
Conflict-free Coloring Bounds on Open
Neighborhoods?

Sriram Bhyravarapu, Subrahmanyam Kalyanasundaram ??, and Rogers
Mathew

Department of Computer Science and Engineering, IIT Hyderabad
{cs16resch11001, subruk, rogers}@iith.ac.in

Abstract. In an undirected graph G, a conflict-free coloring with re-
spect to open neighborhoods (denoted by CFON coloring) is an assign-
ment of colors to the vertices such that every vertex has a uniquely
colored vertex in its open neighborhood. The minimum number of colors
required for a CFON coloring of G is the CFON chromatic number of G,
denoted by χON (G).
The decision problem that asks whether χON (G) ≤ k is NP-complete.
Structural as well as algorithmic aspects of this problem have been well
studied. We obtain the following results for χON (G):
– Bodlaender, Kolay and Pieterse [WADS 2019] showed the upper

bound χON (G) ≤ fvs(G) + 3, where fvs(G) denotes the size of a
minimum feedback vertex set of G. We show the improved bound
of χON (G) ≤ fvs(G) + 2, which is tight, thereby answering an open
question in the above paper.

– We study the relation between χON (G) and the pathwidth of the
graph G, denoted pw(G). The above paper from WADS 2019 showed
the upper bound χON (G) ≤ 2tw(G) + 1 where tw(G) stands for the
treewidth of G. This implies an upper bound of χON (G) ≤ 2pw(G)+
1. We show an improved bound of χON (G) ≤ b 5

3
(pw(G) + 1)c.

– We prove new bounds for χON (G) with respect to the structural
parameters neighborhood diversity and distance to cluster, improv-
ing the existing results of Gargano and Rescigno [Theor. Comput.
Sci. 2015] and Reddy [Theor. Comput. Sci. 2018], respectively. Fur-
thermore, our techniques also yield improved bounds for the closed
neighborhood variant of the problem.

– We prove bounds for Sk-free graphs where Sk is a star on k + 1
vertices. For a graph G with maximum degree ∆, it is known that
χON (G) ≤ ∆+ 1 and this bound is tight in general. When G is Sk-
free, we show that χON (G) = O(k·log2+ε∆), for any ε > 0. In partic-
ular, when G is claw-free, this implies that χON (G) = O(log2+ε∆).
Further, we show existence of claw-free graphs that require Ω(log∆)
colors.

? This paper is a combination of the articles [1, 2], the first of which appeared in
the proceedings of 46th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG2020).

?? Corresponding Author. Email: subruk@iith.ac.in

2 Bhyravarapu, Kalyanasundaram and Mathew

– We also study the partial coloring variant of the CFON coloring
problem, which allows vertices to be left uncolored. Let χ∗ON (G)
denote the minimum number of colors required to color G as per
this variant. Abel et. al. [SIDMA 2018] showed that χ∗ON (G) ≤ 8
when G is planar. They asked if fewer colors would suffice for planar
graphs. We answer this question by showing that χ∗ON (G) ≤ 5 for
all planar G. This approach also yields the bound χ∗ON (G) ≤ 4 for
all outerplanar G.

All our bounds are a result of constructive algorithmic procedures.

1 Introduction

A proper coloring of a graph is an assignment of a color to every vertex of the
graph such that adjacent vertices receive distinct colors. Conflict-free coloring
is a variant of the graph coloring problem. A conflict-free coloring of a graph
G is a coloring such that for every vertex in G, there exists a uniquely colored
vertex in its neighborhood. This problem was first introduced in 2002 by Even,
Lotker, Ron and Smorodinsky [3]. This problem was originally motivated by
wireless communication systems, where the base stations and clients have to
communicate with each other. Each base station is assigned a frequency and if
two base stations with the same frequency communicate with the same client,
it leads to interference. So for each client, it is ideal to have a base station with
a unique frequency. Since each frequency band is expensive, there is a need to
minimize the number of frequencies used by the base stations.

Over the past two decades, this problem has been very well studied, see for
instance the survey by Smorodinsky [4]. The conflict-free coloring problem has
been studied with respect to the open neighborhood and the closed neighbor-
hood. In this paper, we focus on the open neighborhood variant of the problem.

Definition 1 (Conflict-Free Coloring). A CFON coloring of a graph G =
(V,E) using k colors is an assignment C : V (G) → {1, 2, . . . , k} such that for
every v ∈ V (G), there exists an i ∈ {1, 2, . . . , k} such that |N(v) ∩ C−1(i)| = 1.
The smallest number of colors required for a CFON coloring of G is called the
CFON chromatic number of G, denoted by χON (G).

The closed neighborhood variant of the problem, CFCN coloring, is obtained
by replacing the open neighborhood N(v) by the closed neighborhood N [v] in the
above. The corresponding chromatic number is denoted by χCN (G).

The CFON coloring problem and many of its variants are known to be NP-
complete [5, 6]. It was further shown in [6] that the CFON coloring problem
is hard to approximate within a factor of n1/2−ε, unless P = NP. Since the
problem is NP-hard, the parameterized aspects of the problem have been studied.
The problems are fixed parameter tractable when parameterized by vertex cover
number, neighborhood diversity [6], distance to cluster [7], and more recently,
treewidth [8, 9]. This problem has attracted special interest for graphs arising
out of intersection of geometric objects, see for instance, [10–12].

Conflict-free Coloring Bounds on Open Neighborhoods 3

The CFON coloring problem is considered as the harder of the open and
closed neighborhood variants, see for instance, remarks in [10, 13]. It is easy to
construct example graphs G, for which χCN (G) = 2 and χON (G) = Θ(

√
n).

Pach and Tardos [13] showed that for any graph G on n vertices, the closed
neighborhood chromatic number χCN (G) = O(log2 n). The corresponding best
bound [13, 14] for open neighborhood is χON (G) = O(

√
n).

Another variant that has been studied [5] is the partial coloring variant:

Definition 2 (Partial Conflict-Free Coloring). A partial conflict-free col-
oring on open neighborhood, denoted by CFON*, of a graph G = (V,E) using k
colors is an assignment C : V (G)→ {1, 2, . . . , k, unassigned} such that for every
v ∈ V (G), there exists an i ∈ {1, 2, . . . , k} such that |N(v) ∩ C−1(i)| = 1.

The corresponding CFON* chromatic number is denoted χ∗ON (G).

The key difference between CFON* coloring and CFON coloring is that in the
partial variant, we allow some vertices to be not assigned a color. If a graph can
be CFON* colored using k colors, then all the uncolored vertices can be assigned
the color k + 1, and thus is a CFON coloring using k + 1 colors.

2 Our Results and Discussion

In this paper, we obtain improved bounds for χON (G) under different settings.
More importantly, all our bounds are a result of constructive algorithmic proce-
dures and hence can easily be converted into respective algorithms. We summa-
rize our results below:
1. In Section 4, we show that χON (G) ≤ b 53 (pw(G) + 1)c where pw(G) denotes

the pathwidth of G. The previously best known bound in terms of pw(G)
was χON (G) ≤ 2pw(G) + 1, implied by the results in [8].
To the best of our knowledge, this is the first upper bound for χON (G) in
terms of pathwidth, which does not follow from treewidth. Our bound fol-
lows from an algorithmic procedure and uses an intricate analysis. En route,
we also define a type of path decomposition called semi-nice path decompo-
sition. We show in Theorem 6 that every graph without isolated vertices has
a semi-nice path decomposition of the same width. We are unable to gen-
eralize our bound in terms of treewidth because we crucially use Theorem
6 in our proof. It seems challenging to show a tree decomposition analogue
of Theorem 6. It will be of interest to see if this hurdle can be overcome
to obtain an equivalent bound in terms of treewidth. Independently, we are
curious to see if the notion of semi-nice path decomposition can be useful in
other problems.
There are graphs G for which χON (G) = tw(G) + 1 = pw(G). It would be
interesting to close the gaps between the respective upper and lower bounds.
We also note that there are instances where our algorithm requires 5

3pw(G)
colors, thereby demonstrating the tightness of our analysis.

2. In Section 5, we show that χON (G) ≤ fvs(G) + 2, where fvs(G) denotes the
size of a minimum feedback vertex set of G. This bound is tight and is an

4 Bhyravarapu, Kalyanasundaram and Mathew

improvement over the bound χON (G) ≤ fvs(G) + 3 by Bodlaender, Kolay
and Pieterse [8].

3. In Section 6.1, we give improved bounds with respect to neighborhood diver-
sity parameters. Gargano and Rescigno [6] showed that χON (G) ≤ χON (H)+
cl(G) + 1 and χCN (G) ≤ χCN (H) + ind(G) + 1. Here H is the type graph
of G, while cl(G) and ind(G) denote the number of cliques and independent
sets respectively in the type partition of G. We present the improvements
χON (G) ≤ χON (H) + cl(G)/2 + 2 and χCN (G) ≤ χCN (H) + ind(G)/3 + 3.
The obvious open question is to improve the bounds and/or to provide tight
examples.

4. In Section 6.2, we show that χON (G) ≤ dc(G)+3, where dc(G) is the distance
to cluster parameter of G. This is an improvement over the previous bound
[7] of 2dc(G)+ 3. Our bound is nearly tight since there are graphs for which
χON (G) = dc(G). Using a similar approach, we obtain the improved bound
χCN (G) ≤ max{3, dc(G) + 1}.
An improved bound of χON (G) ≤ dc(G)+1 was shown in a subsequent work
[15]. Moreover, the authors show the tightness of this bound by constructing
graphs G for which χON (G) > dc(G). We note that the tight upper bound
in [15] is accomplished using a much more involved case analysis.

5. For a graph G with maximum degree ∆, it is known that χON (G) ≤ ∆+ 1
and this bound is tight in general. We improve this result for Sk-free graphs
for most values of k. Here Sk denotes a star graph on k + 1 vertices. In
Section 7, we show that if G is Sk-free then χON (G) = O(k · log2+ε∆), for
any ε > 0. In particular, this implies that χON (G) = O(log2+ε∆) when G
is claw-free. Further, we show the existence of line graphs (which are known
to be claw-free) that require Ω(log∆) colors.

6. When G is planar, we show that χ∗ON (G) ≤ 5. This improves the previous
best known bound by Abel et al. [5] of χ∗ON (G) ≤ 8. The same approach
helps us infer that χ∗ON (G) ≤ k+1 when G is a minor-k-colorable graph. This
is discussed in Section 8. There are planar graphs G for which χ∗ON (G) = 4,
which shows that our bound is nearly tight and leaves a gap of 1 between
the upper and lower bounds.
In an independent work [16], Huang, Guo and Yuan showed that χ∗ON (G) ≤
k when G is a minor-k-colorable graph. This implies the tight bound of
χ∗ON (G) ≤ 4, for planar G. Though we obtain a weaker result, our proof is
simpler and shorter.

7. For outerplanar graphs G, the bound χ∗ON (G) ≤ 4 implies a bound of
χON (G) ≤ 5. We show a better bound of χON (G) ≤ 4.

3 Preliminaries

In this paper, we consider only simple, finite, undirected and connected graphs.
If the graph is not connected, we color each of the components independently.
Also, we assume that the graphs do not have isolated vertices as they cannot be
CFON colored. The graph induced by a set of vertices V ′ in G is denoted G[V ′].

Conflict-free Coloring Bounds on Open Neighborhoods 5

For any two vertices u, v ∈ V (G), the shortest distance between them is denoted
dist(u, v). The open neighborhood of v, denoted N(v), is the set of vertices
adjacent to v. The closed neighborhood of v, denoted N [v], is N [v] = N(v)∪{v}.
The degree of a vertex v in the graph is denoted deg(v). The distance, degree
and neighborhood restricted to a subgraph H is denoted distH(u, v), degH(v)
and NH(v) respectively. A graph G is said to be H-free if G does not contain
an H as an induced subgraph.

We denote the set {1, 2, . . . , q} by [q]. Throughout this paper, we use the
coloring functions C : V → [q] and U : V → [q] to denote the color assigned
to a vertex and a unique color in its neighborhood, respectively. For a vertex
v ∈ V (G), if there exists a vertex w ∈ N(v) such that {x ∈ N(v) \ {w}: C(x) =
C(w)} = ∅, then w is called a uniquely colored neighbor of v.

4 Pathwidth

Theorem 3 (Main Pathwidth Result). Let G be a graph and let pw(G)
denote the pathwidth of G. Then there exists a CFON coloring of G using at
most b 53 (pw(G) + 1)c colors.

The proof of this theorem will be a constructive procedure that assigns colors
to the vertices of G from a set of size 5(pw(G) + 1)/3. We first formally define
pathwidth.

Definition 4 (Path decomposition [17]). A path decomposition of a graph
G is a sequence P = (X1, X2, . . . , Xs) of bags such that, for every p ∈ {1, 2, . . . , s},
we have Xp ⊆ V (G) and the following hold:

– For each vertex v ∈ V (G), there is a p ∈ {1, 2, . . . , s} such that v ∈ Xp.
– For each edge {u, v} ∈ E(G), there is a p ∈ {1, 2, . . . , s} such that u, v ∈ Xp.
– If v ∈ Xp1 and v ∈ Xp2 for some p1 ≤ p2, then v ∈ Xp for all p1 ≤ p ≤ p2.

The width of a path decomposition (X1, X2, . . . , Xs) is max1≤p≤s{|Xp| − 1}.
The pathwidth of a graph G, denoted pw(G), is the minimum width over all
path decompositions of G. For the purposes of our algorithm, we need the path
decomposition to satisfy certain additional properties too. We require every in-
coming vertex to have a neighbor in the bag where it is introduced. Towards this
end, we define the following type of path decomposition.

Definition 5 (Semi-Nice Path Decomposition). A path decomposition P =
(X1, X2, . . . , Xs) is called a semi-nice path decomposition if X1 = Xs = ∅ and
for all p ∈ {2, . . . , s}, exactly one of the following holds:

SN1. There is a vertex v such that v /∈ Xp−1 and Xp = Xp−1 ∪ {v}. In this
case, we say that Xp introduces v. Further, when Xp introduces v, it must
be the case that N(v) ∩Xp 6= ∅.

SN2. There is a vertex v such that v ∈ Xp−1 and Xp = Xp−1\{v}. In this case,
we say Xp forgets v.

6 Bhyravarapu, Kalyanasundaram and Mathew

SN3. There is a pair of vertices v, v̂ such that v, v̂ /∈ Xp−1 and Xp = Xp−1 ∪
{v, v̂}. We call such a bag Xp a special bag that introduces v and v̂. Further,
in a special bag Xp that introduces v and v̂, it must be true that N(v)∩Xp =
{v̂} and N(v̂) ∩Xp = {v}.

We first note that the every graph without isolated vertices has a semi-nice
path decomposition of width pw(G).

Theorem 6. Let G be a graph that has no isolated vertices. Then it has a semi-
nice path decomposition of width pw(G).

The proof of the above theorem is deferred to Section 4.1, after the proof of the
main theorem of this section.
AlgorithmWe start with a semi-nice path decomposition P = (X1, X2, . . . , Xq)
of width pw(G). We process each bag in the order X1, X2, . . . , Xq. As we en-
counter each bag, we assign to the vertices in the bag a color C : V (G) →
[5(pw(G) + 1)/3]. We will also identify a unique color (from its neighborhood)
for each vertex U : V (G) → [5(pw(G) + 1)/3]. We color the bags such that the
below are satisfied:

Invariant 1. For any bag X, if v, v′ ∈ X, then C(v) 6= C(v′).
Invariant 2. Suppose we have processed bags X1 to Xp, where p ≥ 2. At

this point, the induced graph G[∪1≤j≤pXj] is CFON colored.
Invariant 3. For every vertex v that appears in the bags processed, U(v)

is set as C(w) for a neighbor w of v. Once U(v) is assigned, it is ensured
that for all “future” neighbors v′ of v, C(v′) 6= U(v), thereby ensuring
that U(v) is retained as a unique color in N(v).

Definitions required for the algorithm: For each bag X, we define the set
of free colors, as F (X) = {U(x) : x ∈ X} \ {C(x) : x ∈ X}. That is, F (X) is the
set of colors that appear in X as unique colors of vertices in X, but not as colors
of any vertex. Further, we partition F (X) into two sets F1(X) and F>1(X).
They are defined as F1(X) = {c ∈ F (X) : |{x ∈ X : U(x) = c}| = 1} and
F>1(X) = {c ∈ F (X) : |{x ∈ X : U(x) = c}| > 1}. A vertex v that appears in a
bag X is called a needy vertex (or simply needy) in X, if U(v) ∈ F (X). For a bag
X, we say that a set S ⊆ X is an expensive subset if |∪w∈S{C(w), U(w)}| = 2|S|.

When going through the sequence of bags in the semi-nice path decompo-
sition, the bags X that forget a vertex only contain vertices that have already
been assigned colors and hence no action needs to be taken. When we move from
a bag X ′ to the next bag X that introduces either one vertex or two vertices,
we need to handle the introduced vertices. Let us first consider the bags that
introduce one vertex, say v. For all bags that introduce one vertex, we assign
C(v) and U(v) as per the below rules.

Conflict-free Coloring Bounds on Open Neighborhoods 7

For bags that introduce one vertex v

Rule 1 for assignment of C(v):
– If there exists a color c ∈ F1(X

′) \ {U(x) : x ∈ N(v) ∩X ′}, then we
assign C(v) = c. If there are more than one such color c, choose a c such
that |{x : x ∈ X ′, C(U−1(c)) = U(x)}| is minimized. Note that for all
c ∈ F1(X

′), there is a unique vertex w ∈ X ′ such that U(w) = c, and
hence U−1(c) is well defined.

– If F1(X
′) \ {U(x) : x ∈ N(v) ∩X ′} = ∅, we check if there exists a color

c ∈ F>1(X
′)\{U(x) : x ∈ N(v)∩X ′}. If so, we assign C(v) = c. If there

are multiple such c, then we choose one arbitrarily.
– If F1(X

′) ∪ F>1(X
′) \ {U(x) : x ∈ N(v) ∩ X ′} = ∅, then there are no

free colors that can be assigned as C(v). We assign C(v) to be a new
color (a color not in ∪x∈X′{C(x), U(x)}).

Rule 2 for assignment of U(v): We assign U(v) = C(y), where y ∈ X ′ is
a neighbor of v. Such a y exists by Theorem 6. If v has multiple neighbors,
we follow the below priority order:
– If v has needy vertices in X ′ as neighbors, we choose y as a needy

neighbor such that |{x : x ∈ X ′, U(y) = U(x)}| is minimized.
– If v does not have needy vertices in X ′ as neighbors, then we choose
y ∈ X ′ arbitrarily from the set of neighbors of v.

Now let us consider the case where the bag X is a special bag that introduces
two vertices v and v̂. We assign C(v), C(v̂), U(v), U(v̂) as per the following:

For special bags that introduce two vertices v and v̂

For assignment of C(v) and C(v̂): We select one of v and v̂ arbitrarily,
say v, to be colored first. We use Rule 1 to assign C(v) and then C(v̂), in
that order. One point to note is that during the application of Rule 1 here,
the part {U(x) : x ∈ N(v) ∩X ′} will not feature as neither v nor v̂ have
neighbors in X ′.
For assignment of U(v) and U(v̂): Assign U(v) = C(v̂) and U(v̂) = C(v).

It can easily be checked that the above rules maintain the invariants 1, 2 and
3 stated earlier and hence the algorithm results in a CFON coloring of G. What
remains is to show that 5(pw(G) + 1)/3 colors are sufficient. We first prove a
technical result.

Theorem 7 (Technical Pathwidth Result). During the course of the algo-
rithm, let k be the size of the largest expensive subset out of all the bags in the
path decomposition. Then there must exist a bag of size at least 3k/2.

Proof. In the sequence of bags seen by the algorithm, let X be the first bag
that has an expensive subset of size k. We show that |X| ≥ 3k/2. Let S =

8 Bhyravarapu, Kalyanasundaram and Mathew

{v1, v2, . . . , vk} ⊆ X be an expensive subset of size k. For each vi, let C(vi) =
2i− 1 and U(vi) = 2i.

Let X ′ be the bag that precedes X in the sequence. By the choice of X, no
k-expensive subset is present in X ′. It follows that S 6⊆ X ′. Hence the bag X
must introduce a vertex1 that belongs to S. Without loss of generality, let vk be
this vertex introduced in X. Further wlog, let v1, . . . , vr be the needy vertices
(in X ′) of S for some 1 ≤ r ≤ k. If none of the vertices in S are needy, then we
have that |X| ≥ 2|S| = 2k and the theorem holds. So we can assume that r ≥ 1.

Since the vertices v1, . . . , vr are needy in X ′, we have {2, 4, . . . , 2r} ⊆ F (X ′).
The vertices vr+1, . . . , vk are not needy because there exist distinct vertices
Z = {zr+1, . . . , zk} in the bag X such that C(zi) = U(vi) = 2i for r+1 ≤ i ≤ k.
We have three cases. In Cases 1 and 2, X is a bag that introduces one vertex
vk. Case 1 is when none of the colors in F (X ′) was eligible to be assigned
as C(vk). Hence C(vk) is assigned from outside the set ∪x∈X′{C(x), U(x)}.
Case 2 is when there are eligible colors in F (X ′), and C(vk) is chosen from
F (X ′) ⊆ ∪x∈X′{C(x), U(x)}. Case 3 is when X is a special bag that introduces
two vertices.

Case 1: X is a bag that introduces one vertex vk and 2k−1 /∈ {U(x) : x ∈ X ′}.
There is no vertex x ∈ X with U(x) = 2k − 1. To assign a color to vk, the
algorithm chose a new color. This means that F (X ′)\{U(x) : x ∈ N(vk)∩X ′} =
∅. In particular, for each 1 ≤ i ≤ r, there2 exists v′i ∈ N(vk) ∩ X ′ such that
U(v′i) = 2i. Hence the colors 2i, for 1 ≤ i ≤ r cannot be assigned as C(vk). By
Rule 2, we must set U(vk) to be the C(y) where y is a needy neighbor of vk.
Hence C(y) = 2k.

If U(y) /∈ {1, 2, 3, . . . , 2k − 2}, then (S ∪ {y}) \ {vk} is a k-expensive subset
in X ′, the predecessor of X. This contradicts the choice of X. Hence we can
assume that U(y) ∈ {1, 2, 3, . . . , 2k−2}. Since y is needy in X ′, U(y) is not C(v)
for any v ∈ X ′ and hence we conclude U(y) /∈ {1, 3, . . . , 2k − 3}. Further, colors
from {2(r+1), 2(r+2), . . . , 2k−2} appear as C(z) for the vertices z ∈ Z. Hence
U(y) ∈ {2, 4, 6, . . . , 2r}.

Let U(y) = 2j for some 1 ≤ j ≤ r. Notice that U(vj) = 2j as well, giving us
|{x : x ∈ X ′, U(y) = U(x)}| ≥ 2.

By Rule 2, we chose U(vk) = C(y), where y is the needy neighbor that
minimizes |{x : x ∈ X ′, U(y) = U(x)}|. We chose y over other needy neighbors
v′1, . . . , v

′
r of vk. Hence there exist r distinct vertices Y = {y1, . . . , yr} in the bag

X, disjoint from S, such that U(yi) = U(v′i) = 2i for each 1 ≤ i ≤ r.
Note that the set Y ∪Z must be disjoint from S, but Y and Z may intersect

with each other. Since |Y | + |Z| = k, we have |Y ∪ Z| ≥ k/2 and therefore
|X| ≥ |S|+ |Y ∪ Z| ≥ 3k/2.

1 In the case where X is a special bag that introduces two vertices, at most one of the
two introduced vertices can be part of an expensive subset.

2 The vertex v′i may or may not be the same as vi.

Conflict-free Coloring Bounds on Open Neighborhoods 9

Case 2: X is a bag that introduces one vertex vk and 2k−1 ∈ {U(x) : x ∈ X ′}.
This means that F (X ′) \ {U(x) : x ∈ N(vk) ∩ X ′} 6= ∅. In this case, C(vk) =
U(w) = 2k − 1, for a vertex w that is needy in X ′, chosen according to Rule 1.

If C(w) /∈ {1, 2, 3, . . . , 2k − 2}, then (S ∪ {w}) \ {vk} is an expensive subset
of size k in X ′, the predecessor of X. This contradicts the choice of X. Hence
C(w) ∈ {1, 2, 3, . . . , 2k − 2}. By invariant 1, for any v, v′ ∈ X ′, we have C(v) 6=
C(v′). We can rule out the colors {1, 3, . . . , 2k − 3} since they appear as C(vi),
for 1 ≤ i ≤ k− 1. We can also rule out the colors {2, 4, . . . , 2r} since the vertices
vi are needy for 1 ≤ i ≤ r. Hence C(w) ∈ {2(r + 1), 2(r + 2), . . . , 2k − 2}. Let
C(w) = 2j for some r + 1 ≤ j ≤ k − 1. Since U(vj) = 2j, we have |{x : x ∈
X ′, C(w) = U(x)}| ≥ 1.

Without loss of generality, let {2, 4, . . . , 2`} ⊆ {U(x) : x ∈ N(vk) ∩X ′} and
{2(`+1), . . . , 2r}∩ {U(x) : x ∈ N(vk)∩X ′} = ∅ for some 0 ≤ ` ≤ r. Clearly, we
cannot choose C(vk) from {2, 4, . . . , 2`}. Let us try to understand why 2k − 1
was chosen as C(vk) over elements of {2(`+ 1), . . . , 2r}. We have two subcases.

– 2k − 1 ∈ F1(X
′). Then w is the lone vertex in X ′ such that U(w) = 2k − 1.

Without loss of generality, let colors 2(`+1), . . . , 2`′ ∈ F1(X
′) and let 2(`′+

1), . . . , 2r ∈ F>1(X
′) for some ` < `′ ≤ r.

As per Rule 1, 2k − 1 was chosen as a color c ∈ F1(X
′) \ {U(x) : x ∈

N(vk) ∩ X ′} that minimizes |{x : x ∈ X ′, C(U−1(c)) = U(x)}|. Since |{x :
x ∈ X ′, C(w) = U(x)}| ≥ 1, for each ` + 1 ≤ i ≤ `′, we have |{x : x ∈
X ′, C(U−1(2i)) = U(x)}| = |{x : x ∈ X ′, C(vi) = U(x)}| = |{x : x ∈
X ′, 2i− 1 = U(x)}| ≥ 1. So there exists a set W ′ = {w`+1, . . . , w`′} (disjoint
from S) such that U(wi) = 2i− 1, for each `+ 1 ≤ i ≤ `′.
Since 2(`′ + 1), . . . , 2r ∈ F>1(X

′), we have a set W ′′ = {w`′+1, . . . , wr}
(disjoint from S) such that U(wi) = U(vi) = 2i, for each `′ + 1 ≤ i ≤ r.
Thus we have W =W ′ ∪W ′′ such that |W | = r − ` that is disjoint from S.

– 2k − 1 ∈ F>1(X
′). Since a member of F>1(X

′) was chosen, it follows that
F1(X

′) \ {U(x) : x ∈ N(vk) ∩X ′} = ∅. Hence {2(`+ 1), . . . , 2r} ⊆ F>1(X
′).

So we have a set W = {w`+1, . . . , wr} (disjoint from S) such that U(wi) =
U(vi) = 2i, for each ` + 1 ≤ i ≤ r. Thus we have W with |W | = r − ` that
is disjoint from S.

If ` = 0, then |W | = r, giving us |X| ≥ |S| + |W ∪ Z| ≥ 3k/2. In what
follows, we will assume ` ≥ 1. That is, vk has at least one needy neighbor. Recall
that {2, 4, . . . , 2`} ⊆ F (X ′) ∩ {U(x) : x ∈ N(vk) ∩ X ′}. For 1 ≤ i ≤ `, let
v′i ∈ N(vk) ∩X ′ such that3 U(v′i) = 2i.

Now let us see how U(vk) was assigned as 2k. By Rule 2, U(vk) is set to C(y)
such that y is a needy neighbor that minimizes |{x : x ∈ X ′, U(y) = U(x)}|. So
C(y) = 2k. If U(y) /∈ {1, 2, . . . , 2k − 2}, then (S ∪ {y}) \ {vk} is a k-expensive
subset in X ′, contradicting the choice of X. So U(y) ∈ {1, 2, 3, . . . , 2k−2}. Since
y is needy, as in Case 1, we can rule out {1, 3, . . . , 2k − 3} ∪ {2(r + 1), 2(r +
2), . . . , 2k − 2}. So U(y) ∈ {2, 4, 6, . . . , 2r}.

3 The vertices v′i may or may not be the same as vi.

10 Bhyravarapu, Kalyanasundaram and Mathew

Let U(y) = 2j′, where 1 ≤ j′ ≤ r. Since U(vj′) = 2j′ as well, we have
|{x : x ∈ X ′, U(y) = U(x)}| ≥ 2. All of v′1, . . . , v′` are needy and neighbors to vk.
Since y was chosen over these vertices, it follows that there exists a set of vertices
Y = {y1, . . . , y`}, disjoint from S such that U(yi) = U(v′i) = 2i, for 1 ≤ i ≤ `.

The sets W and Y are disjoint, but need not be disjoint from Z. Since
|W ∪ Y | = r and |Z| = k − r, we have |W ∪ Y ∪ Z| ≥ k/2. Since W,Y,Z are all
disjoint from S, we have that |X| ≥ |S|+ |W ∪ Y ∪ Z| ≥ 3k/2.

Case 3: X is a special bag that introduces vk and v̂k. If F (X ′) = ∅, then none
of the k − 1 vertices in S ∩ X ′ are needy in X ′. Hence |X ′| ≥ 2(k − 1). This
implies that |X| ≥ 2(k − 1) + 2 = 2k and we are done.

Else, |F (X ′)| ≥ 1. Let us first note that since S is an expensive subset,
so is S ∪ {v̂k} \ {vk}. Since |F (X ′)| ≥ 1, at least one of C(vk) or C(v̂k) will
be chosen from F (X ′). Without loss of generality, let vk be a vertex such that
C(vk) ∈ F (X ′). Let C(vk) = U(w) = 2k − 1, where w is a needy vertex in X ′,
chosen according to Rule 1.

If C(w) /∈ {1, 2, 3, . . . , 2k − 2}, then (S ∪ {w}) \ {vk} is an expensive subset
of size k in X ′, the predecessor of X. This contradicts the choice of X. Hence
C(w) ∈ {1, 2, 3, . . . , 2k − 2}. By invariant 1, for any v, v′ ∈ X ′, we have C(v) 6=
C(v′). We can rule out the colors {1, 3, . . . , 2k − 3} since they appear as C(vi),
for 1 ≤ i ≤ k− 1. We can also rule out the colors {2, 4, . . . , 2r} since the vertices
vi are needy for 1 ≤ i ≤ r. Hence C(w) ∈ {2(r + 1), 2(r + 2), . . . , 2k − 2}. Let
C(w) = 2j for some r + 1 ≤ j ≤ k − 1. Since U(vj) = 2j, we have |{x : x ∈
X ′, C(w) = U(x)}| ≥ 1.

Since {2, 4, · · · , 2r} ⊆ F (X ′), let us see why 2k− 1 was chosen as C(vk) over
these colors. We have two subcases.

– 2k − 1 ∈ F1(X
′). Then w is the lone vertex in X ′ such that U(w) = 2k − 1.

Without loss of generality, let colors 2, 4, . . . , 2`′ ∈ F1(X
′) and let 2(`′ +

1), . . . , 2r ∈ F>1(X
′) for some 0 < `′ ≤ r.

As per Rule 1, 2k − 1 was chosen as a color c ∈ F1(X
′) that minimizes

|{x : x ∈ X ′, C(U−1(c)) = U(x)}|. Since |{x : x ∈ X ′, C(w) = U(x)}| ≥ 1,
for each 1 ≤ i ≤ `′, we have |{x : x ∈ X ′, C(U−1(2i)) = U(x)}| = |{x : x ∈
X ′, C(vi) = U(x)}| = |{x : x ∈ X ′, 2i − 1 = U(x)}| ≥ 1. So there exists a
set W ′ = {w1, . . . , w`′} (disjoint from S) such that U(wi) = 2i− 1, for each
1 ≤ i ≤ `′.
Since 2(`′ + 1), . . . , 2r ∈ F>1(X

′), we have a set W ′′ = {w`′+1, . . . , wr}
(disjoint from S) such that U(wi) = U(vi) = 2i, for each `′ + 1 ≤ i ≤ r.
Thus we have W =W ′ ∪W ′′ such that |W | = r that is disjoint from S.

– 2k − 1 ∈ F>1(X
′). Since a member of F>1(X

′) was chosen, it follows that
F1(X

′) = ∅. Hence {2, 4, . . . , 2r} ⊆ F>1(X
′). So we have a setW = {w1, . . . , wr}

(disjoint from S) such that U(wi) = U(vi) = 2i, for each 1 ≤ i ≤ r. Thus we
have W with |W | = r that is disjoint from S.

In either case, we have W that is disjoint from S and |W | = r. Recall that
we also have Z disjoint from S, such that |Z| = k − r. Thus we get that |X| ≥
|S|+ |W ∪ Z| ≥ 3k/2. ut

Conflict-free Coloring Bounds on Open Neighborhoods 11

Now we prove the main theorem of this section.

Proof (Proof of Theorem 3). We apply the algorithm in a nice path decompo-
sition of G, which satisfies the condition in Theorem 6. As stated before, the
correctness follows by the stated invariants, and what remains to be shown is
the bound on the number of colors necessary.

Consider any bag X of the path decomposition. Then we have

| ∪w∈X {C(w), U(w)}| = |X|+ |Extra(X)|,

where Extra(X) denotes the set of colors that feature as unique colors, but not
as colors of vertices in X.

We construct a subset Y of X as follows. For each color in Extra(X), we
include exactly one vertex y in Y such that U(y) is that color. We have |Y | =
|Extra(X)|. We also have that Y is an expensive subset of X. Since no bag is of
size bigger than pw(G) + 1, it follows that by Theorem 7 that |Y | ≤ 2(pw(G) +
1)/3. Since |Y | is an integer, we can say |Y | ≤ b2(pw(G) + 1)/3c. Hence

| ∪w∈X {C(w), U(w)}| ≤ |X|+ b2(pw(G) + 1)/3c.

In the algorithm, we need to add a new color to the bag only when a bag
X is followed by another bag that introduces a vertex. Hence we may require
one additional color, which brings the maximum number of colors needed to
|X|+b2(pw(G)+1)/3c+1 ≤ pw(G)+b2(pw(G)+1)/3c+1 = b5(pw(G)+1)/3c.

ut

Discussion: Our algorithm uses nontrivial rules to improve upon the relatively
straightforward 2tw + 1 bound from [8]. However, our bound applies to only
pathwidth and we are unable to generalize to treewidth. The main hurdle is the
requirement that every vertex has a neighbor in the bag where it is introduced.
We meet this requirement by means of Theorem 6. Such a result does not seem
to hold for treewidth.

4.1 Proof of Theorem 6

A path decomposition (X1, X2, . . . , Xs) is called a nice path decomposition if the
following hold:

– X1 = Xs = ∅.
– For all p ∈ {2, 3, . . . , s}, there is a vertex v such that either v /∈ Xp−1 and
Xp = Xp−1 ∪ {v}, or v ∈ Xp−1 and Xp = Xp−1\{v}. In the former case, we
say Xp introduces v, and in the latter case we say Xp forgets v.

It is known [17] that every graph G has a nice path decomposition of width equal
to pw(G), and that every nice path decomposition has exactly 2|V (G)|+1 bags.

Consider a nice path decomposition of the graph G. If all the vertices have
a neighbor in the bag that introduces them, then all the introduce bags satisfy
the rule SN1. Note that SN2 is the same as the rule for forget bags in a nice

12 Bhyravarapu, Kalyanasundaram and Mathew

decomposition. So if all the vertices have a neighbor in the bag where they are
introduced, then all the bags satisfy SN1 or SN2 and the nice path decomposition
is itself a semi-nice path decomposition, and we are done.

Otherwise, we explain how to convert the given nice path decomposition into
a semi-nice path decomposition. We say that a bag X is a violating bag if it
introduces a vertex v and X ∩ N(v) = ∅. The violating bags do not follow the
rules SN1, SN2, or SN3 from Definition 5. Instead they follow the below rule
SN1′.

SN1′. There is a vertex v such that v /∈ Xp−1 and Xp = Xp−1∪{v}. In this case,
we say that Xp introduces v. Further, when Xp introduces v, N(v)∩Xp = ∅.

We say that a path decomposition is a t-violating semi-nice path decomposition
if there are t violating bags and the rest of the bags obey one of the rules SN1,
SN2 or SN3 from Definition 5.

We “fix” each violating bag by modifying the path decomposition. The fix
involves delaying the introduction of a vertex until it has a neighbor, and possi-
bly creating a “special bag” that introduces two vertices. Throughout the fix-up
process, the path decomposition in hand will be a t-violating semi-nice decom-
position, with every step of the fix-up decrementing t by one. We now explain
the fix-up process.
Fix-up Process:Given a t-violating semi-nice path decomposition P = (X1, X2, . . . , Xs),
we explain how to obtain a (t− 1)-violating semi-nice path decomposition P ′.

Let Xp1 be a violating bag that introduces the vertex v, which is forgotten
by the bag Xp2 . By assumption, Xp1 ∩N(v) = ∅. Let Xq be the first bag in the
sequence that contains a neighbor of v. Since G does not have isolated vertices,
N(v) is non-empty, and hence p1 < q < p2. Let v̂ ∈ Xq be a neighbor of v. We
have two cases.
Case 1: |N(v̂) ∩ Xq| > 1. That is, v̂ has other neighbors in Xq apart from v.
We consider the following modified sequence P ′:

X1, . . . , Xp1−1, Xp1+1\{v}, Xp1+2\{v}, . . . , Xq−1\{v}, Xq\{v}, Xq, Xq+1, . . . , Xs

That is, we delay the introduction of v till its first neighbor, v̂, has been intro-
duced. It can be verified that the above sequence P ′ is a path decomposition of
the same graph G with width no more than the width of P. In the new sequence
P ′, v is introduced by Xq which is not a violating bag in P ′. Below, we explain
that the fix-up process has not introduced any new violations. Since v sees v̂ in
Xq for the first time, it follows that the bag Xq introduces v̂ in P.

We first note that Xq was not a special bag in P. To see why, let us assume
the contrary. Let Xq be a special bag in P that introduces the vertices v̂ and w.
If so, N(v̂) ∩Xq = {w} as per SN3. Hence v /∈ Xq. So we can conclude that Xq

is not a special bag, and therefore Xq introduces just one vertex v̂ as per SN1.
This means that v cannot have any other neighbors in Xq apart from v̂. Hence
v̂ is the only vertex that loses a neighbor from its introducing bag due to the
fix-up process. However, since v̂ has other neighbors in Xq apart from v, it does
not result in a violation in P ′.

Conflict-free Coloring Bounds on Open Neighborhoods 13

Case 2: |N(v̂)∩Xq| = 1. That is, v is the lone neighbor of v̂ in Xq. Since Xq is
the first bag in P that contains a neighbor of v, it follows that Xq introduces v̂.
Since v is the lone neighbor of v̂ in Xq, it follows that Xq is not a special bag in
P. Hence v̂ is the lone neighbor of v in Xq. We consider the following sequence
P ′:

X1, . . . , Xp1−1, Xp1+1\{v}, Xp1+2\{v}, . . . , Xq−1\{v}, Xq, Xq+1, . . . , Xs

We introduce v together with v̂ in the bag Xq. We have already seen that N(v)∩
Xq = {v̂} and N(v̂) ∩ Xq = {v}. Thus Xq becomes a special bag in P ′ that
introduces v and v̂. No other violations have been introduced by this because v
does not have any neighbors in Xp1+1, Xp1+1, . . . , Xq−1.

Thus by repeating this fix-up process for each of the violations, we can convert
the given nice path decomposition into a semi-nice path decomposition. ut

5 Feedback Vertex Set

Definition 8 (Feedback Vertex Set). Let G = (V,E) be an undirected graph.
A feedback vertex set (FVS) is a set of vertices S ⊆ V , removal of which from
the graph G makes the remaining graph (G[V \S]) acyclic. The size of a smallest
such set S is denoted as fvs(G).

Theorem 9. χON (G) ≤ fvs(G) + 2.

The following graph (as observed in [8]), shows that the above theorem is
tight. Let K∗n be the graph obtained by starting with the clique on n vertices,
and subdividing each edge with a vertex. Then K∗n has an FVS of size n − 2,
and it can be seen that χON (K∗n) = n.

The proof of this theorem is through a constructive process to CFON color
the vertices of the graph G, given a feedback vertex set F of G. By definition,
G[V \ F] is a collection of trees.

Each tree T in G[V \ F] is rooted at an arbitrary vertex rT . If |V (T)| ≥ 2,
we choose a neighbor of rT and call it the special vertex in T , denoted by sT .
Let v be a vertex not in T . The deepest neighbor of v in T , denoted by deepT (v),
is a vertex w ∈ V (T) ∩ N(v) such that distT (rT , w) is maximized. If there are
multiple such vertices at the same distance, the deepest neighbor is chosen to be
a vertex which is not the special vertex sT .

Lemma 10. Let T be a tree with |V (T)| ≥ 2. Then χON (T) ≤ 2.

Proof. We assign colors C : V (T)→ {1, 2} in the following manner.

– Assign C(rT) = 1 and C(sT) = 2.
– For each vertex v ∈ NT (rT) \ {sT }, assign C(v) = 1.
– For the remaining vertices v ∈ V (T), assign C(v) = {1, 2} \ C(w), where w

is the grandparent of v.

14 Bhyravarapu, Kalyanasundaram and Mathew

For each vertex v ∈ V (T)\{rT }, the uniquely colored neighbor is its parent. For
rT , the uniquely colored neighbor is sT . This is a CFON 2-coloring of T . ut

We first prove a special case of Theorem 9.

Lemma 11. Let G = (V,E) be a graph and F ⊆ V be a feedback vertex set with
|F | = 1. Then G can be CFON colored using 3 colors.

Proof. Let F = {v}. First using Lemma 10, we color all the trees T ⊆ G[V \ F]
using the colors 2 and 3, whenever |V (T)| ≥ 2. All the singleton components
of G[V \ F] are assigned the color 2. We assign C(v) = 1. Now all the vertices,
except possibly v, have a uniquely colored neighbor. We explain how to fix this
and obtain a CFON coloring.

– Case 1: There exists a singleton component {w} ⊆ G[V \ F].
Reassign C(w) = 1.

– Case 2: Else, if there exists a component T ⊆ G[V \ F], such that
either (i) deepT (v) 6= sT or (ii) deepT (v) = sT and {rT , v} /∈ E(G).
Reassign C(deepT (v)) = 1.

– Case 3: Else, for each component T ⊆ G[V \F], N(v)∩V (T) = {rT , sT }.
If there exists a component T ⊆ G[V \ F], such that |V (T)| ≥ 3, choose a
vertex w ∈ V (T) \ {rT , sT } and set w as the new root of T . Reassign sT and
the colors of V (T) accordingly. Doing so will ensure that deepT (v) 6= sT . We
apply Case 2.
Else, for all the components T ⊆ G[V \ F], we have |V (T)| = 2. Choose a
component T ′ ⊆ G[V \ F]. For all the other vertices w ∈ V \ ({v} ∪ V (T ′)),
reassign C(w) = 2.

All the trees in G[V \F] are CFON colored as per the earlier described procedure.
Even after reassigning some colors, they remain CFON colored. The vertex v sees
another vertex w, with C(w) = 1 if in Case 1 or 2. In the last case, v sees a
unique vertex that is colored 3. ut

5.1 Proof of Theorem 9

When |F | = 1, three colors are sufficient to CFON color G by Lemma 11. Now,
we consider the case when |F | ≥ 2. We assign colors C : V (G)→ [|F |+2] in such
a way that G is CFON colored. First by Lemma 10, we color all the components
T ⊆ G[V \ F] with |V (T)| ≥ 2, using the colors |F |+ 1 and |F |+ 2.

During the algorithm, we will keep track of a color which when assigned to
the isolated vertices in the feedback vertex set does not change the unique color
in the neighborhood of the already colored vertices. We call this color a free color
and denote this by c′, initialized to 0.

Let F = {v1, v2, . . . , v|F |}. Let Y = {vi ∈ F : degF (vi) ≥ 1}. For each vi ∈ Y ,
assign C(vi) = i. Note that for every vi ∈ Y , there is at least one uniquely colored
neighbor in Y . If Y 6= ∅, choose an arbitrary vertex vi ∈ Y and set c′ = i.

Now the vertices of Y and components T ⊆ G[V \ F] with |V (T)| ≥ 2 are
colored and have a uniquely colored neighbor. What remains are the vertices in

Conflict-free Coloring Bounds on Open Neighborhoods 15

F \ Y and singleton components of G[V \ F]. Below we explain how to color
them in phases.

Recall that G[F \ Y] is an independent set.
Case 1: Singleton component {w} ⊆ G[V \ F] where w has at least 1
uncolored neighbor.

– Let vi1 , vi2 , . . . , vim ∈ F \ Y be the uncolored neighbors of w, where m ≥ 1.
– Assign C(vi1) = C(w) = i1 and C(vij) = i2 for all 2 ≤ j ≤ m. The uniquely

colored neighbor for w is vi1 and for all vij , it is the vertex w.
– The free color is set as c′ = i1.

Case 2: Singleton component {w} ⊆ G[V \ F], where all of N(w) is
colored and w has no uniquely colored neighbor.
This means that N(w) ≥ 2, and every color in N(w) appears at least twice.
Choose two vertices vi1 , vi2 ∈ N(w) such that C(vi1) = C(vi2). It must be the
case that at least one of the colors i1, i2 does not appear in N(w). Without loss
of generality, let it be i1.

– Reassign C(vi1) = i1. Assign C(w) = |F |+1. The uniquely colored neighbor
for w is vi1 . Notice that all the vertices in N(w) would have received their
uniquely colored neighbors when they were assigned a color.

– The free color is set as c′ = i1.

Now, all the singleton components {w} ⊆ V \F have uniquely colored neigh-
bors, but not all of them may be colored. Assign all the uncolored singleton
components the color |F |+ 1. What remains to be addressed are the remaining
uncolored vertices in F \Y . These vertices do not have any singleton components
of G[V \ F] as neighbors. We assign colors if the below Cases 3 or 4 apply.
Case 3: A component T ⊆ G[V \ F] such that sT has at least two
uncolored vertices in F \ Y as neighbors.

– Let vi1 , vi2 , . . . , vim ∈ F \ Y be the uncolored neighbors of sT , with m ≥ 2.
– Reassign C(sT) = i1 and assign C(vij) = i2 for all 1 ≤ j ≤ m. The vertex
sT serves as the uniquely colored neighbor for the vertices vij .

– The free color is set as c′ = i2.

Case 4: There exists an uncolored vertex vi and component T ⊆ G[V \
F], such that either (i) deepT (vi) 6= sT or (ii) deepT (vi) = sT and {rT , vi} /∈
E(G).

– Reassign C(deepT (vi)) = i and assign C(vi) = i. The vertex deepT (vi) serves
as the uniquely colored neighbor for vi.

– The free color is set as c′ = i.

Case 5 : There exists an uncolored vertex vi such that for each com-
ponent T ⊆ G[V \ F], either N(vi) ∩ V (T) = {rT , sT } or N(vi) ∩ V (T) = ∅.
We make use of the free color c′ obtained from the previous cases. In this case,
we reassign C(sT) = i and assign C(vi) = c′. The vertex sT will serve as the
uniquely colored neighbor for vi.

Now we explain why we must have a non-zero free color. If c′ = 0, we have
that Y = ∅ and none of the previous cases have been applicable. That is:

16 Bhyravarapu, Kalyanasundaram and Mathew

1. Y = ∅.
2. There are no singleton components in G[V \ F].
3. For each vertex vi ∈ F and for each component T ⊆ G[V \F], either N(vi)∩
V (T) = {rT , sT } or N(vi) ∩ V (T) = ∅.

4. For each component T ⊆ G[V \ F], |N(sT) ∩ F | ≤ 1.

Since |F | ≥ 2, let us consider v1, v2 ∈ F . Notice that due to the above, it is not
possible to have a path from v1 to v2 in G. This means that G is not connected.
This is a contradiction. Thus we must have c′ 6= 0.

We have described a procedure to obtain a CFON coloring that uses |F |+ 2
colors. By setting F to be a minimum sized FVS, we get χON (G) ≤ fvs(G) + 2.

ut

6 Neighborhood Diversity & Distance to Cluster

In this section, we give improved bounds for χON (G) and χCN (G) with respect
to the parameters neighborhood diversity and distance to cluster.

6.1 Neighborhood Diversity

Definition 12 (Neighborhood Diversity [6]). Give a graph G = (V,E),
two vertices v, w ∈ V have the same type if N(v) \ {w} = N(w) \ {v}. A graph
G has neighborhood diversity at most t if V (G) can be partitioned into t sets
V1, V2, . . . , Vt, such that all the vertices in each Vi, 1 ≤ i ≤ t have the same type.
The partition {V1, V2, . . . , Vt} is called the type partition of G.

It can be inferred from the above definition that all vertices in a Vi either form a
clique or an independent set, 1 ≤ i ≤ t. For two types Vi, Vj , either each vertex
in Vi is neighbor to each vertex in Vj , or no vertex in Vi is neighbor to any vertex
in Vj . This leads to the definition of the type graph H = ({1, 2, . . . , t}, EH), where
EH = {{i, j} : 1 ≤ i < j ≤ t, each vertex in Vi is a neighbor of each vertex in Vj}.

In the above, cl(G) and ind(G) respectively denote the number of Vi’s that
form a clique and independent set in the type partition {V1, V2, . . . , Vt}. Gargano
and Rescigno [6] showed that the CFON and CFCN variants are fixed parameter
tractable with respect to neighborhood diversity. They also obtained the bounds
χON (G) ≤ χON (H) + cl(G) + 1 and χCN (G) ≤ χCN (H) + ind(G) + 1. We
improve both these bounds.

Theorem 13. χON (G) ≤ χON (H) + cl(G)
2 + 2.

Theorem 14. χCN (G) ≤ χCN (H) + ind(G)
3 + 3.

We first prove Theorem 13 and then Theorem 14. Both the proofs use similar
ideas.

Conflict-free Coloring Bounds on Open Neighborhoods 17

Proof (Proof of Theorem 13). To begin with, we CFON color the type graph H
using χON (H) colors. Let CH : VH → [χON (H)] be that coloring and UH : VH →
[χON (H)] be the corresponding assignment of unique colors. Now, we derive a
coloring C : V (G)→ {0, 1, 2, . . . , s, s+1} from CH , where s = χON (H)+ cli(G)

2 .
Also we identify a unique color in the neighborhood of each vertex, denoted
U : V (G) → {0, 1, 2, . . . , s, s + 1}. Let V1, V2, . . . , Vt be the type partition of V .
We assign colors to the vertices as follows: For each Vi, choose a representative
vertex ri ∈ Vi and assign C(ri) = CH(i). For each Vi, for all vertices x ∈ Vi\{ri},
we assign C(x) = 0. We make the below observations.

– Each of the vertices ri has a uniquely colored neighbor, as CH is a CFON
coloring of H.

– Let Vi be an independent set, and let rj be the uniquely colored neighbor of
ri. For each x ∈ Vi, rj serves as the uniquely colored neighbor.

– If Vi is a clique and UH(i) 6= CH(i), the uniquely colored neighbor of ri
serves as the uniquely colored neighbor for all vertices in Vi.

What remains to be handled are the type sets Vi which are cliques and
UH(i) = CH(i). We call these type sets as bad sets. We do not consider the
singleton Vi’s as bad sets. All the representative vertices ri see a uniquely colored
neighbor, regardless of whether Vi is bad or not. Note that, once a bad set V is
fixed, we no longer call it a bad set.

Let A refer to the following set of colors: A = {χON (H) + 1, χON (H) +
2, . . . , χON (H) + cli(G)/2}. None of the colors from A have been used till now.
Reduction of bad sets: If there exists a Vi (not necessarily a bad set) that
has at least 2 bad sets as neighbors, we do the following. Let Vi1 , Vi2 , . . . , Vim be
the bad sets adjacent to Vi. Then we reassign C(ri) = c, where c ∈ A is a color
that has not been used till now. The vertex ri will serve as the uniquely colored
neighbor for all vertices in Vi1 , Vi2 , . . . , Vim as well as the vertices in Vi \ {ri}.
Thus after this operation, none of Vi1 , Vi2 , . . . , Vim and Vi are bad sets.

We apply the above reduction operation as much as possible, choosing a new
color from A each time. After that, each set Vi is adjacent to at most one bad
set. This leaves us with the following two cases.

– Case 1: Bad sets Vi and Vj which are neighbors, each of which is
not neighbors to any other bad sets.
Reassign C(ri) = s+1. The uniquely colored neighbor of ri remains the same.
And ri becomes the uniquely colored neighbor for all vertices x ∈ Vi∪Vj\{ri}.
Note that any set Vk that relied on Vi for its unique color, can continue to do
so. This is because Vk sees at most one bad set after the repeated application
of the reduction operation.

– Case 2: Bad set Vi, which has no neighboring bad set.
Let Vj be the neighboring set of Vi such that C(ri) = C(rj). We reassign
C(ri) = s+ 1.
Every vertex in Vi has rj as its uniquely colored neighbor. As in the previous
case, any set that relied on Vi for its unique color can continue to do so.

18 Bhyravarapu, Kalyanasundaram and Mathew

The above is a CFON coloring. We use χON (H) colors to color the representative
vertices of each Vi. Each application of the reduction operation needs one new
color from A to handle at least two bad sets. Since each bad set is a clique, the
number of extra colors needed is at most cl(G)/2. Taking the colors {0, s + 1}
into account, the total number of colors used is χON (H) + cl(G)/2 + 2. ut

Proof (Proof of Theorem 14). We CFCN color the type graph H using χCN (H)
colors. Let CH : VH → [χCN (H)] be that coloring and UH : VH → [χCN (H)]
be the corresponding assignment of unique colors. Now, we derive a coloring
C : V (G) → {0, 1, 2, . . . , s, s + 1, s + 2} from CH , with s = χCN (H) + ind(G)

3 .
Also we identify a unique color in the neighborhood of each vertex, denoted
U : V (G)→ {0, 1, 2, . . . , s, s+1, s+2}. Let V1, V2, . . . , Vt be the type partition of
V . We assign colors to the vertices as follows: For each Vi, choose a representative
vertex ri ∈ Vi and assign C(ri) = CH(i). For each Vi, for all vertices x ∈ Vi\{ri},
we assign C(x) = 0. We make the below observations.

– Each of the representative vertices ri has a uniquely colored neighbor, as CH
is a CFCN coloring of H.

– If Vi is a clique, let rj be the uniquely colored neighbor of ri (note that rj
can be ri itself). For each x ∈ Vi, rj serves as the uniquely colored neighbor.

– If Vi is an independent set such that CH(i) 6= UH(i), the uniquely colored
neighbor of ri is the uniquely colored neighbor for all vertices in Vi.

What remains to be handled are the independent sets Vi, such that CH(i) =
UH(i). We call these type sets Vi (independent sets) as the bad sets. We do not
consider singleton Vi’s as bad sets. Also, all the representative vertices ri see a
uniquely colored neighbor, regardless of whether Vi is bad or not. Once a bad
set V is fixed, we no longer call it a bad set.
Reduction of bad sets: We process the bad sets in iterations. We require at
most ind(G)/3 iterations. In iteration `, where 1 ≤ ` ≤ ind(G)/3, if there exists
a bad set Vi, which has at least two neighboring bad sets, we do the following.
We call Vi the lead set in this iteration. Let the neighboring bad sets of Vi be
Vi1 , Vi2 , . . . , Vim , where m ≥ 2. Choose a vertex vi ∈ Vi \ {ri} and reassign
C(vi) = χCN (H) + `. We call vi as the lead representative of this iteration. For
each vertex x ∈ Vi \ {ri, vi}, reassign C(x) = χCN (H) + ` + 1. Each vertex in
Vi serves as its own the uniquely colored neighbor. For each vertex in Vip , the
vertex vi ∈ Vi serves as the uniquely colored neighbor.

Let us see why the reduction operation fixes all the lead sets and all their
neighboring bad sets. None of the sets chosen as the lead sets in two different it-
erations are adjacent, else they could have been considered in the same iteration.
For bad sets that neighbors multiple lead sets, the uniquely colored neighbor is
provided by the lead representative that was considered earliest in the reduction
operation.

In each of the above iterations, at least 3 bad sets are colored. Hence it suffices
to have ind(G)/3 iterations. The number of colors required are ind(G)/3 + 1.
After the reduction operations, we are left with the bad sets which have at most
one bad set as neighbor. We handle them as follows.

Conflict-free Coloring Bounds on Open Neighborhoods 19

– Case 1: Bad sets Vi and Vj which are neighbor, each of which is
not neighbors to any other bad sets.
We note that the color χCN (H)+ ind(G)

3 +1 = s+1 is possibly used only in
the last iteration of the reduction operation, but does not serve as a unique
color for any of the vertices in the bad sets of that iteration.
We use the colors s+1 and s+2 for coloring the bad sets Vi and Vj . Choose
two vertices xi ∈ Vi \ {ri} and xj ∈ Vj \ {rj}. Reassign C(xi) = s + 1 and
C(xj) = s+ 2. These vertices xi and xj serve as uniquely colored neighbors
for the vertices in Vj and Vi respectively.

– Case 2: A bad set Vi that has no bad set as neighbor.
Reassign C(v) = s + 2, for all vertices v ∈ Vi \ {ri}. All the vertices in Vi
serve as their own uniquely colored neighbors.

The above coloring is a CFCN coloring. We use χCN (H) colors to color
the representative vertices of each Vi. and ind(G)/3 + 1 colors in the reduction
operation. Taking the colors {0, s+ 2} into account, the total number of colors
used is χCN (H) + ind(G)/3 + 3. ut

6.2 Distance to Cluster

Definition 15 (Distance to Cluster). Let G = (V,E) be a graph. The dis-
tance to cluster of G, denoted dc(G), is the size of the smallest set X ⊆ V such
that G[V \X] is a disjoint union of cliques.

Reddy [7], studied the CFCN and the CFON varaints with respect to the
distance to cluster parameter, dc(G). They showed that χON (G) ≤ 2dc(G) + 3
and χCN (G) ≤ dc(G) + 2. We give the following improved bounds.

Theorem 16. χON (G) ≤ dc(G) + 3.

Theorem 17. χCN (G) ≤ max{3, dc(G) + 1}.

For the subdivided clique K∗n, we have χON (K∗n) = dc(K∗n) = n. Hence Theorem
16 is nearly tight. We first prove Theorem 16 and then Theorem 17. We note
that both the proofs use similar ideas.

Proof (Proof of Theorem 16). Let dc(G) = d. That is, there is a set X ⊆ V (G),
with |X| = d such that G[V \X] is a disjoint union of cliques.

If X = ∅, the graph G is a clique because we only consider connected graphs.
A clique can be CFON colored using 3 colors. Else, we have |X| ≥ 1. Let X =
{v1, v2, . . . , vd}. Then G[V \X] = K1 ∪K2 · · · ∪Kt is a disjoint union of cliques.

Below, we explain how to assign colors, C : V (G) → [d+ 3] such that every
vertex has a uniquely colored neighbor. We apply the following rules:

1. Let Y = {vi ∈ X : degX(vi) ≥ 1}. For all vi ∈ Y , assign C(vi) = i.
Now every vertex in Y is colored and has a uniquely colored neighbor.

2. For each of the singleton cliques Kj = {w}, we do the following.

20 Bhyravarapu, Kalyanasundaram and Mathew

– Case 2(a): The vertex w has at least 1 uncolored neighbor.
Let vi1 , vi2 , . . . , vim ∈ X be the uncolored neighbors of w, with m ≥ 1.
Assign C(vi1) = C(w) = i1 and C(vi`) = d+1, for all 2 ≤ ` ≤ m. All the
vertices inN(w)∪{w} see the color i1 exactly once in their neighborhood.
We will not be assigning the color i1 for any other vertices henceforth.

– Case 2(b): All vertices in N(w) are colored.
The assignment of colors in the previous case may lead us to this case.
If w already sees a uniquely colored neighbor, then we set C(w) = d+1.
If w has no uniquely colored neighbor, we choose two vertices vi1 , vi2 ∈
N(w) such that C(vi1) = C(vi2). Since the only color that is being reused
in X is d + 1, we have C(vi1) = C(vi2) = d + 1. Reassign C(vi1) = i1.
Assign C(w) = d + 1. Here the color i1 will be the unique color in the
neighborhood of w and this color will not be used in further coloring.

After this step, all the singleton cliques Kj and their neighboring vertices
are colored and also have a uniquely colored neighbor.

3. For each uncolored vi ∈ X\Y that does not have a uniquely colored neighbor,
we choose a vertex w ∈ N(vi) and assign C(w) = i. The color i is the unique
color in vi’s neighborhood. And the color i is not used in further coloring.

4. For all the remaining uncolored vi ∈ X \Y , assign C(vi) = d+1. Recall that
vi is not colored in Step 3 because it has a uniquely colored neighbor.
Now, all the vertices in X are colored and have uniquely colored neighbors.
What remains to be colored are the cliques of size at least 2.

5. For each clique Kj with |Kj | ≥ 2, we note that there may already be some
colored vertices in Kj as a result of Step 3. These colors appear exactly once
in the graph. We do the following:
– If Kj has at least 2 colored vertices, color the remaining vertices (if any)

with d+ 1.
– Else, if Kj has exactly 1 colored vertex, choose an uncolored vertex and

assign d+ 2. Color the remaining vertices (if any) with d+ 1.
– Else, choose 2 vertices from Kj and assign the colors d + 2 and d + 3.

Color the remaining vertices (if any) with d+ 1.
ut

Proof (Proof of Theorem 17). Let dc(G) = d. That is, there is a set X ⊆ V , with
|X| = d such that G[V \X] is a disjoint union of cliques. Let X = {v1, v2, . . . , vd}
and Y = {vi ∈ X : degX(vi) ≥ 1}.

We have three cases and in each case, we explain how to get CFCN coloring.
Cases 1 and 2 use d+ 1 colors and case 3 uses 3 colors.

1. There is a clique K ′ ⊆ G[V \X], with u ∈ K ′, such that |N(u)∩(X \Y)| ≥ 2.
– Without loss of generality, let vi1 , vi2 , . . . , vim ∈ N(u) ∩ (X \ Y), where
m ≥ 2.

– Assign C(u) = i1 and C(vi`) = d+ 1, for all 1 ≤ ` ≤ m.
Note that the color i2 is not assigned and will be used for future coloring.

– For each of the uncolored vertices vi ∈ X \ Y , C(vi) = i.
– For each of the cliques K ⊆ G[V \X],
• If K has a colored vertex, color the remaining vertices with d+ 1.

Conflict-free Coloring Bounds on Open Neighborhoods 21

• Else, choose a vertex in K and assign the color i2. Color the remain-
ing vertices with d+ 1.

For the vertices vi` ∈ N(u) ∩ (X \ Y), where 1 ≤ ` ≤ m, the vertex u is the
uniquely colored neighbor. For all the other vertices vi ∈ X, vi itself is the
uniquely colored neighbor. For all the vertices in cliques K ⊆ G[V \X], the
vertex colored i1 or i2 will serve as the uniquely colored neighbor.

2. Y 6= ∅. That is, there exists two vertices vi, vj ∈ X such that {vi, vj} ∈ E(G).
– Assign C(vi) = i and C(vj) = d+ 1.

Note that the color j is not used and will be used for future coloring.
– For each of the uncolored vertices vk ∈ X, assign C(vk) = k.
– For each of the cliques K, choose a vertex and assign the color j. Color

the rest of the vertices with d+ 1.
Each vertex in X \ {vj} serves as its own uniquely colored neighbor. For the
vertex vj , the uniquely colored neighbor is vi. For each clique K, the vertex
colored j is the uniquely colored neighbor for all the vertices in K.

3. Else, (i)X is an independent set and (ii) for each cliqueK, and for all w ∈ K,
we have |N(w) ∩X| ≤ 1.
– For each clique K, choose a vertex and assign the color 1 and color the

remaining vertices with 2.
– For all vertices x ∈ X, assign C(x) = 3.

Note that this is a CFCN 3-coloring of G. Each vertex in X serves as its own
uniquely colored neighbor. For each clique K, the vertex colored 1 acts as a
uniquely colored neighbor for all the vertices in K.

ut

7 Star-free graphs

Definition 18 (Star and Claw). The complete bipartite graph K1,k is referred
to as star on k + 1 vertices and denoted by Sk. The graph S3 is also known by
the name claw.

A graph is said to be Sk-free (claw-free) if it does not contain an Sk (S3) as
an induced subgraph. For a graph G with maximum degree ∆, it is known that
χON (G) ≤ ∆+ 1 and this bound is tight in general. In this section, we show an
improved bound for CFON chromatic number of Sk-free graphs, for most values
of k.

Theorem 19. Let G be an Sk-free graph with maximum degree ∆. Then, χON (G) =
O(k log2+ε∆), for any ε > 0.

The notion of conflict-free coloring has been generalized to hypergraphs [13]
and is useful for the discussion in this section.

Definition 20 (Conflict-free coloring of hypergraphs). A conflict-free col-
oring of a hypergraph H = (V,E) is an assignment of colors to V (H) so that
every hyperedge e ∈ E(H) contains a vertex whose color is distinct from that of
every other vertex in e. The conflict-free chromatic number of H is the minimum
number of colors required for such an assignment.

22 Bhyravarapu, Kalyanasundaram and Mathew

The following Theorems 21 and 22 from [13] will be used in the proof of
Theorem 19.

Theorem 21 (Theorem 1.1 in [13]). Let H be a hypergraph and let ∆ be the
maximum degree of a vertex in H. Then the conflict-free chromatic number of
H is at most ∆ + 1. This bound is optimal and the corresponding coloring can
be found in linear deterministic time.

Let G be a graph with maximum degree ∆. The above theorem implies that
χON (G) ≤ ∆ + 1. The subdivided clique K∗n has a maximum degree of n − 1
and satisfies χON (K∗n) = n. This serves as a tight example to the above bound.

Theorem 22 (Theorem 1.2 in [13]). For any positive integers t and Γ , the
conflict-free chromatic number of any hypergraph in which each edge is of size at
least 2t − 1 and each edge intersects at most Γ others is O(tΓ 1/t logΓ). There
is a randomized polynomial time algorithm to find such a coloring.

We begin with an auxiliary lemma.

Lemma 23. Let G be an Sk-free graph with no isolated vertices. Let A ⊆ V (G)
be an independent set of vertices in G. Let B = V (G) \ A. There is a way to
color the vertices in B using at most k colors such that every vertex in A sees
some color appear exactly once in its open neighborhood.

Proof. Construct a hypergraph H = (V,E) with V (H) = B and E(H) =
{NG(v)∩B : v ∈ A}. Since G is Sk-free, no element of V (H) is present in more
than k − 1 hyperedges. From Theorem 21, we have a conflict free coloring of H
using k colors.

Proof (Proof of Theorem 19). We use an iterative process to color the vertices.
Consider an Sk-free graph G = (V,E) with maximum degree∆ = ∆(G). We first
partition V = V0 into U1 and V1, where U1 = {v ∈ V0 : degG[V0](v) > log∆},
and V1 = V0 \ U1. We construct a hypergraph H1 from G with V (H1) = V0
and E(H1) = {NG(v) ∩ V0 : v ∈ U1}. Every hyperedge e ∈ E(H1) satisfies
|e| ≥ log∆ + 1, and e intersects at most ∆2 other hyperedges in H1. Applying
Theorem 22 with t = log∆

2 + 1 and Γ = ∆2, we get the conflict-free chromatic
number of H1 to be at most α(log∆)2, where α > 0 is some constant. That
means, there is an assignment C1 : V0 → [α(log∆)2] such that every vertex in
U1 sees some color exactly once in its open neighborhood.

Now notice that V1 is the set of all vertices that have degree at most log∆. We
repeat the above process by setting U2 = {v ∈ V1 : degG[V1](v) > log∆(G[V1]) ≥
log log∆}, and V2 = V1 \ U2. We construct a hypergraph H2 with V (H2) = V1
and E(H2) = {NG(v) ∩ V1 : v ∈ U2}. Every hyperedge in H2 is of size at least
log log∆ + 1 and each hyperedge intersects at most log2∆ other hyperedges.
Applying Theorem 22 with t = log log∆

2 +1 and Γ = log2∆, we get an assignment
C2 : V1 → [α(log log∆)2] such that every vertex in U2 sees some color exactly
once in its open neighborhood.

Conflict-free Coloring Bounds on Open Neighborhoods 23

We iterate in this manner till we get, say Vr, which is an independent set in
G. We now use Lemma 23 to assign Cr+1 : V → [k] so that every vertex in Vr
sees a color exactly once in its open neighborhood.

Now consider the color assignment C formed by the Cartesian product of
the previous4 assignments. That is C(v) = (C1(v), C2(v), . . . , Cr(v), Cr+1(v)).
Notice that C is a CFON coloring. This is because V = U1 ∪ U2 ∪ . . . ∪ Ur ∪ Vr
is a partition of V . If v ∈ Ui, then v has a neighbor that is uniquely colored by
the assignment Ci. Also, every v ∈ Vr has a neighbor that is uniquely colored
by the assignment Cr+1. The number of colors used is

(α(log∆)2) · (α(log log∆)2) · · · · · (α(log log . . . log︸ ︷︷ ︸
r times

∆)2) · k ,

which is upper bounded by k log2+ε∆. This follows by noting that r ≤ log∗∆,
the iterated logarithm of ∆. Thus we have χON (G) = O(k log2+ε∆).

Algorithmic note: It is easy to see that the construction of sets Vi and Ui
can be done in deterministic polynomial time. Theorem 21 states that the color-
ing Cr+1 can be computed in deterministic linear time. What is left is to know
whether the colorings Ci (1 ≤ i ≤ r) can be computed in deterministic polyno-
mial time. Theorem 22 states that the colorings Ci (1 ≤ i ≤ r) can be obtained
in randomized polynomial time. In the proof of Theorem 22 in [13], an algorith-
mic version of the Local Lemma is used to obtain a randomized algorithm for
finding the desired coloring for the hypergraph under consideration. There are
deterministic algorithms known for the Local Lemma [18, 19] which can be used
in place of the randomized algorithm used in [13]. By applying Theorem 1.1 (1)
from [19], we get a deterministic polynomial time algorithm to find the colorings
Ci (1 ≤ i ≤ r). However, the deterministic version of Local Lemma causes us to
use O(tΓ (1+δ)/t logΓ) colors for a constant δ > 0. This is slightly worse than the
bound in Theorem 22. However, this weaker bound suffices to get a conflict-free
coloring of the hypergraphs H0, H1, . . . using asymptotically the same number
of colors as before. We thus have a deterministic polynomial time algorithm for
CFON coloring the vertices of an Sk-free graph with maximum degree ∆ using
O(k log2+ε∆) colors, for any ε > 0.

Given a graph G, the line graph of G, denoted by L(G), is the graph with
V (L(G)) = E(G) and E(L(G)) = {{e, f} : edges e and f share an endpoint in G}.
It is easy to see that the line graph of any graph is claw-free. In what follows, we
use this fact to show the existence of claw-free graphs of high CFON chromatic
number.

Theorem 24. There exist claw-free graphs G on n vertices with χON (G) =
Ω(log n).

Proof. Let m be a positive integer. Consider the complete graph Km on m
vertices. Let n =

(
m
2

)
denote the number of vertices in the line graph of Km.

4 Values Ci(v) that are not assigned are notionally set to 0.

24 Bhyravarapu, Kalyanasundaram and Mathew

Consider the CFON coloring problem for the line graph of Km. In other words,
we need to color the edges of Km with the minimum number of colors such that
every edge sees some color exactly once in its open neighborhood. Consider an
optimal CFON coloring C : E(Km)→ {1, 2, . . . , k} of the edges of Km that uses,
say k colors. Below we show that k ≥ logm.

Corresponding to each v ∈ Km, we construct a k-bit 0-1 vector g(v). The
i-th bit gi(v) = 1 if there is exactly one edge incident on v with the color i.
Otherwise, gi(v) = 0. Since C is a valid CFON coloring of the edges of Km,
for any two distinct vertices u, v ∈ V (Km), g(u) should differ from g(v) in at
least one position. Consider the edge {u, v} ∈ E(G). Let {v, w} ∈ E(G) be the
uniquely colored edge in the open neighborhood of {u, v} and let C({v, w}) = i.
This implies that none of the other edges incident on the vertices u or v are
assigned the color i except possibly the edge {u, v} itself. Thus g(u) and g(v)
differ in at least one position. This implies that k ≥ logm.

Since a line graph is claw-free, Theorems 19 and 24 imply the following
corollary.

Corollary 25. Let G be the line graph of a graph. Let ∆ denote the maximum
degree of G. Then, χON (G) = O(log2+ε∆), for any ε > 0. Further, there exist
line graphs with maximum degree ∆ having χON (G) = Ω(log∆).

Note: Very recently, Dębski and Przybyło[20], in independent and simultaneous
work, showed that χCN (G) = O(log∆) for line graphs G. In Theorem 3 of [20],
it is shown that χCN (L(Kn)) = Ω(log n). Since χCN (G) ≤ 2χON (G) for all
graphs G, this lower bound proved in [20] implies Theorem 24.

8 CFON* Coloring of Planar Graphs

Definition 26 (Planar and Outerplanar graphs). A planar graph is a
graph that can be drawn in R2 (a plane) such that the edges do not cross each
other in the drawing. An outerplanar graph is a planar graph that has a drawing
in a plane such that all the vertices of the graph belong to the outer face.

Abel et. al. showed [5] that eight colors are sufficient for CFON* coloring of
a planar graph. In this section, we improve the bound to five colors.

We need the following definition:

Definition 27 (Maximal Distance-3 Set). For a graph G = (V,E), a max-
imal distance-3 set is a set S ⊆ V (G) that satisfies the following:

1. For every pair of vertices w,w′ ∈ S, we have dist(w,w′) ≥ 3.
2. For every vertex w ∈ S, ∃w′ ∈ S such that dist(w,w′) = 3.
3. For every vertex x /∈ S, ∃x′ ∈ S such that dist(x, x′) < 3.

The set S is constructed by initializing S = {v} where v is an arbitrary vertex.
We proceed in iterations. In each iteration, we add a vertex w to S if (1) for

Conflict-free Coloring Bounds on Open Neighborhoods 25

every v already in S, dist(v, w) ≥ 3, and (2) there exists a vertex w′ ∈ S such
that dist(w,w′) = 3. We repeat this until no more vertices can be added.

The main component of the proof is the construction of an auxiliary graph
G′ from the given graph G.
Construction of G′: The first step is to pick a maximal distance-3 set V0. Notice
that any distance-3 set is an independent set by definition. We let V1 denote the
neighborhood of V0. More formally, V1 = {w : {w,w′} ∈ E(G), w′ ∈ V0}. Let V2
denote the remaining vertices i.e., V2 = V \ (V0 ∪ V1).

We note the following properties satisfied by the above partitioning of V (G).

1. The set V0 is an independent set.
2. For every vertex w ∈ V1, there exists a unique vertex w′ ∈ V0 such that
{w,w′} ∈ E(G). This is because if there are two such vertices, this will
violate the distance-3 property of V0.

3. Every vertex in V0 has a neighbor in V1. If there exists v ∈ V0 without a
neighbor in V1, then v is an isolated vertex. By assumption, G does not have
isolated vertices.

4. There are no edges from V0 to V2.
5. Every vertex in V2 has a neighbor in V1, and is hence at distance 2 from

some vertex in V0. This is due to the maximality of the distance-3 set V0.

Now we define A = V0 ∪ V2. We first remove all the edges of G[V2] making
A an independent set. For every vertex v ∈ A we do the following: we identify
an arbitrary neighbor f(v) ∈ N(v) ⊆ V1. Then we contract the edge {v, f(v)}.
That is, we first identify vertex v with f(v). Then for every edge {v, v′}, we add
an edge {f(v), v′}. The resulting graph is G′.

Theorem 28. If G is a planar graph, χ∗ON (G) ≤ 5.

Proof. Let G be a planar graph. We first construct the graph G′ as above. Since
the steps for constructing G′ involve only edge deletion and edge contraction,
G′ is also a planar graph. By the planar four-color theorem [21], there is an
assignment C : V (G′)→ {2, 3, 4, 5} such that no two adjacent vertices of G′ are
assigned the same color. Now we have colored all the vertices in V (G′) = V1

Now, we extend C to get a CFON* coloring for G. For all vertices v ∈ V0,
we assign C(v) = 1. The vertices in V2 are not assigned a color.

We will show that C is indeed a CFON* coloring of G. Consider a vertex
v ∈ A which is contracted to a neighbor f(v) = w ∈ V1. The color assigned to
w is distinct from all w’s neighbors in G′. Hence the color assigned to w is the
unique color among the neighbors of v in G.

For each vertex w ∈ V1, w is a neighbor of exactly one vertex v ∈ V0. Every
vertex v ∈ V0 is colored 1, which is different from all the colors assigned to the
neighbors of w in G′. ut

Outerplanar graphs have a proper coloring using three colors. By argument
analogous to Theorem 28, we infer the following.

Corollary 29. If G is an outerplanar graph, χ∗ON (G) ≤ 4.

26 Bhyravarapu, Kalyanasundaram and Mathew

For outerplanar graphs, a CFON* coloring using 4 colors implies a CFON
coloring using 5 colors. However, we can show the following improved bound.

Theorem 30. If G is an outerplanar graph, χON (G) ≤ 4.

Note: A graph G is said to be minor-k-colorable if every minor of G has a
proper coloring that uses at most k colors. Our argument in Theorem 28 can
be used to infer that if G is minor-k-colorable, then χ∗ON (G) ≤ k + 1. In an
independent work [16], Huang, Guo and Yuan showed the improved and tight
bound χ∗ON (G) ≤ k when G is minor-k-colorable. Their result also implies the
tight bounds of χ∗ON (G) ≤ 4 for planar G and χ∗ON (G) ≤ 3 for outerplanar G.

8.1 Proof of Theorem 30

In this section, whenever we refer to an outerplanar graph G, we will also be
implicitly referring to a planar drawing of G with all the vertices appearing in
the outer face. We will abuse language and say “faces of G” when we want to
refer to faces of the above planar drawing.

Theorem 30 is proved using a two-level induction process. The first level is
using a block decomposition of the graph. Any connected graph can be viewed as
a tree of its constituent blocks. We color the blocks in order so that when we color
a block, at most one of its vertices is previously colored. Each block is colored
without affecting the color of the already colored vertex. The second level of the
induction is required for coloring each of the blocks. We use ear decomposition
on each block and color the faces of the block in sequence. However, the proof
is quite technical and involves several cases of analysis at each step.

We summarize the relevant aspects of block decomposition below. The reader
is referred to a standard textbook in graph theory [22] for more details on this.
– A block is a maximal connected subgraph without a cut vertex.
– Blocks of a connected graph are either maximal 2-connected subgraphs, or

edges (the edges which form a block will be bridges).
– Two distinct blocks overlap in at most one vertex, which is a cut vertex.
– Any connected graph can be viewed as tree of its constituent blocks.

In the following discussion, we explain how to construct a coloring C : V (G)→
{1, 2, 3, 4} for an outerplanar graph G. At any intermediate stage, the coloring
C will satisfy5 the following invariants:

Invariants of C

– Every vertex v that has already been assigned a color C(v) has a neigh-
bor w, such that C(w) 6= C(x), for all x ∈ N(v) \ {w}. For v, the
function U : V (G) → {1, 2, 3, 4} denotes the color of w, its uniquely
colored neighbor.

5 The condition marked ? is violated in a few cases. In the exceptional cases where it
is violated, we shall explain how the cases are handled.

Conflict-free Coloring Bounds on Open Neighborhoods 27

– ∀v ∈ V (G), C(v) 6= U(v).
– ∀{v, w} ∈ E(G), C(v) 6= C(w) and |{C(v), U(v), C(w), U(w)}| = 3. (?)

Theorem 30 is proved by using an induction on the block decomposition of
the graph G and the below results.

Lemma 31. If G is a 2-connected outerplanar graph such that all its inner faces
contain exactly 5 vertices, then G has a CFON coloring using 3 colors.

Theorem 32. Let G be an outerplanar graph.

1. If B is a block of G that is either a bridge, or contains an inner face F with
|V (F)| 6= 5, then B has a CFON coloring using at most 4 colors.

2. If B is a block of G, with exactly one vertex v precolored with color C(v) and
unique color U(v), then the rest of B has a CFON coloring using at most 4
colors, while retaining C(v) and U(v).

Proof (Proof of Theorem 30). Let G be an outerplanar graph. We apply block
decomposition on G which results in blocks that are either maximal 2-connected
subgraphs or single edges.

If G is 2-connected and all its inner faces have exactly 5 vertices, then by
Lemma 31, G has a CFON coloring using 3 colors.

If G does not fit the above description, then G has a block B such that either
B is an edge, or B has an inner face F with |V (F)| 6= 5. In this case, by Theorem
32.1, B has a CFON coloring using at most 4 colors.

Viewing G as a tree of its blocks, we can start coloring blocks that are
adjacent to blocks that are already colored. Suppose the block B is already
colored, and let B′ be a block adjacent to B. Let x be the cut-vertex between
the blocks B and B′. We use Theorem 32.2 to obtain a CFON coloring of B′
using at most 4 colors, while retaining C(x) and U(x). ut

We now proceed towards proving Lemma 31 and Theorem 32. Lemma 31 and
Theorem 32 discusses the coloring of blocks, which is accomplished by means of
induction on the faces of the blocks. Towards this end, we use the following fact
about ear decomposition of 2-connected outerplanar graphs. For a proof of the
below lemma, we refer the reader to [23] where this is stated as Observation 2.

Lemma 33 (Ear Decomposition). Let B be a 2-connected block in an outer-
planar graph. Then B has an ear decomposition F0, P1, P2, . . . , Pq satisfying the
following:

– F0 is an arbitrarily chosen inner face of B.
– Every Pi is a path with end points v, w such that {v, w} is an edge in F0 ∪⋃

1≤j<i Pj. Thus Pi together with the edge {v, w} forms a face of B.

We are now ready to prove Lemma 31.

28 Bhyravarapu, Kalyanasundaram and Mathew

Proof. (Proof of Lemma 31) Since G is 2-connected, the entire graph forms a
single block. Let F0, P1, . . . , Pq be an ear decomposition of G. Recall that all
the faces have exactly five vertices. Let F0 = v1 − v2 − v3 − v4 − v5 − v1. We
assign6 the following colors to the vertices in F0: C(v1) = 1, C(v2) = 1, C(v3) =
2, C(v4) = 2, C(v5) = 3. We also have U(v1) = 3, U(v2) = 2, U(v3) = 1, U(v4) =
3, U(v5) = 1.

Let Pi be any subsequent face Pi = w1−w2−w3−w4−w5−w1 with {w1, w2}
being the pre-existing edge in F0 ∪

⋃
1≤j<i Pj . Depending on the values already

assigned to C(w1), U(w1), C(w2), U(w2), we assign the colors to w3, w4 and w5.
We always ensure that C(v) 6= U(v) for all vertices v. We note that the values
C(w1), U(w1), C(w2), U(w2) can take only the four below combinations, w.l.o.g.
We explain the coloring for the rest of Pi in each of these cases.

1. C(w1) = C(w2) and |{C(w1), U(w1), U(w2)}| = 3. W.l.o.g., let C(w1) =
1, U(w1) = 2, C(w2) = 1, U(w2) = 3. Assign C(w3) = 2, C(w4) = 2, C(w5) =
3 and U(w3) = 1, U(w4) = 3, U(w5) = 1.

2. C(w1) 6= C(w2), U(w1) 6= U(w2), and |{C(w1), C(w2), U(w1), U(w2)}| =
3. Either w1 serves as the uniquely colored neighbor of w2 or vice versa.
W.l.o.g., let C(w1) = 1, U(w1) = 2, C(w2) = 2, U(w2) = 3. Assign C(w3) =
1, C(w4) = 3, C(w5) = 3 and U(w3) = 2, U(w4) = 1, U(w5) = 1.

3. C(w1) = U(w2) and C(w2) = U(w1). W.l.o.g., let C(w1) = 1, U(w1) =
2, C(w2) = 2, U(w2) = 1. Assign C(w3) = 2, C(w4) = 3, C(w5) = 1 and
U(w3) = 3, U(w4) = 2, U(w5) = 3.

4. C(w1) = C(w2) and U(w1) = U(w2). W.l.o.g., let C(w1) = C(w2) =
1, U(w1) = U(w2) = 2. Assign C(w3) = 1, C(w4) = 2, C(w5) = 3 and
U(w3) = 2, U(w4) = 3, U(w5) = 1.

5. The case U(w1) = U(w2) and |{U(w1), C(w1), C(w2)}| = 3 does not arise in
the above colorings.

ut

At this point, to complete the proof of Theorem 30 we need to prove Theorem
32. We now state a few results that would help us towards this end.

Lemma 34. An uncolored face F , such that |V (F)| 6= 5, can be CFON colored
using 4 colors satisfying the invariants.

Proof. Let F = v1 − v2 − v3 − · · · − vk−1 − vk − v1 be a face with |V (F)| = k,
k 6= 5. We assign C(v1) = 1, C(v2) = 2, C(v3) = 3 and for the remaining vertices
(if any), we set C(vi) = C(vi−3). In order to satisfy the invariants, we need to
make the following changes:

– k ≡ 0 (mod 3). No change is necessary.
– k ≡ 1 (mod 3). Reassign C(vk) = 4.
– k ≡ 2 (mod 3). Reassign C(vk−3) = 4, C(vk−2) = 2, C(vk−1) = 3, C(vk) =

4. Notice that this coloring does not satisfy the invariants if k = 5. However,
the smallest k that we consider in this case is k = 8.

6 The coloring assigned in this proof does not satisfy the condition marked ?. However,
this is not an issue since we are coloring the whole of G in this lemma.

Conflict-free Coloring Bounds on Open Neighborhoods 29

In each of the above cases the unique color for each vertex vi is provided by
its cyclical successor i.e., U(vi) = C(vi+1). ut

Lemma 35. Let F be a face (cycle) in G with one vertex v such that C(v) and
U(v) are already assigned, with C(v) 6= U(v). Then the rest of F can be CFON
colored using at most 4 colors, while retaining C(v) and U(v), and satisfying the
invariants.

Proof. Let v1 be the colored vertex in the cycle F . We may assume w.l.o.g. that
C(v1) = 1 and U(v1) = 2. Now, we extend C to the remainder of F .

– |V (F)| = 3 with F = v1 − v2 − v3 − v1.
We assign: C(v2) = 3, C(v3) = 4 and U(v2) = 1, U(v3) = 1.

– |V (F)| ≥ 4 with F = v1 − v2 − v3 − · · · − vk−1 − vk − v1.
We first assign: C(v2) = 3 and C(v3) = 2. For the remaining vertices vi, we
set C(vi) = C(vi−3) for 4 ≤ i ≤ k. However, we need to make some changes
to this in order to satisfy the invariants. We have the following subcases:
• k ≡ 0 or 1 (mod 3). Reassign C(vk) = 4.
• k ≡ 2 (mod 3). Reassign C(vk−1) = 4.

In each of the above cases the unique color for each vertex vi is provided
by its cyclical successor i.e., U(vi) = C(vi+1). Observe that U(v1) is left
unchanged, by ensuring v2 and vk, the neighbors of v1, are not assigned the
color U(v1).

ut

Lemma 36. Let F be a face with |V (F)| ≥ 4 with such that the edge {v1, v2} ∈
E(F) and v1 and v2 already colored such that C(v1) = C(v2) and U(v1) 6= U(v2).
Then the rest of F can be CFON colored using 4 colors satisfying the invariants.

Proof. W.l.o.g., we may assume C(v1) = C(v2) = 4, U(v1) = 1 and U(v2) = 2.
We have the following cases:

– |V (F)| = 4 with F = v2−v3−v4−v1−v2. We assign: C(v3) = 1, C(v4) = 3
and U(v3) = 4 and U(v4) = 4.

– If |V (F)| = 5 with F = v2 − v3 − v4 − v5 − v1 − v2. We assign: C(v3) = 1,
C(v4) = 2, C(v5) = 3 and U(v3) = 2, U(v4) = 3 and U(v5) = 4.

– If |V (F)| ≥ 6 with F = v2 − v3 − · · · − vk−1 − vk − v1 − v2. We assign:
C(v3) = 3 and C(v4) = 2. For all 5 ≤ i ≤ k, C(vi) = C(vi−3).
• k ≡ 0 (mod 3). Reassign C(vk−1) = 1.
• k ≡ 1 (mod 3). No change is required.
• k ≡ 2 (mod 3). Reassign C(vk−1) = 1 and C(vk) = 2.

The unique color of each vertex vi is provided its cyclical successor i.e.,
U(vi) = C(vi+1).

ut

Lemma 37. Let P be a path in G whose endpoints are v1, v2. Suppose {v1, v2} ∈
E(G) and that v1, v2 are already assigned the functions C and U satisfying the
invariants. Then the rest of P can be CFON colored using at most 4 colors, while
retaining C and U values of the endpoints, and satisfying the invariants.

30 Bhyravarapu, Kalyanasundaram and Mathew

Since the proof of the above lemma is a bit long and involved, we first prove
Theorem 32 using Lemmas 34, 35 and 37.

Proof (Proof of Theorem 32).

1. If the block is a bridge, say {v, w}, then we color it C(v) = 1, C(w) = 2 with
U(v) = 2, U(w) = 1. Note that the invariant marked ? is violated in this
case. However, this does not cause an issue since this edge is a bridge, and
it does not appear in any inner face.

If the block is not a bridge, then by assumption, it contains a face F such
that |V (F)| 6= 5. By Lemma 34, we have a coloring of F using 4 colors and
satisfying the invariants. By the Lemma 33 (Ear Decomposition), the block
has an ear decomposition F, P1, P2, . . . with F as the starting inner face.
Recall that for every path Pi, the end points form an edge in F0∪

⋃
1≤j<i Pj .

We color the paths P1, P2, . . . in this order. By Lemma 37, we have a coloring
for each of these paths using 4 colors and satisfying the invariants.

2. Let v be the vertex in the block that is already colored. W.l.o.g., we may
assume that C(v) = 1 and U(v) = 2.

If the block is a bridge {v, w}, we color w with C(w) = 3 and set U(w) = 1.

If the block is not a bridge, choose an inner face F that contains v. Using
Lemma 35, we color the remainder of F using at most 4 colors and satisfying
the invariants. The rest of the proof follows from the fact that we have an
ear decomposition with F as the starting face, and Lemma 37. This is very
similar to the argument in the proof of part 1 of this theorem and hence the
details are omitted.

ut

In order to complete the proof of Theorem 30, the last remaining piece is the
proof of Lemma 37.

Proof (Proof of Lemma 37). Let v1 and v2 be the end points of P . We extend
the coloring C to the remainder of P . According to the invariants of C, we have
only 2 cases possible.
Case 1: C(v1) 6= C(v2), U(v1) 6= U(v2). W.l.o.g. we may assume C(v1) = 1,
C(v2) = 2 and U(v1) = 2, U(v2) = 3.

– |V (P)| = 3, P = v2 − v3 − v1. Assign C(v3) = 4 with U(v3) = 2.
– |V (P)| = 4, P = v2 − v3 − v4 − v1. Assign C(v3) = 4, C(v4) = 3 with
U(v3) = 3, U(v4) = 1.

– |V (P)| ≥ 5, P = v2 − v3 − · · · − vk−1 − vk − v1. We first assign C(v3) =
1, C(v4) = 3, C(v5) = 4. For the remaining vertices vi, we initially assign
C(vi) = C(vi−3) for 6 ≤ i ≤ k. However, we need to make some changes to
satisfy the invariants. We have the following subcases:
• k ≡ 0 (mod 3). Reassign C(vk−1) = 2 and C(vk) = 4
• k ≡ 1 (mod 3). Reassign C(vk−1) = 2.
• k ≡ 2 (mod 3). No change is necessary.

Conflict-free Coloring Bounds on Open Neighborhoods 31

v3

v1 v2

x y

z

Fig. 1. Case 2(i)(d)

In each of the above cases the unique color for each vertex vi is provided by
its cyclical successor i.e., U(vi) = C(vi+1).

Case 2: U(v1) = U(v2). W.l.o.g., we may assume C(v1) = 1, C(v2) = 2 and
U(v1) = U(v2) = 3.

– Case 2(i): |V (P)| = 3 and P = v2 − v3 − v1.
• Case 2(i)(a): Vertices v1 and v2 are the only neighbors of v3. Assign
C(v3) = 4 and U(v3) = 2. The invariant marked ? is not satisfied, but
that does not matter as v3 does not participate in any further faces.
• Case 2(i)(b): One of the edges {v1, v3} or {v2, v3} does not feature in

an another face. W.l.o.g., say {v2, v3} be that edge. Assign C(v3) = 4
with U(v3) = 1. The ? invariant is violated for {v2, v3} here but it does
not affect the further coloring.
• Case 2(i)(c): One of the edges {v1, v3} or {v2, v3} features in an uncol-

ored face F such that |V (F)| 6= 3. W.l.o.g., say {v2, v3} is that edge.
We assign C(v3) = 4 with U(v3) = 1. Let |V (F)| = k with F = v3 −
w1 − w2 − · · · − wk−2 − v2 − v3. We assign C(w1) = 3, C(w2) = 1 and
C(w3) = 4 (if w3 exists). For all 4 ≤ i ≤ k−2, C(wi) = C(wi−3). If k ≡ 0
(mod 3), we reassign C(wk−4) = 2, C(wk−3) = 1 and C(wk−2) = 4.
The unique colors U for the vertices are assigned as follows:
∗ For k = 6, U(w1) = 4, U(w2) = 3, U(w3) = 2 and U(w4) = 2.
∗ For k 6= 6, we have for 1 ≤ i ≤ k − 3, U(wi) = C(wi+1) and
U(wk−2) = C(v2) = 2.

• Case 2(i)(d): The only remaining case is when both the edges {v1, v3}
or {v2, v3} feature in uncolored triangular faces. Let {v1, v3} form a tri-
angular face with x and {v2, v3} with y. We have two subcases:
∗ The edge {x, v3} forms a triangular face with another vertex z (see

Figure 1). Assign C(v3) = 1, C(x) = 2, C(y) = 4, C(z) = 3 and
U(v3) = 4, U(x) = 3, U(y) = 2, U(z) = 1. Some edges violate the
invariant marked ?, but these edges are already part of two faces,
and hence do not feature in the further coloring.

32 Bhyravarapu, Kalyanasundaram and Mathew

∗ The edge {x, v3} is not part of a triangular face with another vertex.
In this case, we assign C(v3) = 4, C(x) = 4, C(y) = 1 and U(v3) =
2, U(x) = 1, U(y) = 2. Out of the edges that violate the invariant
marked ?, the only one that can participate in the further coloring is
the edge {x, v3}. By assumption, {x, v3} is not part of a triangular
face. In Lemma 36, we explain how to color the uncolored face that
is {x, v3} may be a part of.

– Case 2(ii): |V (P)| = 4, P = v2 − v3 − v4 − v1.
• Case 2(ii)(a): The edge {v3, v4} forms a triangular face with a vertex
x. We assign C(v3) = 1, C(v4) = 4, C(x) = 3, with U(v3) = 3, U(v4) =
1, U(x) = 4.

• Case 2(ii)(b): The edge {v3, v4} is not part of an uncolored triangular
face. We assign C(v3) = C(v4) = 4, with U(v3) = 2, U(v4) = 1. If the
edge {v3, v4} is part of an uncolored face F , by assumption, we know
that |V (F)| ≥ 4 and hence we can use Lemma 36 to color F satisfying
the invariants.

– Case 2(iii): |V (P)| = 5 with P = v2− v3− v4− v5− v1. We assign C(v3) =
1, C(v4) = 3, C(v5) = 2, with U(v3) = 3, U(v4) = 2, U(v5) = 1.

– Case 2(iv): |V (P)| ≥ 6, with P = v2 − v3 − · · · − vk−2 − vk−1 − vk − v1.
We first assign C(v3) = 4 and C(v4) = 3. For 5 ≤ i ≤ k, assign C(vi) =
C(vi−3). If k ≡ 1 (mod 3), then reassign C(vk−2) = 1 and C(vk) = 2. For
each vertex vi, the unique color is provided by its cyclical successor i.e.,
U(vi) = C(vi+1).

ut

Algorithmic Note: The steps in the proof of Theorem 30 leads to an algorithm.
Block decomposition, outerplanarity testing and embedding outerplanar graphs
[24] can all be done in linear time, i.e., O(|V (G)|). Thus we have an O(|V (G)|)
time algorithm, that given an outerplanar graph G, determines a CFON coloring
for G that uses four colors.

Acknowledgments: We would like to thank N. R. Aravind for helpful discus-
sions. We would also like to thank the anonymous reviewer of WG2020 who
pointed out an issue with the proof of Theorem 6. The second author acknowl-
edges DST-SERB (MTR/2020/000497) for supporting this research. The third
author acknowledges DST-SERB (MTR/2019/000550) for supporting this re-
search.

References

1. S. Bhyravarapu, S. Kalyanasundaram, Combinatorial bounds for conflict-free col-
oring on open neighborhoods, in: Graph-Theoretic Concepts in Computer Science
- 46th International Workshop, WG 2020, Leeds, UK, June 24-26, 2020, Revised
Selected Papers, 2020, pp. 1–13.

2. S. Bhyravarapu, S. Kalyanasundaram, R. Mathew, Conflict-free coloring of star-
free graphs on open neighborhoods (2020). arXiv:2009.06720.

Conflict-free Coloring Bounds on Open Neighborhoods 33

3. G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free colorings of simple ge-
ometric regions with applications to frequency assignment in cellular networks,
SIAM J. Comput. 33 (1) (2004) 94–136. doi:10.1137/S0097539702431840.

4. S. Smorodinsky, Conflict-Free Coloring and its Applications, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013, pp. 331–389. doi:10.1007/978-3-642-41498-5_12.

5. Z. Abel, V. Alvarez, E. D. Demaine, S. P. Fekete, A. Gour, A. Hesterberg,
P. Keldenich, C. Scheffer, Conflict-free coloring of graphs, SIAM Journal on Dis-
crete Mathematics 32 (4) (2018) 2675–2702. doi:10.1137/17M1146579.

6. L. Gargano, A. A. Rescigno, Complexity of conflict-free colorings of graphs, Theor.
Comput. Sci. 566 (C) (2015) 39–49. doi:10.1016/j.tcs.2014.11.029.

7. I. V. Reddy, Parameterized algorithms for conflict-free colorings of graphs, Theor.
Comput. Sci. 745 (2018) 53–62. doi:10.1016/j.tcs.2018.05.025.

8. H. L. Bodlaender, S. Kolay, A. Pieterse, Parameterized complexity of conflict-free
graph coloring, in: Proceedings of the 16th Intl. Symposium on Algorithms and
Data Structures, WADS, 2019, pp. 168–180. doi:10.1007/978-3-030-24766-9_13.

9. A. Agrawal, P. Ashok, M. M. Reddy, S. Saurabh, D. Yadav, FPT algo-
rithms for conflict-free coloring of graphs and chromatic terrain guarding, CoRR
abs/1905.01822 (2019). arXiv:1905.01822.

10. C. Keller, S. Smorodinsky, Conflict-free coloring of intersection graphs of geomet-
ric objects, Discrete & Computational Geometry (2019). doi:10.1007/s00454-019-
00097-8.

11. S. P. Fekete, P. Keldenich, Conflict-free coloring of intersection graphs, Interna-
tional Journal of Computational Geometry & Applications 28 (03) (2018) 289–307.
doi:10.1142/S0218195918500085.

12. K. Chen, A. Fiat, H. Kaplan, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir,
S. Smorodinsky, U. Wagner, E. Welzl, Online conflict-free coloring for intervals,
SIAM J. Comput. 36 (5) (2006) 1342–1359. doi:10.1137/S0097539704446682.

13. J. Pach, G. Tardos, Conflict-free colourings of graphs and hypergraphs,
Combinatorics, Probability and Computing 18 (5) (2009) 819–834.
doi:10.1017/S0963548309990290.

14. P. Cheilaris, Conflict-free coloring, Ph.D. thesis, New York, NY, USA (2009).
15. S. Bhyravarapu, S. Kalyanasundaram, A tight bound for conflict-free coloring in

terms of distance to cluster (2020). arXiv:2010.00063.
16. F. Huang, S. Guo, J. Yuan, A short note on open-neighborhood conflict-free color-

ings of graphs, SIAM Journal on Discrete Mathematics 34 (3) (2020) 2009–2015.
doi:10.1137/19M1272111.

17. M. Cygan, F. V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, 1st Edition, Springer Pub-
lishing Company, Incorporated, 2016.

18. K. Chandrasekaran, N. Goyal, B. Haeupler, Deterministic algorithms for the
Lovász local lemma, SIAM Journal on Computing 42 (6) (2013) 2132–2155.
doi:10.1137/100799642.

19. D. G. Harris, Deterministic algorithms for the Lovász local lemma: simpler, more
general, and more parallel, arXiv preprint arXiv:1909.08065 (2019).

20. M. Dębski, J. Przybyło, Conflict-free chromatic number versus
conflict-free chromatic index, Journal of Graph Theory (2021).
doi:https://doi.org/10.1002/jgt.22743.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22743

21. N. Robertson, D. Sanders, P. Seymour, R. Thomas, The four-colour theorem, J.
Comb. Theory Ser. B 70 (1) (1997) 2–44. doi:10.1006/jctb.1997.1750.

34 Bhyravarapu, Kalyanasundaram and Mathew

22. R. Diestel, Graph Theory, Springer-Verlag Heidelberg, 2005.
23. Y. Aubry, J.-C. Godin, O. Togni, Free choosability of outerplanar graphs, Graphs

and Combinatorics 32 (3) (2016) 851–859. doi:10.1007/s00373-015-1625-3.
24. S. L. Mitchell, Linear algorithms to recognize outerplanar and maximal outerplanar

graphs, Information Processing Letters 9 (5) (1979) 229 – 232. doi:10.1016/0020-
0190(79)90075-9.

