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Abstract. Given an undirected graph, a conflict-free coloring (CFON*)
is an assignment of colors to a subset of the vertices of the graph such that
for every vertex there exists a color that is assigned to exactly one vertex
in its open neighborhood. The minimum number of colors required for
such a coloring is called the conflict-free chromatic number. The decision
version of the CFON* problem is NP-complete even on planar graphs.
In this paper, we show the following results.
– The CFON* problem is fixed-parameter tractable with respect to

the combined parameters clique width and the solution size.
– We study the problem on block graphs and cographs, which have

bounded clique width. For both graph classes, we give tight bounds
of three and two respectively for the CFON* chromatic number.

– We study the problem on the following intersection graphs: inter-
val graphs, unit square graphs and unit disk graphs. We give tight
bounds of two and three for the CFON* chromatic number for proper
interval graphs and interval graphs. Moreover, we give upper bounds
for the CFON* chromatic number on unit square and unit disk
graphs.

– We also study the problem on split graphs and Kneser graphs. For
split graphs, we show that the problem is NP-complete. For Kneser
graphs K(n, k), when n ≥ k(k + 1)2 + 1, we show that the CFON*
chromatic number is k + 1.

We also study the closed neighborhood variant of the problem denoted
by CFCN*, and obtain analogous results in some of the above cases.

1 Introduction

Given an undirected graph G = (V,E), a conflict-free coloring is an assignment
of colors to a subset of the vertices ofG such that every vertex inG has a uniquely
colored vertex in its neighborhood. The minimum number of colors required for
such a coloring is called the conflict-free chromatic number. This problem was
introduced in 2002 by Even, Lotker, Ron and Smorodinsky [8], motivated by
the frequency assignment problem in cellular networks where base stations and
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clients communicate with one another. To avoid interference, we require that
there exists a base station with a unique frequency in the neighborhood of each
client. Since the number of frequencies are limited and expensive, it is ideal to
minimize the number of frequencies used.

This problem has been well studied [1,5,11,16,18] for nearly 20 years. Several
variants of the problem have been studied. We focus on the following variant of
the problem with respect to both closed and open neighborhoods, which are
defined as follows.

Definition 1 (Conflict-Free Coloring). A CFON* coloring of a graph G =
(V,E) using k colors is an assignment C : V (G) → {0} ∪ {1, 2, . . . , k} such
that for every v ∈ V (G), there exists a color i ∈ {1, 2, . . . , k} such that |N(v) ∩
C−1(i)| = 1. The smallest number of colors required for a CFON* coloring of G
is called the CFON* chromatic number of G, denoted by χ∗ON (G).

The closed neighborhood variant, CFCN* coloring, is obtained by replacing
the open neighborhood N(v) by the closed neighborhood N [v] in the above. The
corresponding chromatic number is denoted by χ∗CN (G).

In the above definition, vertices assigned the color 0 are treated as “uncol-
ored”. Hence in a CFON* coloring (or CFCN* coloring), no vertex can have a
vertex colored 0 as its uniquely colored neighbor. The CFON* problem (resp.
CFCN* problem) is to compute the minimum number of colors required for a
CFON* coloring (resp. CFCN* coloring) of a graph. Abel et al. in [1] showed that
both the problems are NP-complete even for planar graphs. They also showed
that eight colors are sufficient to CFON* color planar graphs, which was im-
proved to four colors [12]. Further these problems have been studied on outer-
planar graphs [4], and intersection graphs like string graphs, circle graphs [13],
disk graphs, square graphs and interval graphs [9]. Continuing this line of work,
we study these problems on various restricted graph classes such as block graphs,
cographs, intervals graphs, unit square graphs, unit disk graphs, Kneser graphs
and split graphs.

The parameterized complexity of conflict-free coloring, for both neighbor-
hoods, has been of recent research interest. They are fixed-parameter tractable
(FPT) when parameterized by tree width [2, 5], distance to cluster (distance
to disjoint union of cliques) [17] and neighborhood diversity [11]. Further, with
respect to distance to threshold graphs there is an additive approximation algo-
rithm in FPT-time [17].4

We study CFON* and CFCN* problems for the parameter clique width,
which generalizes all the above parameters. Specifically, for every graph G,
cw(G) ≤ 3 · 2tw(G)−1, where tw(G) and cw(G) denote the tree width of G and
the clique width of G respectively [7]. Graphs with distance to cluster at most
k ∈ N, have clique width of at most O(2k) [19]. We show that the CFON*
and CFCN* problems are FPT with respect to the combined parameters clique

4 Some of the above FPT results are shown for the “full-coloring variant” of the
problem (as defined in Definition 2). Our clique width result can also be adapted for
the full-coloring variant.
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width and the number of colors used. Note that the previously mentioned FPT-
results [2, 5, 11,17] do not additionally need the solution size as a parameter.

1.1 Results

– In Section 3, we show fixed-parameter tractable algorithms for both CFON*
CFCN* problems with respect to the combined parameters clique width w

and the solution size k, that runs in 2O(w3k)nO(1) time where n is the number
of vertices of G.

– In Section 4, we discuss the results on block graphs and cographs. Both the
graph classes are solvable in polynomial time, which follows from the clique
width result.

• For block graphs G, we show that χ∗ON (G) ≤ 3. We show a block graph
G that requires three colors making the above bound tight.

• For cographs, we show that two colors are sufficient for a CFON* color-
ing. We also characterize cographs for which one color suffices.

– In Section 5, we show that for interval graphs G, χ∗ON (G) ≤ 3. We show
an interval graph that requires three colors making the above bound tight.
Moreover, two colors are sufficient to CFON* color proper interval graphs.
We also show that the CFCN* problem is polynomial time solvable on in-
terval graphs.

– In Section 6, we study the problem on geometric intersection graphs like unit
square graphs and unit disk graphs.
We show that χ∗ON (G) ≤ 27 for unit square graphs G. For unit disk graphs
G, we show that χ∗ON (G) ≤ 51. No upper bound was previously known.

– In Section 7, we study both the problems on Kneser graphs and split graphs.

• We show that k+1 colors are sufficient to CFON* color the Kneser graphs
K(n, k), when n ≥ 3k−1. We also show that χ∗ON (K(n, k)) ≥ k+1 when
n ≥ k(k + 1)2 + 1, thereby proving that χ∗ON (K(n, k)) = k + 1 when
n ≥ k(k + 1)2 + 1.
We also show that k colors are sufficient to CFCN* color a Kneser graph
K(n, k), when n ≥ 2k + 1.

• On split graphs, we show that the CFON* problem is NP-complete and
the CFCN* problem is polynomial time solvable.

2 Preliminaries

Throughout the paper, we assume that the graph G is connected. Otherwise, we
apply the algorithm on each component independently. We also assume that G
does not contain any isolated vertices as the CFON* problem is not defined for an
isolated vertex. We use [k] to denote the set {1, 2, . . . , k} and C : V (G)→ {0}∪[k]
to denote the color assigned to a vertex. A universal vertex is a vertex that is
adjacent to all other vertices of the graph. In some of our algorithms and proofs, it
is convenient to distinguish between vertices that are intentionally left uncolored,
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and the vertices that are yet to be assigned any color. The assignment of color
0 is used to denote that a vertex is left “uncolored”.

To avoid clutter and to simplify notation, we use the shorthand notation
vw to denote the edge {v, w}. The open neighborhood of a vertex v ∈ V (G) is
the set of vertices {w : vw ∈ E(G)} and is denoted by N(v). Given a conflict-
free coloring C, a vertex w ∈ N(v) is called a uniquely colored neighbor of v if
C(w) 6= 0 and ∀x ∈ N(v) \ {w}, C(w) 6= C(x). The closed neighborhood of v is
the set N(v)∪{v}, denoted by N [v]. The notion of uniquely colored neighbor in
the closed neighborhood variant is analogous to the open neighborhood variant,
and is obtained by replacing N(v) by N [v]. We sometimes use the mapping
h : V → V to denote the uniquely colored neighbor of a vertex. We also extend
C for vertex sets by defining C(V ′) =

⋃
v∈V ′ C(v) for V ′ ⊆ V (G). To refer to the

multi-set of colors used in V ′, we use C{{}}(V
′). The difference between C{{}}(V

′)
and C(V ′) is that we use multiset union in the former.

In many of the sections, we also refer to the full coloring variant of the
conflict-free coloring problem, which is defined below.

Definition 2 (Conflict-Free Coloring – Full Coloring Variant). A CFON
coloring of a graph G = (V,E) using k colors is an assignment C : V (G) →
{1, 2, . . . , k} such that for every v ∈ V (G), there exists an i ∈ {1, 2, . . . , k} such
that |N(v) ∩ C−1(i)| = 1. The smallest number of colors required for a CFON
coloring of G is called the CFON chromatic number of G, denoted by χON (G).

The corresponding closed neighborhood variant is denoted CFCN coloring,
and the chromatic number is denoted χCN (G).

A full conflict-free coloring, where all the vertices are colored with a non-zero
color, is also a partial conflict-free coloring (as defined in Definition 1) while
the converse is not true. It is clear that one extra color suffices to obtain a full
coloring variant from a partial coloring variant. However, it is not always clear
if the extra color is actually necessary.

For the theorems marked (?), the full proofs are omitted due to space con-
straints.

3 FPT with Clique Width and Number of Colors

In this section, we study the conflict-free coloring problem with respect to the
combined parameters clique width cw(G) and number of colors k. We present
FPT algorithms for both the CFON* and CFCN* problems.

Definition 3 (Clique width [7]). Let w ∈ N. A w-expression Φ defines a
graph GΦ where each vertex receives a label from [w], using the following four
recursive operations with indices i, j ∈ [w], i 6= j:

1. Introduce, Φ = v(i): GΦ is a graph consisting a single vertex v with label i.
2. Disjoint union, Φ = Φ′ ⊕ Φ′′: GΦ is a disjoint union of GΦ′ and GΦ′′ .
3. Relabel, Φ = ρi→j(Φ

′): GΦ is the graph GΦ′ where each vertex labeled i in
GΦ′ now has label j.
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4. Join, Φ = ηi,j(Φ
′): GΦ is the graph GΦ′ with additional edges between each

pair of vertices u of label i and v of label j.

The clique width of a graph G denoted by cw(G) is the minimum number w
such that there is a w-expression Φ that defines G.

In the following, we assume that a w-expression Ψ of G is given. There is
an FPT-algorithm that, given a graph G and integer w, either reports that
cw(G) > w or outputs a (23w+2 − 1)-expression of G [15].

A w-expression Ψ is an irredundant w-expression of G, if no edge is introduced
twice in Ψ . Given a w-expression of G, it is possible to get an irredundant w-
expression of G in polynomial time [7]. For a coloring of G, a vertex v is said
to be conflict-free dominated by the color c, if exactly one vertex in N(v) is
assigned the color c. In general, a vertex v is said to be conflict-free dominated
by a set of colors S, if each color in S conflict-free dominates v. Also, a vertex v
is said to miss the color c if there exists no vertex in N(v) that is assigned the
color c. In general, a vertex v is said to miss a set of colors T , if every color in
T is missed by v.

Now, we prove the main theorem of this section.

Theorem 4. Given a graph G, a w-expression of G and an integer k, it is

possible to decide if χ∗ON (G) ≤ k in 2O(w3k)nO(1) time.

Proof. We give a dynamic program that works bottom-up over a given irre-
dundant w-expression Ψ of G. For each subexpression Φ of Ψ and a coloring
C : V (GΦ)→ {0, 1, . . . , k} of GΦ, we have a boolean table entry d[Φ;N ;M ] with

N = n1,0, . . . , n1,k, . . . , nw,0, . . . , nw,k, and

M = M1, . . . ,Mw where for every a ∈ [w], Ma = ma,S1,T1
, . . . ,ma,S

3k
,T

3k

where S`, T` are all the possible disjoint subsets of the set of colors [k]. Note that
there are 3k many disjoint subsets S`, T` ∈ [k].

Given some vertex-coloring of GΦ, values of M and N have the following
meaning.
N : For each label a ∈ [w] and color q ∈ {0}∪ [k], the variable na,q ∈ {0, 1, 2}. Let
n?a,q be the number of vertices with label a that are colored q. Then na,q is equal
to n?a,q when limited to a maximum of two, in other words na,q = min{2, n?a,q}.
M : For each label a ∈ [w], and disjoint sets S, T ⊆ [k], the variable ma,S,T ∈
{0, 1}. The variable ma,S,T is equal to 1 if there is at least one vertex v with
label a which is conflict-free dominated by exactly colors S and the set of colors
that misses v is exactly T . If there is no such vertex, then ma,S,T is equal to 0.

For each subexpression Φ of Ψ , the boolean entry d[Φ;N ;M ] is set to TRUE
if and only if there exists a vertex-coloring C : V (GΦ)→ {0} ∪ [k] that satisfies
the variables na,q and ma,S,T , for each label a ∈ [w], color q ∈ {0} ∪ [k] and
disjoint subsets S, T ⊆ [k]. To decide if k colors are sufficient to CFON* color G,
we consider the expression Ψ with GΨ = G. We answer ‘yes’ if and only if there
exists an entry d[Ψ ;N ;M ] set to TRUE where ma,{},T = 0 for each a ∈ [w] and
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for each T ⊆ [k]. This means there exists a coloring such that there is no label
a ∈ [w] with a vertex v that is not conflict-free dominated.

Now, we show how to compute d[Φ;N ;M ] at each operation.

1. Φ = v(i).

The graph GΦ represents a node with one vertex v that is labelled i ∈ [w].
For each color q ∈ {0}∪ [k], we set the entry d[Φ;N ;M ] = TRUE if and only
if ni,q = 1, mi,{},[k] = 1 and all other entries of N and M are 0.

2. Φ = Φ′ ⊕ Φ′′.
The graph GΦ results from the disjoint union of graphs GΦ′ and GΦ′′ .

We set d[Φ;N ;M ] = TRUE if and only if there exist entries d[Φ′;N ′;M ′]
and d[Φ′′;N ′′;M ′′] such that d[Φ′;N ′;M ′] = TRUE, d[Φ′′;N ′′;M ′′] = TRUE
and the following conditions are satisfied:

(a) For each label a ∈ [w] and color q ∈ {0}∪ [k], na,q = min{2, n′a,q+n′′a,q}.
(b) For each label a ∈ [w] and disjoint S, T ⊆ [k], ma,S,T = min{1, m′a,S,T +

m′′a,S,T }.
We may determine each table entry of d[Φ;N,M ] for every N,M as follows.
We initially set d[Φ;N,M ] to FALSE for all N,M . We iterate over all com-
binations of table entries d[Φ′;N ′;M ′] and d[Φ′′;N ′′;M ′′]. For each combi-
nation of TRUE entries d[Φ′;N ′;M ′] and d[Φ′′;N ′′;M ′′], we update the cor-
responding entry d[Φ;N ;M ] to TRUE. The corresponding entry d[Φ;N ;M ]
has variables na,q which is the sum of n′a,q and n′′a,q limited by two, and vari-
ables ma,S,T which is the sum of m′a,S,T and m′′a,S,T limited by one. Thus, to

compute every entry for d[Φ; ; ] we visit at most (3w(k+1)2w3k)2 combinations
of table entries and for each of those compute w(k + 1) + w3k values for M
and N .

3. Φ = ρi→j(Φ
′).

The graph GΦ is obtained from the graph GΦ′ by relabelling the vertices
of label i in GΦ′ with label j where i, j ∈ [w]. Hence, ni,q = 0 for each
q ∈ {0} ∪ [k] and mi,S,T = 0 for each disjoint S, T ⊆ [k].

We set d[Φ;N ;M ] = TRUE if and only if there exists an entry d[Φ′;N ′;M ′]
such that d[Φ′;N ′;M ′] = TRUE in GΦ′ that satisfies the following condi-
tions:

(a) For each color q ∈ {0} ∪ [k], each label a ∈ [w] \ {i, j} and disjoint
S, T ⊆ [k], na,q = n′a,q and ma,S,T = m′a,S,T .

(b) For each color q ∈ {0} ∪ [k], nj,q = min{2, n′i,q + n′j,q} and ni,q = 0.

(c) For each disjoint S, T ⊆ [k], mj,S,T = min{1, m′i,S,T + m′j,S,T } and
mi,S,T = 0.

We may determine each table entry of d[Φ;N ;M ] for every N,M as follows.
We initially set d[Φ;N ;M ] to FALSE for all N,M . We iterate over all the
TRUE table entries d[Φ′;N ′;M ′], and for each such entry we update the
corresponding entry d[Φ;N ;M ] to TRUE, if applicable. To compute every

entry for d[Φ; ; ] we visit at most 3w(k+1)2w3k table entries d[Φ′; ; ] and for
each of those compute w(k + 1) + w3k values for M and N .
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4. Φ = ηi,j(Φ
′).

The graph GΦ is obtained from the graph GΦ′ by connecting each vertex
with label i with each vertex with label j where i, j ∈ [w]. Consider a vertex
v labelled i in GΦ′ and let v contribute to the variable m′

i,Ŝ,T̂
, which is v is

conflict-free dominated by exactly Ŝ and the set of colors that misses v is
exactly T̂ . After this operation, the vertex v may contribute to the variable
mi,S,T in GΦ where the choice of the set S in GΦ depends on the colors
assigned to the vertices labelled j in GΦ′ .
We set d[Φ;N ;M ] = TRUE if and only if there exists an entry d[Φ′;N ′;M ′]
such that d[Φ′;N ′;M ′] = TRUE in GΦ′ that satisfies the following condi-
tions:
(a) For each label a ∈ [w] and color q ∈ {0} ∪ [k], na,q = n′a,q.
(b) For each label a ∈ [w] \ {i, j} and disjoint S, T ⊆ [k], ma,S,T = m′a,S,T .
(c) For the label i and disjoint S, T ⊆ [k], mi,S,T = 1 if and only if there are

disjoint subsets Ŝ, T̂ ⊆ [k] with m′
i,Ŝ,T̂

= 1 such that

i. For each color q ∈ S ∩ Ŝ, variable n′j,q = 0.

ii. For each color q ∈ S \ Ŝ, variable n′j,q = 1.

iii. For each color q ∈ Ŝ \ S, variable n′j,q ≥ 1.

iv. S \ Ŝ ⊆ T̂ and T ⊆ T̂ .

v. For each color q ∈ T̂ \ (T ∪ S), n′j,q = 2.
(d) For the label j, entry mj,S,T is computed in a symmetric fashion by

swapping the labels i and j in (c).
It can be observed that each TRUE table entry d[Φ′;N ′;M ′] sets exactly one
entry d[Φ;N ;M ] to TRUE. We can determine each table entry of d[Φ;N ;M ]
as follows. We initially set d[Φ;N,M ] to FALSE for all N,M . We iterate over
all the TRUE table entries d[Φ′;N ′;M ′], and for each such entry we update
the corresponding entry d[Φ;N ;M ] to TRUE, if applicable. To compute

every entry for d[Φ; ; ] we visit at most 3w(k+1)2w3k table entries d[Φ′; ; ] and
for each of those compute w(k + 1) + w3k values for M and N .

We described the recursive formula at each operation, that computes the
value of each entry d[; ; ]. The correctness of the algorithm easily follows from

the description of the algorithm. The DP table consists of 3w(k+1)2w3k entries at
each node of the w-expression. The running time is dominated by the operations

at the disjoint union node that requires O(32w(k+1)22w3kw(k + 1 + 3k)nO(1))
time. ut

Similarly, we obtain the following result for the CFCN* problem:

Theorem 5 (?). Given a graph G, a w-expression and an integer k, it is possible

to decide if χ∗CN (G) ≤ k in 2O(w3k)nO(1) time.

By modifying the above algorithm, it is possible to obtain FPT algorithms
for the full coloring variants (CFON and CFCN) of the problem. We merely have
to restrict the entries of the dynamic program to entries without color 0.

Theorem 6. The CFON and the CFCN problems are FPT when parameterized
by the combined parameters clique width and the solution size.
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4 Block Graphs and Cographs

In this section, we study the problems on block graphs and cographs. Note that
block graphs have clique width at most 3, and cographs have clique width at most
2. Hence, CFON* and CFCN* problems are polynomial time solvable on block
graphs and cographs by Theorems 4 and 5 respectively. However, we present
direct proofs for these problems on these graph classes. In particular we show
that χ∗ON (G) ≤ 3 and χ∗CN (G) ≤ 2, for block graphs G. We show a block graph
G such that χ∗ON (G) = 3, making the above bound tight. Next, we show that
χ∗ON (G), χ∗CN (G) ≤ 2, for cographs G.

Definition 7 (Block Graph). A block graph is a graph in which every 2-
connected component is a clique.

For the CFON* problem, we give a tight upper bound of 3, in the following
sense: we present a graph (see Fig. 1) that is not CFON*-colorable with colors
{0, 1, 2}, where 0 is the dummy-color. Complementing this result, we show that
there is an algorithm that colors a given block-graph with colors {1, 2, 3}, thus
without the need of a dummy-color 0.

Lemma 8 (?). If G is a block graph, χON (G) ≤ 3, hence χ∗ON (G) ≤ 3.

Proof (Proof Sketch). We give a constructive algorithm that given a block graph
G outputs a CFON-coloring C using at most three colors 1, 2, 3. For convenience,
let us also specify a mapping h that maps each vertex v ∈ G to one of its uniquely
colored neighbors w ∈ N(v). We use the fact that block-graphs are exactly the
diamond-free chordal graphs (a diamond is a K4 with one edge removed) [3]. As
usual, we assume that G is connected and contains at least one edge uv. Color
C(u) = 1 and C(v) = 2. Color every vertex w ∈ (N(u) ∪ N(v)) \ {u, v} with
C(w) = 3. Assign h(w) = v for every w ∈ N(v), and assign h(w) = u for every
w ∈ N(u) \N(v).

Let Gv contain every connected component of G\{u, v} that contains a vertex
from N(v). Similarly, let Gu contain every connected component of G \ {u, v}
that contains a vertex from N(u) \N(v).

Claim (?). The sets V (Gu) and V (Gv) are disjoint.

We color every vertex x ∈ V (Gv) in distance 2, 3, 4, 5, 6, 7, . . . from v in graph
Gv with colors 1, 2, 3, 1, 2, 3, . . . periodically. We assign h(x) for x ∈ V (Gv)
in distance i ≥ 2 to v to an arbitrary neighbor y ∈ N(x) that has distance
i − 1 to v in graph Gv. Similarly we color every vertex x ∈ V (Gu) in distance
2, 3, 4, 5, 6, 7, . . . from u in Gu with colors 2, 1, 3, 2, 1, 3, . . . periodically. Again,
let h(x) for x ∈ V (Gu) in distance i ≥ 2 to u map to an arbitrary neighbor
y ∈ N(x) in distance i− 1 to u in graph Gu. ut

Lemma 9. There is block graph G with χ∗ON (G) > 2.
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Fig. 1. A block graph G with χ∗ON (G) > 2.

Proof. Let G have vertex set {`,m, r}∪
⋃
i∈{1,2,3}{x`i , x

`
i , x

r
i , x

r
i }, see also Fig. 1.

Let the edge set be defined by the set of maximal cliques {xs1, xs2, xs3, s,m} and
{xis, xis} for every s ∈ {`, r} and i ∈ {1, 2, 3}. It is easy to see that G is a block
graph. To prove that χ∗ON (G) > 2, assume, for the sake of contradiction, that
there is χ∗ON -coloring C : V → {0, 1, 2}. Then there is a mapping h on V that
assigns each vertex v ∈ V (G) its uniquely colored neighbor w ∈ N(v). Note that
xsi , for s ∈ {`, r} and i ∈ {1, 2, 3}, has to be colored 1 or 2, since it is the only
neighbor of xsi . Further, we may assume that h(m) ∈ {`, x`1} and C(h(m)) = 2
because of symmetry.

First consider that h(m) = ` and C(`) = 2. Then C(xsi ) = 1 for every
s ∈ {`, r} and i ∈ {1, 2, 3}. It follows that h(`) = m and hence C(m) = 2. Then
however C{{}}(N(x`1)) ⊇ {{1, 1, 2, 2}}, a contradiction.

Thus it remains to consider that h(m) = x`1 and C(x`1) = 2. Then C(xsi ) = 1
for every xsi with (s, i) ∈ {`, r} × [3] \ (`, 1). It follows that h(r) = m and hence
C(m) = 2. Then however C{{}}(N(`)) = {{1, 1, 2, 2}}, also a contradiction.

Since both cases lead to a contradiction, it must be that χ∗ON (G) > 2. ut

Since a block graph G have clique width at most 3, and since χ∗ON (G) ≤ 3, we
may use Theorem 4 to decide the CFON* problem for block graphs in polynomial
time.

Corollary 10. For block graphs, CFON* is polynomial time solvable.

By observing that the number of colors required is constant, we have the
following analogous result on the CFCN* problem. However, we also present a
direct proof using a characterization of block graphs G with χ∗CN (G) = 1.

Theorem 11 (?). If G is a block graph, then χ∗CN (G) ≤ 2. The CFCN* problem
is polynomial time solvable on block graphs.

We now consider the problem on cographs, and obtain Theorem 13, the proof
of which is omitted.

Definition 12 (Cograph [6]). A graph G is a cograph if G consists of a single
vertex, or if it can be constructed from a single vertex graph using the disjoint
union and complement operations.

Theorem 13 (?). The CFON* and the CFCN* problems are polynomial time
solvable on cographs.
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Since constant bounds for the partial coloring variants imply constant bounds
for the full coloring variants and since block graphs and cographs have clique
width at most 3, we have the following.

Theorem 14. The CFON and the CFCN problems are polynomial time solvable
on block graphs and cographs.

5 Interval Graphs

In this section, we show three colors are sufficient and sometimes necessary to
CFON* color an interval graph. For proper interval graphs, we show that two
colors are sufficient. We also show that the CFCN* problem is polynomial time
solvable on interval graphs.

Definition 15 (Interval Graph). A graph G = (V,E) is an interval graph
if there exists a set I of intervals on the real line such that there is a bijection
f : V → I satisfying the following: {v1, v2} ∈ E if and only if f(v1)∩ f(v2) 6= ∅.

For an interval graph G, we refer to the set of intervals I as the interval repre-
sentation of G. An interval graph G is a proper interval graph if it has an interval
representation I such that no interval in I is properly contained in any other
interval of I. An interval graph G is a unit interval graph if it has an interval
representation I where all the intervals are of unit length. It is known that the
class of proper interval graphs and unit interval graphs are the same [10].

Lemma 16 (?). If G is an interval graph, then χ∗ON (G) ≤ 3.

u

u′ u′′ u?

v

v′ v′′ w? w′ w′′

w

Fig. 2. On the left hand side, we have the graph G′, and on the right hand side we
have an interval graph representation of G, a graph where χON (G) > 3. The graph G
is obtained by replacing each vertex u, v, w, u?, v? of G′ with a 3-clique and replacing
u′, u′′.v′, v′′, w′, w′′ by a 4-clique.

The bound of χ∗ON (G) ≤ 3 for interval graphs is tight. In particular, there is
an interval graph G (see Fig. 2) that cannot be colored with three colors when
excluding the dummy-color 0. That shows the stronger result χON (G) > 3, which
implies that χ∗ON (G) > 2.

Lemma 17 (?). There is an interval graph G such that χON (G) > 3 (and thus
χ∗ON (G) ≥ 3).

Lemma 18. If G is a proper interval graph, then χ∗ON (G) ≤ 2.
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Proof. Let I be a unit interval representation of G. We denote the left endpoint
of an interval I by L(I). We assign C : I → {1, 2, 0} which will be a CFON*
coloring.

At each iteration i, we pick two intervals Ii1, I
i
2 ∈ I. The interval Ii1 is the

interval whose L(Ii1) is the least among intervals for which C has not been
assigned. The interval Ii2 is a neighbor of Ii1, whose L(Ii2) is the greatest. It
might be the case that C has been already assigned for all neighbors of Ii1. This
can happen only in the very last iteration of the algorithm. Depending on this,
we have the following two cases.

– Case 1: Ii1 has neighbors for which C is unassigned.
We assign C(Ii1) = 1 and C(Ii2) = 2. All other intervals adjacent to Ii1 and
Ii2 are assigned the color 0.
Now, we argue that C is a CFON* coloring. The intervals Ii1 and Ii2 act as
the uniquely colored neighbors for each other. All intervals that are assigned
0 are adjacent to either Ii1 or Ii2, and thus will have a uniquely colored
neighbor. Notice that for every iteration i, the vertices Ii1 (or Ii2) and Ii+1

1

(or Ii+1
2 ) will have the same color. This is fine as there is no interval that

intersects both Ii1 and Ii+1
1 .

– Case 2: C is already assigned for all the neighbors of Ii1.
As mentioned before, this can happen only during the last iteration i = j.
In this case, Ij1 is the only interval for which C is yet to be assigned. Choose

an interval Im ∈ N(Ij−12 )∩N(Ij1). Such an Im exists, else I is disconnected.

We reassign C(Ij−11 ) = 0, C(Ij−12 ) = 1, C(Im) = 2 and assign C(Ij1) = 0.
The assignment of colors in iterations 1 ≤ i ≤ j − 2 are unchanged. Though
C(Ij−11 ) is changed to 0, this does not affect any interval, since there are no

intervals which depend only on Ij−11 for their uniquely colored neighbor. If

there was such an interval, this would contradict the choice of Ij−11 .

For the intervals Ij−12 and Ij1 , we have the interval Im as the uniquely colored

neighbor and for the interval Im, we have the interval Ij−12 as the uniquely
colored neighbor. ut

It is known [9] that 2 colors suffice to CFCN* color an interval graph. We
show that the CFCN* problem is polynomial time solvable on interval graphs
using a characterization.

Theorem 19 (?). CFCN* problem is polynomial time solvable on interval graphs.

6 Unit Square and Unit Disk Intersection Graphs

Unit square (respectively, unit disk) intersection graphs are intersection graphs
of unit sized squares (resp., disks) in the Euclidean plane. It is shown in [9]
that χ∗CN (G) ≤ 4 for a unit square intersection graph G. They also showed that
χ∗CN (G) ≤ 6 for a unit disk intersection graph G. We study the CFON* problem
on these graphs and get the following constant upper bounds. To the best of our
knowledge, no upper bound was previously known on unit square and unit disk
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graphs for CFON* coloring. Due to space constraints, the proofs of the following
theorems are omitted.

Theorem 20 (?). If G is a unit square intersection graph, then χ∗ON (G) ≤ 27.

Theorem 21 (?). If G is a unit disk intersection graph, then χ∗ON (G) ≤ 51.

7 Kneser Graphs and Split Graphs

In this section, we study the CFON* and the CFCN* colorings of Kneser graphs
and split graphs. For Kneser graphs K(n, k), we show that χ∗ON (K(n, k)) = k+1
when n ≥ k(k+ 1)2 + 1 and show bounds for χ∗CN (K(n, k)). For split graphs, we
show that CFON* problem is NP-complete and CFCN* problem is polynomial
time solvable.

Definition 22 (Kneser graph). The Kneser graph K(n, k) is the graph whose

vertices are
(
[n]
k

)
, the k-sized subsets of [n], and the vertices x and y are adjacent

if and only if x ∩ y = ∅ (when x and y are viewed as sets).

Theorem 23 (?). χ∗ON (K(n, k)) ≤ k + 1, for n ≥ 3k − 1. Further when n ≥
k(k + 1)2 + 1, χ∗ON (K(n, k)) = k + 1.

It is easy to see that a proper coloring of a graph G is also a CFCN* coloring.
Since χ(K(n, k)) ≤ n − 2k + 2 [14], we have that χ∗CN (K(n, k)) ≤ n − 2k + 2.
We show the following:

Theorem 24 (?). χ∗CN (K(n, k)) ≤ n − 2k + 1, for 2k + 1 ≤ n ≤ 3k − 1. For
the case when n ≥ 3k, we have χ∗CN (K(n, k)) ≤ k.

Definition 25 (Split Graph). A graph G = (V,E) is a split graph if there
exists a partition of V = K ∪ I such that the graph induced by K is a clique and
the graph induced by I is an independent set.

Theorem 26 (?). The CFON* problem is NP-complete on split graphs.

Theorem 27. The CFCN* problem is polynomial time solvable on split graphs.

The proof of Theorem 27 is through a characterization. We first show that
for split graphs G, χ∗CN (G) ≤ 2. Then we characterize split graphs G for which
χ∗CN (G) = 1 thereby proving Theorem 27.

Lemma 28. If G = (V,E) is a split graph, then χ∗CN (G) ≤ 2.

Proof. Let V = K ∪ I be a partition of vertices into a clique K and an inde-
pendent set I. We use C : V → {1, 2, 0} to assign colors to the vertices of V .
Choose an arbitrary vertex u ∈ K and assign C(u) = 2. The remaining vertices
(if any) in K \ {u} are assigned the color 0. For every vertex v ∈ I, we assign
C(v) = 1. Each vertex in I will have itself as the uniquely colored neighbor and
every vertex in K will have the vertex u as the uniquely colored neighbor. ut
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We now characterize split graphs that are CFCN* colorable using one color.

Lemma 29. Let G = (V,E) be a split graph with V = K ∪ I, where K and I
are the clique and independent sets respectively. We have χ∗CN (G) = 1 if and
only if at least one of the following is true: (i) G has a universal vertex, or (ii)
∀v ∈ K, |N(v) ∩ I| = 1.

Proof. We first prove the reverse direction. If there exists a universal vertex
u ∈ V , then we assign the color 1 to u and assign the color 0 to all vertices in
V \ {u}. This is a CFCN* coloring.

Suppose5 ∀v ∈ K, |N(v) ∩ I| = 1. We assign the color 1 to each vertex in I
and color 0 to the vertices in K. Each vertex in I acts as the uniquely colored
neighbor for itself and for its neighbor(s) in K.

For the forward direction, let C : V → {1, 0} be a CFCN* coloring of G.
We further assume that ∃y ∈ K, |N(y) ∩ I| 6= 1 and show that there exists a
universal vertex. We assume that |K| ≥ 2 and |I| ≥ 1 (if either assumption is
violated, G has a universal vertex). We first prove the following claim.

Claim. Exactly one vertex in K is assigned the color 1.

Proof. Suppose not. Let two vertices v, v′ ∈ K be such that C(v) = C(v′) = 1.
Then none of the vertices in K have a uniquely colored neighbor.

Suppose if all vertices in K are assigned the color 0. For vertices in I to have
a uniquely colored neighbor, each vertex in I has to be assigned the color 1. By
assumption, ∃y ∈ K such that |N(y) ∩ I| 6= 1. This means that y does not have
a uniquely colored neighbor. ut

Now we show that there is a universal vertex in K.
By the above claim, there is a unique vertex v ∈ K such that C(v) = 1.

We will show that v is a universal vertex. Suppose not. Let w′ /∈ N(v) ∩ I. For
w′ to have a uniquely colored neighbor, either w′ or one of its neighbors in K
has to be assigned the color 1. The latter is not possible because v is the lone
vertex in K that is colored 1. If C(w′) = 1, then its neighbor(s) in K does not
have a uniquely colored neighbor because of the vertices w′ and v. Hence, v is a
universal vertex. ut

From Lemmas 28 and 29, we get Theorem 27.

8 Conclusion

We gave an FPT algorithm for conflict-free coloring for the combined parameters
clique width w and number of colors k. Since the problem is NP-hard for constant
number of colors k, it is unlikely to be FPT with respect to k only. However an
interesting open question is whether this result can be strengthened to an FPT
algorithm for parameter clique width w only. To the best of our knowledge, it

5 This case also captures the case when K is empty.
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is open whether there is some bound of any conflict-free chromatic number by
the clique width. If there exists such a bound, our algorithm would also be a
fixed-parameter tractable algorithm for parameter w only.

Further we showed a constant upper bound of conflict-free chromatic numbers
for several graph classes. For most of them we established matching or almost
matching lower and upper bounds for their conflict-free chromatic numbers. For
unit square and square disk graphs there still is a wide gap, and it would be
interesting to improve those bounds.
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