log2 n).

• Geometric intersection graphs like disk, square, rectangle,
interval graphs, etc have attracted special interest.
• Most of the variants are NP-complete.
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Our Results (CFON∗)

Graph Class Upper Bound Tight? Complexity

(G, cw, k) - - FPT
Block graphs 3 3 P

Cographs 2 2 P
Interval graphs 3 3 -

Proper Interval graphs 2 2 -
Unit square 27 3 -

Unit disk 51 3 -
Kneser graphs K (n, k) k + 1 k + 1 -

Split graphs - - NP-complete

Our results are marked in red color.
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Our Results (Interval graphs)

Interval Graph: A graph G = (V ,E) is an interval graph if there
exists a set I of intervals on the real line such that there is a
bijection f : V → I satisfying the following: {v1, v2} ∈ E if and
only if f (v1) ∩ f (v2) 6= ∅.
• Reddy [2018] studied the full coloring variant of the

problem.
• Fekete and Keldenich [2017] showed that χ∗CN(G) ≤ 2.
• We show that χ∗ON(G) ≤ 3. We also show existence of

interval graph G′ for which χ∗ON(G′) = 3, making the bound
tight.
Moreover the graph G′ is a tight example for the full
coloring variant of the problem.
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Interval graphs

Lemma

If G is an interval graph, then χ∗ON(G) ≤ 3.

Proof: Let I be the set of intervals. For each interval I ∈ I, its
right end point is denoted by R(I). C : I → {0} ∪ {1,2,3}.
• Assign the colors 1, 2 and 3 alternately, one in each

iteration 1 ≤ j ≤ `.
• Start with the interval I1 for which R(I1) is the least and

assign C(I1) = 1.
• Choose an interval I2 ∈ N(I1) s.t. R(I2) ≥ R(I), ∀I ∈ N(I1)

and assign C(I2) = 2.
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Interval graphs

• For j ≥ 3, we do the following.
• Choose the interval Ij ∈ N(Ij−1) s.t. R(Ij ) ≥ R(I), for all

I ∈ N(Ij−1).
• Assign color {1,2,3} \ {C(Ij−1),C(Ij−2)} to the interval Ij .

• Note that the interval I` chosen in the last iteration `, is
such that R(I`) maximizes R(I) amongst all I ∈ I.
• All the uncolored intervals are assigned the color 0.
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Correctness

• All vertices assigned the color 0 have a uniquely colored
neighbor.
• All vertices assigned a non-zero color also have a uniquely

colored neighbor.
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Unit Interval graphs

Proper Interval Graph: An interval graph is a proper interval
graph if it has an interval representation I such that no interval
in I is properly contained in any other interval of I.

Unit Interval Graph: An interval graph G is a unit interval
graph if it has an interval representation I where all the
intervals are of unit length.
• We show that χ∗ON(G) ≤ 2.
• There is a unit interval graph K3 such that χ∗ON(K3) = 2,

making the above bound tight.
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Unit Interval graphs

Lemma

If G is a proper interval graph, then χ∗ON(G) ≤ 2.

Proof: We denote the left endpoint of an interval I ∈ I by L(I).
• We assign C : I → {0} ∪ {1,2}
• At each iteration i , we pick two intervals I i

1, I
i
2 ∈ I.

• I i
1 is the interval whose L(I i

1) is the least among intervals for
which C has not been assigned.

• The interval I i
2 ∈ N(I i

1), whose L(I i
2) is the greatest.

• All other intervals in N(I i
1 ∪ I i

2) are assigned the color 0.
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Unit Interval graphs

• I i
2 does not exist ? All neighbors of I i

1 are already colored.
This can happen only in the very last iteration ` of the
algorithm.

• Correctness when I`2 exists for the last iteration `
• I i

1 and I i
2 act as the uniquely colored neighbors for each

other in each iteration i .
• All intervals that are assigned color 0 are adjacent to either

I i
1 or I i

2, and thus will have a uniquely colored neighbor.
• The vertices I i

1 (or I i
2) and I i+1

1 (or I i+1
2 ) are assigned the

same color. This is fine as there is no interval that
intersects both I i

1 and I i+1
1 .
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Unit Interval graphs

Figure 5: Before Figure 6: After

• I i
2 does not exist
• This can happen only during the last iteration i = `.
• I`1 is the only interval for which C is yet to be assigned.
• Choose an interval Im ∈ N(I`−1

2 )∩N(I`1). Such an Im exists ?
• We reassign C(I`−1

1 ) = 0, C(I`−1
2 ) = 1, C(Im) = 2 and

assign C(I`1) = 0.
• Any effect for reassigning C(I`−1

1 ) = 0 ?
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Present Status of Our Results

Graph Class Upper Bound Tight? Complexity

(G, cw, k) - - FPT
Block graphs 3 3 P

Cographs 2 2 P
Interval graphs 3 3 -

Proper Interval graphs 2 2 -
Unit square 27 3 NP-complete

Unit disk 51 3 NP-complete
Kneser graphs K (n, k) k + 1 k + 1 -

Split graphs - - NP-complete
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THANK YOU
Questions?
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