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Abstract. A conflict-free coloring of a graph G is a (partial) coloring
of its vertices such that every vertex u has a neighbor whose assigned
color is unique in the neighborhood of u. There are two variants of this
coloring, one defined using the open neighborhood and one using the
closed neighborhood. For both variants, we study the problem of deciding
whether the conflict-free coloring of a given graph G is at most a given
number k.

In this work, we investigate the relation of clique-width and minimum
number of colors needed (for both variants) and show that these param-
eters do not bound one another. Moreover, we consider specific graph
classes, particularly graphs of bounded clique-width and types of inter-
section graphs, such as distance hereditary graphs, interval graphs and
unit square and disk graphs. We also consider Kneser graphs and split
graphs. We give (often tight) upper and lower bounds and determine the
complexity of the decision problem on these graph classes, which improve
some of the results from the literature. Particularly, we settle the number
of colors needed for an interval graph to be conflict-free colored under
the open neighborhood model, which was posed as an open problem.

1 Introduction

Graph coloring is one of the most fundamental problems in graph theory. A
proper coloring of a given undirected graph G is an assignment of colors to
the vertices of G such that no two adjacent vertices have the same color. The
minimum number of colors for which a proper coloring of G exists is called the
chromatic number of G. There have been extensive studies on this parameter,
both algorithmically (e.g., determining or approximating the chromatic number)

⋆ A subset of the results of this paper appeared in the Proceedings of IWOCA 2021 [5].
⋆⋆ Corresponding author. Email: subruk@cse.iith.ac.in
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and structurally (e.g., worst-case bounds on the chromatic number of a given
graph class, notably planar graphs); see [25] for example for an overview.

Besides the classical coloring above, there have been many variants. One
such variant is introduced in 2002 by Even, Lotker, Ron and Smorodinsky [14],
motivated by the frequency assignment problem in cellular networks, where base
stations and clients communicate with one another. To avoid interference, it is
required that for each client, among the base stations that it connects to, there
exists one with a unique frequency. This is formalized as a conflict-free coloring.
In the below definition, the open neighborhood of a vertex is the set of its
adjacent vertices.

Definition 1 (Conflict-Free Coloring). A partial conflict-free open-neighborhood
coloring (CFON* coloring) of a graph G, G = (V,E), using k colors is an as-
signment C : V → {0} ∪ {1, 2, . . . , k} such that for every vertex v ∈ V , there is
a vertex with a unique non-zero color in the open neighborhood of v.

The smallest k for which there is a CFON* coloring of G is called the CFON*
chromatic number of G, denoted by χ∗

ON (G). Given a graph G and a natural
number k, the CFON* coloring problem asks whether χ∗

ON (G) is at most k.

Similarly, we can define a coloring variant for closed neighborhoods, where a
closed neighborhood of a vertex contains the vertex itself and its adjacent ver-
tices. We call this a partial conflict-free closed-neighborhood coloring or CFCN*
coloring. The CFCN* chromatic number χ∗

CN (G) and the CFCN* coloring prob-
lem are defined analogously. Collectively, we refer to the chromatic numbers of
these two variants as conflict-free chromatic numbers. The CFON* and CFCN*
colorings are referred to as “partial colorings” because the vertices colored 0 are
treated as “uncolored”.

Conflict-free coloring has been well studied for nearly 20 years (e.g., see the
survey by Smorodinsky [34]) and also found applications in the area of sensor
networks [17,31] and coding theory [27]. Similar to the classic setting, these works
explored various combinatorial and algorithmic questions on conflict-free color-
ing. What are worst-case bounds on any of the conflict-free chromatic numbers?
What is the computational complexity of the conflict-free coloring problems?
For what kind of graph classes can we get better bounds and complexity for the
questions above? While many papers have addressed these questions, there are
still many gaps, which we bridge in this paper.

1.1 Results and Discussion

This paper is the extended version of the preliminary version [5] published in the
proceedings of the IWOCA 2021 conference. In this paper, we obtain many new
results and provide the full proofs that were omitted in the preliminary version.
In the following, we briefly present the results of the current paper and highlight
the changes from the preliminary paper. A summary of the results for CFON*
and CFCN* colorings are also presented in Tables 1 and 2, respectively.

– In Section 3, we discuss the conflict-free chromatic numbers in relation with
the parameter clique-width. In the preliminary version [5], we presented fixed
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parameter tractable (FPT) algorithms for all the conflict-free coloring prob-
lems with respect to the number of colors and clique-width, with full cor-
rectness proof. If the CFON* and CFCN* chromatic numbers are bounded
by a function of clique-width, the result above will translate to an FPT
algorithm with respect to only the clique-width. As a new result, we show
that the conflict-free chromatic numbers cannot be bounded by a function of
clique-width. Towards this end, we show the existence of graphs with clique-
width three and conflict-free chromatic numbers Ω(log n). The existence of
an FPT algorithm with respect to the clique-width remains open.

– In Section 4, we discuss certain graphs with bounded clique-width. In par-
ticular, for distance-hereditary graphs, we show that the CFCN* chromatic
number is at most three. Consequently, we can obtain a polynomial time
algorithm for this graph class, by applying any FPT or XP algorithm with
respect to the clique-width and the number of colors [4, 5, 21]. The CFON*
chromatic number for this graph class, however, is unbounded. Still, we show
that it is bounded for two subclasses, cographs and block graphs, and hence
the CFON* coloring problem is polynomial time solvable on them. The re-
sults related to these two subclasses have been announced in the preliminary
version [5], and here we provide the full proof. The results for distance-
hereditary graphs are new.

– In Section 5, we show that for an interval graph G, χ∗
ON (G) ≤ 3 and that this

bound is tight. This result answers an open question posed in [33]. Moreover,
we show that two colors are sufficient to CFON* color proper interval graphs.
All these results were announced in the preliminary version [5], but the full
proof was only provided for the upper bound on proper interval graphs.

– In Section 6, we provide the full proof for the upper bounds of the CFON*
chromatic numbers of 27 and 54 for unit square and unit disk intersection
graphs, respectively.
Further, in Section 7, we show a new NP-completeness result for the CFON*
coloring problem on unit square and unit disk intersection graphs. These
results complement the corresponding bounds and complexity for the closed-
neighborhood variant studied previously by Fekete and Keldenich [15].

– In the last two sections, we provide the full proofs related to Kneser graphs
and split graphs, as announced in [5]. In particular, in Section 8, for the
Kneser graph K(n, κ), κ + 1 colors are sufficient when n ≥ 2κ + 1 and are
also necessary when n ≥ 2κ2 + κ. For CFCN* coloring of K(n, κ), we show
an upper bound of κ colors for n ≥ 2κ+ 1.
In Section 9, we prove that for split graphs, the CFON* coloring problem
is NP-complete and that the CFCN* coloring problem is polynomial time
solvable.

1.2 Related works

Here, we briefly review a few results related to the materials of this paper. We
will elaborate the relevant results further at each subsequent section. For a more
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Graph Class Upper Bound Lower Bound Complexity

Distance hereditary graphs - Ω(logn) (Cor. 15) -

Block graphs 3 3 (Fig. 4) P

Cographs 2 2 (K3) P

Interval graphs 3 3 (Fig. 5) P [6, 21]

Proper interval graphs 2 2 (K3) P [6, 21]

Unit square graphs 27 3 (Fig. 6) NP-hard

Unit disk graphs 54 3 (Fig. 6) NP-hard

Kneser graphs K(n, κ) κ+ 1 κ+ 1 (Lem. 37) -

Split graphs - - NP-hard

Table 1. Bounds and algorithmic status on various graph classes for the CFON*
coloring problem. The results that were previously known are indicated by providing
citations to the papers. The absence of a citation indicates that the result is shown in
this paper. Here a “Lower Bound” of ℓ indicates the existence of a graph G such that
χ∗
ON (G) = ℓ. Such graphs are indicated in parenthesis. If the bounds or the algorithmic

status (whether P or NP-hard) for a graph class is unknown, we indicate it by “-”.

Graph Class Upper Bound Complexity

Distance Hereditary Graphs 3 P

Block graphs 2 P

Cographs 2 P

Interval graphs 2 [15] P [5, 21]

Proper interval graphs 2 [15] P [5, 21]

Unit square graphs 4 [15] NP-hard [15]

Unit disk graphs 6 [15] NP-hard [15]

Kneser graphs K(n, κ) κ -

Split graphs 2 P

Table 2. Bounds and algorithmic status on various graph classes for the CFCN*
coloring problem. The results that were previously known are indicated by providing
citations to the papers. The absence of a citation indicates that the result is shown
in this paper. If the algorithmic status (whether P or NP-hard) for a graph class is
unknown, we indicate it by “-”.

general overview on conflict-free coloring, we refer the reader to the survey by
Smorodinsky [34].

Many papers in the literature of conflict-free coloring considered the variants
where the partial coloring is a full coloring. We remove the asterisks to denote
these cases. That is, we denote by CFON coloring the full conflict-free open-
neighborhood coloring, and denote by CFCN coloring for the closed neighborhood
variant. The corresponding chromatic numbers and decision problems are defined
analogously.
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In terms of asymptotic worst-case bounds, Pach and Tárdos [32] showed a
bound of O(log n) for a general n-vertex graph for any of the four variants of
conflict-free coloring. Glebov, Szabó, and Tardos [19] proved that this bound is
tight, using a randomized construction. This bound can be improved for special
graph classes, such as random graphs G(n, p) for p ∈ ω(1/n) [19] and graphs
with bounded degrees [22,32].

From an algorithmic perspective, Gargano and Rescigno [18] showed that the
CFON and CFCN coloring problems are NP-complete, and the corresponding
chromatic numbers are hard to approximate within a factor less than 3/2. Abel
et al. [1] later showed the NP-completeness for the CFON* and CFCN* coloring
problems, where the former problem is NP-complete even for planar bipartite
graphs. Given these complexity results, two natural approaches for further in-
vestigation are to study the parameterized complexity of these problems or to
restrict the classes of graphs for which the problems may be efficiently solved.

The parameterized complexity of conflict-free coloring problems has captured
the interest of the research community recently. The CFON and CFCN coloring
problems are FPT6 when parameterized by tree-width [2,7], distance to cluster
(distance to disjoint union of cliques) [33], neighborhood diversity [18].

Our preliminary paper [5] and a recent paper by Bergougnoux, Dreier, and
Jaffke [4] showed that the four variants of conflict-free coloring problems are FPT
with respect to the combined parameters clique-width and the number of colors.
Clique-width is more general than the parameters mentioned in the preceding
paragraph. In other words, if these parameters are bounded, then the clique-
width is also bounded. More recently, Gonzalez and Mann [21] showed that the
problems are polynomial time solvable when the mim-width and the number of
colors are constant. Although this parameter mim-width is more general than
clique-width, the algorithms by Gonzalez and Mann are not FPT algorithms.

In the direction of restricted classes of graphs, many geometric graph classes
have been given attention specially, due to the original motivation from the fre-
quency assignment problem. The original paper [14] considered graphs induced
by coverage of point sets on the plane by convex regions. Abel et al. [1] presented
many combinatorial and algorithmic results for the planar graphs. The latest pa-
per for these graphs by Huang, Guo, and Yuan [24] gives a tight bound of 4 for
the CFON* chromatic number. Intersection graphs are also natural classes of
geometric graphs to consider. Fekete and Keldenich [15] studied CFCN∗ color-
ing on common intersection graphs such as interval graphs, unit disk graphs
and unit square graphs. (See the references therein for further related works on
intersection graphs.) This paper poses an open question on the existence of a
polynomial time algorithm for the CFON∗ problem on interval graphs. This was
recently proved affirmatively, independently by Bhyravarapu, Kalyanasundaram
and Mathew [6], and Gonzalez and Mann [21]. Beside these intersection graphs,
several others have been considered, such as string graphs and circle graphs [26].

6 For the formal definition of FPT and more details on parameterized complexity, we
refer the reader to [10,13].
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2 Preliminaries

Throughout the paper, we assume that the input graph G = (V,E) is connected.
We also assume that G does not contain any isolated vertices as the CFON*
problem is not defined for an isolated vertex. All the results of this paper hold for
disconnected graphs without isolated vertices by the application of the respective
theorems on each connected component. We use [k] to denote the set {1, 2, . . . , k}
and C : V → {0} ∪ [k] to denote the coloring function. A universal vertex
is a vertex that is adjacent to all other vertices of the graph. In some of our
algorithms and proofs, it is convenient to distinguish between vertices that are
intentionally left uncolored, and the vertices that are yet to be assigned any color.
The assignment of color 0 is used to denote that a vertex is left intentionally
uncolored by the coloring function.

To simplify the notation and for ease of readability, we use the shorthand
notation vw to denote the edge {v, w}. The open neighborhood of a vertex v ∈ V
is the set of vertices {w : vw ∈ E} and is denoted by N(v). Given a conflict-
free coloring C, a vertex w ∈ N(v) is called a uniquely colored neighbor of v if
C(w) ̸= 0 and ∀x ∈ N(v) \ {w}, C(w) ̸= C(x). The closed neighborhood of v is
the set N(v)∪{v}, denoted by N [v]. The notion of a uniquely colored neighbor in
the closed neighborhood variant is analogous to the open neighborhood variant,
and is obtained by replacing N(v) by N [v]. Given a vertex set V ′ ⊆ V , we define
C(V ′) as follows: C(V ′) =

⋃
v∈V ′{C(v)}.

In many of the sections, in order to establish bounds on the CFON* and
CFCN* chromatic numbers, we use the full coloring conflict-free coloring vari-
ants, defined as follows.

Definition 2 (Conflict-Free Coloring – Full Coloring Variant). A CFON
coloring of a graph G, G = (V,E), using k colors is an assignment C : V →
{1, 2, . . . , k} such that for every v ∈ V , there exists an i ∈ {1, 2, . . . , k} such
that |N(v) ∩ C−1(i)| = 1. The smallest number of colors required for a CFON
coloring of G is called the CFON chromatic number of G, denoted by χON (G).

The corresponding closed neighborhood variant is denoted by CFCN coloring,
and the CFCN chromatic number is denoted by χCN (G).

Remark 3. A full conflict-free coloring, where all the vertices are colored with a
non-zero color, is also a partial conflict-free coloring (as defined in Definition 1),
while the converse is not necessarily true. One extra color suffices to obtain a
full conflict-free coloring from a partial conflict-free coloring. However, it is not
always clear if the extra color is actually necessary.

Recall the proper coloring defined in Section 1. For a graph G, denote by
χ(G) the chromatic number of G. Observe that such a proper coloring gives a
CFCN coloring, but in general, the CFCN chromatic number is much lower than
the chromatic number. For example, χ(Kn) = n but χCN (Kn) = 2 where Kn is
a clique on n vertices.
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3 Clique-width

In this section, we study conflict-free coloring on graphs of bounded clique-width.

Definition 4 (Clique-width [9]). Let w ∈ N. A w-expression Φ defines a
graph GΦ where each vertex receives a label from [w]. The graph consisting of a
solitary vertex v with label i has the w-expression v(i). Graphs that contain two or
more vertices are defined inductively using the three operations described below.
Let GΦ′ and GΦ′′ be graphs given by the w-expressions Φ′ and Φ′′ respectively.

1. Disjoint union: The graph GΦ which is the disjoint union of GΦ′ and GΦ′′

is given by the w-expression Φ = Φ′ ⊕ Φ′′.
2. Relabel: Let the graph GΦ be GΦ′ where each vertex labeled i in GΦ′ is re-

labeled with the label j. The graph GΦ is given by the w-expression Φ =
ρi→j(Φ

′).
3. Join: Let the graph GΦ obtained from GΦ′ by adding edges between all the

vertex pairs (u, v), where u has label i and v has label j. The graph GΦ is
given by the w-expression Φ = ηi,j(Φ

′).

The clique-width of a graph G denoted by cw(G) is the minimum number w
such that there is a w-expression Φ that defines G.

Given a graph G = (V,E) and its w-expression it was shown in [5] that all
the four variants of the conflict-free coloring problem (CFON, CFCN, CFON*

and CFCN*) can be solved in time 2O(w3k)nO(1), where w is the clique-width
of the graph, k is the number of colors, and n is the number of vertices of G.
Recently, Bergougnoux, Dreier and Jaffke in [4] introduced a logic called distance
neighborhood (DN) logic which extends existential MSO1. It was shown in the
same paper that the CFON and CFCN coloring problems can be expressed in
DN logic. Using similar ideas, the CFON∗ and CFCN∗ coloring problems can
also be expressed in DN logic. By applying Theorem 1.1 in [4], we obtain an

algorithm that runs in time 2O(wk2)nO(1). Thus, all the variants of conflict-free
coloring are fixed-parameter tractable when parameterized by the clique-width
of the graph and the number of colors. As a consequence, we have the following.

Theorem 5. Given a w-expression of a graph G, all the four variants of the
conflict-free coloring problem (CFON, CFCN, CFON* and CFCN*) can be solved

in time 2O(wk2)nO(1) where k is the number of colors and n is the number of
vertices of G.

3.1 Graphs of bounded clique-width and unbounded χCN and χON

Since the CFCN and CFON coloring problems are FPT when parameterized by
clique-width and the number of colors, an open question is then whether there
exists an FPT algorithm with respect to only the clique-width. One solution
to this question would be to bound the CFON and CFCN chromatic numbers
by a function of the clique-width. However, this turns out to be impossible,
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even for graphs of clique-width three. We construct graphs G2, G3, . . . , Gk of
clique-width at most 3 such that a conflict-free coloring of Gi requires at least i
colors. Interestingly, graphs of clique-width at most 2, i.e., cographs (see [9] for
a reference), have bounded CFON and CFCN chromatic numbers, as shown in
Theorems 13 and 16 in the next section. In the following, we consider the full
coloring variant. Let us first consider CFCN colorings.

Theorem 6. For any given integer k ≥ 2, there exists a graph Gk of clique-
width at most 3 with χCN (Gk) ≥ k.

G2 G2 G2 G2

G2 G2

G3 G3

G3 G3 G3 G3

G3 G3

G3 G3 G3 G3

G3 G3

Fig. 1. G3 (left) and G4 (right) have clique-width 3 but cannot be CFCN colored with
2 and 3 colors, respectively. Each Gi,i ≥ 2 stands for a copy of the graph Gi. Every
vertex in an ellipse is adjacent to every vertex that is connected to that ellipse.

Proof. We construct graphs Gi, i ≥ 2 inductively. The graph Gk+1 is such that
it cannot be CFCN colored with k colors. Thus at least k+1 colors are required.

– Let G2 be the graph isomorphic to K2.

– The graph Gk+1, for k ≥ 2, is constructed as follows. It consists of 2k bottom
vertices B = {b0, . . . , b2k−1} and 2(2k − 1) copies of Gk. The vertices of B
form a clique. To describe the edges between the vertices in the copies of
Gk and those in B, it will be simpler to consider an imaginary binary tree
T . Let T be the full binary tree with k levels and with leaves B. That is,
T consists of k + 1 levels L0, . . . , Lk, where level Li contains 2k−i vertices
bi0, . . . , b

i
2k−i−1 for 0 ≤ i ≤ k. Each vertex bij has children bi−1

2j and bi−1
2j+1

for 1 ≤ i ≤ k and 0 ≤ j < 2k−i. Then we identify the bottom vertices B
with the leaves L0, which is b0j = bj for 0 ≤ j < 2k. For a non-leaf x of
T , let B(x) ⊆ B be the set of descendants of x among the leaves B. Let
B = {B(x) | x ∈ V (T ) \L0} be the family of such sets. For every set S ∈ B,
introduce two disjoint copies of Gk and make them adjacent to S, i.e., all
the vertices in the two copies of Gk are adjacent to all the vertices in S. See
Fig. 1 for illustrations of G3 and G4.
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Inductively we show that Gk has clique-width at most 3. That is, there is a
3-expression Φk where GΦk

equals G when ignoring the labels. We will use the
labels {α, β, γ} instead of numbers, since numbers are already used for colors.

– Graph G2, a single edge, can be constructed using 2 labels.
– Consider the graphGk+1. By the induction hypothesis, there is a 3-expression

Φk that describes Gk. We may assume that every vertex of GΦk
has label

β since we can apply relabelling operations at the end. Let vertex sets B
and T with levels L0, . . . , Lk be as in the construction of Gk+1. We show
the following properties for every node x ∈ Li of T by induction on the level
i = 0, . . . , k:
(*) There is a 3-expression Φk+1,x where GΦk+1,x

equals the induced sub-
graph of Gk+1 that contains B(x) and the copies of Gk whose neighbor-
hoods are subsets of B(x); and

(**) B(x) has label α and the copies of Gk have label γ.
Then Φk+1,r, where r is the root of T , is the desired 3-expression.
• For the induction basis, let i = 0 and x ∈ L0. Hence x is a leaf bi: Simply
introduce the single vertex of label α.

• For the induction step, let i ≥ 1 and x ∈ Li. The vertex x has two
children, say y and z, in level Li−1. Thus by induction hypothesis there
are 3-expressions Φk+1,y and Φk+1,z with the properties (*) and (**)
described above.
We construct Φk+1,x: We first need to add all the edges between B(y) and
B(z) by combining the respective 3-expressions. Towards this end, we do
(i) a relabel operation ρα→β(Φk+1,y), (ii) disjoint union of ρα→β(Φk+1,y)
and Φk+1,z, (iii) a join operation ηα,β on the graph obtained, and (iv)
relabel all the vertices assigned the label β to α.
We now need to introduce two copies of Gk and add edges between the
introduced copies of Gk and the vertices of B(x) = B(y)∪B(z). Towards
this end, we (i) inductively construct two copies of Gk, (ii) relabel the
vertices of these copies of Gk to β, (iii) take a disjoint union of these
copies of Gk and the graph constructed above on B(x), and (iv) use a
join operation ηα,β on the resulting graph. Finally, we relabel all the
vertices assigned the label β to γ to maintain the property (**).

Lastly, we show by induction that Gk+1 has no CFCN coloring with only
k colors, for every k ≥ 1. For the induction basis, consider G2, a single edge.
There, a 1-coloring is not possible.

For the induction step, Gk ⇝ Gk+1, suppose for a contradiction that there
is a CFCN coloring c : V (Gk+1) → {1, . . . , k}.

We first show that each set S ∈ B contains a uniquely colored vertex f(S).
To be precise, the mapping f : B → B such that for each set S ∈ B there is a
vertex f(S) = v ∈ S and c(v) ̸= c(v′) for every other vertex v′ ∈ S \ {v}.

Recall that Gk+1 contains two copies C1, C2 of Gk where each Ci, i ∈ {1, 2}
has N [Ci]\Ci = S. Now suppose for a contradiction that S contains no uniquely
colored vertex. Let ci be the coloring c restricted to vertices V (Ci), for i ∈ {1, 2}.
Then ci is a CFCN coloring of graph Ci, for i ∈ {1, 2}. Indeed by induction
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hypothesis, the restricted coloring ci is surjective. Hence in V (C1)∪ V (C2) each
of the k colors occurs twice. Then every vertex in u ∈ S has every color from
{1, . . . , k} at least twice in its neighborhood. This contradicts the claim that u
has a uniquely colored neighbor. Therefore, each set S ∈ B contains a uniquely
colored vertex f(S).

Now, without loss of generality we may assume that the uniquely colored ele-
ment of the setB is f(B) = b2k−1 and that b2k−1 is colored with color k. Then the
subset {b0, . . . , b2k−1−1} ∈ B consists only of vertices of color 1, . . . , k− 1. Again
without loss of generality, we may assume that f({b0, . . . , b2k−1−1}) = b2k−1−1

and that the vertex b2k−1−1 is colored with k − 1. By repeating this argument,
we eventually obtain that b0 and b1 must take the color 1. This contradicts the
claim that {b0, b1} ∈ B has a uniquely colored element. Therefore, Gk+1 cannot
be colored with just k colors. ⊓⊔

To show that the CFON coloring number is also unbounded for graphs with
clique-width three, we use an analogous approach. We define a sequence of graphs
G′

2, G
′
3, . . . , such that each graph G′

k+1 for k ≥ 2 has clique-width at most three
and cannot be CFON colored with k colors. Let G′

2 be a copy of K3, which
cannot be CFON colored with one color and which has clique-width 2. We use
the same inductive process to construct G′

k+1 from the copies of G′
k. Inductively

it follows that G′
k+1 has clique-width at most 3. Again, by the same induction

step as before, it follows that G′
k+1 cannot be CFON colored with k colors. We

also provide an alternative construction in Lemma 14.

Theorem 7. For any given integer k ≥ 2, there exists a graph Gk of clique-
width at most 3 with χON (Gk) ≥ k.

4 Graph classes of bounded clique-width

One consequence of Theorem 5 is that if both the clique-width and the CFON*
(or CFCN*) chromatic number of the input graph is bounded, then there exists
a polynomial time algorithm to solve the CFON* (or CFCN*, respectively) col-
oring problem. Theorems 6 and 7 show that even when the clique-width is at
most 3, the CFON* and CFCN* chromatic numbers can be unbounded. Hence,
this section explores some graph classes with clique-width at most 3, where the
CFON* or CFCN* chromatic number is bounded.

Firstly, we consider the graphs with clique-width at most 2, which are exactly
the cographs [9].

Definition 8 (Cograph [8]). A graph G is a cograph if it can be constructed
recursively by the following rules. An isolated vertex is a cograph, the disjoint
union of two cographs is a cograph and the complement of a cograph is a cograph.

We will show that cographs have CFCN* and CFON* chromatic numbers at
most 2 (Lemmas 13 and 16).

These graphs are a special case of distance hereditary graphs, whose clique-
width is at most 3 [20].
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Definition 9 (Distance hereditary graph [23]). A graph G is distance
hereditary if for every connected induced subgraph H of G, the distance (i.e.,
the length of a shortest path) between any pair of vertices in H is the same as
that in G.

Bandelt and Mulder [3] gave the following alternative definition of connected
distance hereditary graphs. For a given ordering of the vertices (v1, v2, . . . , vn)
of V (G), let G[i] be the induced subgraph of G on {v1, . . . , vi}. The sequence
(v1, v2, . . . , vn) is a one-vertex extension sequence if G[2] = K2, and for every
i ≥ 3, G[i] can be formed by adding vi to G[i− 1] and edges incident to vi such
that for some j < i, one of the following holds:

– vi is adjacent to vj and no other vertex (we say vi is a pendant of vj);
– vi is adjacent to all the neighbors of vj (we say vi is a false twin of vj); or
– vi is adjacent to vj and all the neighbors of vj (we say vi is a true twin of

vj).

Then a connected graph is distance hereditary if and only if there exists a one-
vertex extension sequence (v1, v2, . . . , vn).

Note that if the pendant operation is absent, then we obtain exactly the
cographs. In other words, cographs are exactly the distance hereditary graphs
that can be constructed from a single vertex by the true twin and false twin
operations [3]. If the true twin operation is absent, then we obtain bipartite
distance hereditary graphs. Lastly, if the false twin operation is missing, we
obtain a graph class that contains block graphs as a subclass [29].

Definition 10 (Block Graph [12]). A block graph is a graph in which every
2-connected component (i.e., a maximal subgraph which cannot be disconnected
by the deletion of one vertex) is a clique.

4.1 CFCN* chromatic number

We first show an upper bound for the CFCN* chromatic number of distance
hereditary graphs.

Lemma 11. If G is a distance hereditary graph, then χ∗
CN (G) ≤ 3.

Proof. Suppose (v1, v2, . . . , vn) is a one-vertex extension sequence of G. We will
give an iterative algorithm to provide a CFCN* coloring with colors 0, 1, 2, 3.

We use Ni(v) and Ni[v] to refer to the open and closed neighborhoods of a
vertex v in the graph G[i], respectively, where i ∈ [n] is the current iteration of
the algorithm.

For each vertex v, we specify a tuple C(v) = (a, b) with a ∈ {0, 1, 2, 3} as the
color of v, and b ∈ {1, 2, 3} as the color of the uniquely colored neighbor of v. We
maintain the following two invariants for each iteration i ∈ [n] of the coloring
algorithm:

– Invariant 1: For every vertex v ∈ G[i], with C(v) = (a, b), possibly a = b,
there is a uniquely colored neighbor of v in G[i] of color b.
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– Invariant 2: For every vertex v ∈ G[i], if C(v) = (a, a), then condition (*)
or condition (**) is true.
• Condition (*): There is a color d ∈ {1, 2, 3} \ {a}, such that every vertex
w ∈ Ni(v) has C(w) = (0, d).

• Condition (**): There is a color y ∈ {1, 2, 3} \ {a} that appears exactly
once in Ni(v).

We are now ready to describe the coloring scheme. Recall that v1 and v2 are
adjacent to one another. We assign C(v1) = (1, 2) and C(v2) = (2, 1). Clearly, the
Invariants 1 and 2 hold. For i ≥ 3, consider j such that vi is either a pendant, false
or true twin of vj . Let C(vj) = (a, b) for some a ∈ {0, 1, 2, 3} and b ∈ {1, 2, 3}.
We distinguish the following cases:

– Case 1a: vi is a pendant of vj and a = b.
• Case 1a′: C(w) = (0, d) for all w ∈ Ni−1(vj) and d ̸= a. That is,

condition (*) holds for vj in G[i− 1].
We assign C(vi) = (x, a), where x is the color in {1, 2, 3} \ {a, d}.

• Case 1a′′: otherwise. That is, condition (**) holds for vj in G[i− 1].
We assign C(vi) = (0, a).

– Case 1b: vi is a pendant of vj and a ̸= b.
• Case 1b′: a ̸= 0.
We assign C(vi) = (0, a).

• Case 1b′′: a = 0.
We assign C(vi) = (x, x), for an arbitrary color x in {1, 2, 3} \ {b}.

– Case 2a: vi is a true twin of vj and a = b.
• Case 2a′: C(w) = (0, d) for all w in Ni−1(vj) and d ̸= a. That is,
condition (*) holds for vj in G[i− 1].
We assign C(vi) = (x, a), where x is the color in {1, 2, 3} \ {a, d}.

• Case 2a′′: otherwise. That is, condition (**) holds for vj in G[i− 1].
We assign C(vi) = (0, a).

– Case 2b: vi is a true twin of vj and a ̸= b.
We assign C(vi) = (0, b).

– Case 3a: vi is a false twin of vj and a = b.
• Case 3a′: C(w) = (0, d) for all w in Ni−1(vj) and d ̸= a. That is,
condition (*) holds for vj in G[i− 1].
We assign C(vi) = (a, a).

• Case 3a′′: otherwise. That is, condition (**) holds for vj in G[i− 1].
That is, there is a vertex w ∈ Ni−1(vj) with a unique color y ∈ {1, 2, 3}\
{a} among the vertices in Ni−1(vj). We assign C(vi) = (0, y).

– Case 3b: vi is a false twin of vj, and a ̸= b.
We assign C(vi) = (0, b).

We prove the invariants by induction. Invariant 1 for iteration i = n implies
that the coloring above is a CFCN* coloring for G = G[n].

These invariants are trivially true for the base case of i = 2. For the in-
ductive step, observe that for any vertex u /∈ Ni[vi], there is no change in the
closed neighborhood of u, and hence the invariants hold for u by the inductive
hypothesis. For vj and Ni[vi] we show that Invariants 1 and 2 are satisfied in
G[i].
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Case 1a′. Vertex vi: Invariant 1 holds, since vj with color a is the uniquely
colored neighbor of vi. Invariant 2 is vacuously true.

Vertex vj: Since vi has a different color than a, the uniquely colored neigh-
bor of vj remains unchanged (in fact, it is vj itself), i.e., Invariant 1
holds. Invariant 2 holds by condition (**), because vi becomes the only
vertex in Ni(vj) with color x assigned to it.

Case 1a′′. Vertex vi: Invariant 1 is satisfied since vi has vj with color a as
neighbor. Invariant 2 is vacuously true.

Vertex vj: Invariant 1 is satisfied, since vj still has itself with color a as
its uniquely colored neighbor. By the case assumption, there exists a
vertex w ∈ Ni−1(vj) that is assigned a color from {1, 2, 3} \ {a} and w is
uniquely colored among the vertices in Ni−1(vj). The vertex w continues
to be uniquely colored in Ni(vj) since vi is colored 0. Hence Invariant 2
holds by condition (**) for vj in G[i].

Case 1b′. Vertex vi: Invariant 1 is satisfied, since vi has vj of color a ̸= 0 as
its neighbor. Invariant 2 is vacuously true.

Vertex vj: The vertex vj retains its uniquely colored neighbor, since vi is
colored with 0. Thus Invariant 1 holds. Invariant 2 is vacuously true.

Case 1b′′. Vertex vi: Invariant 1 is satisfied, since vi has itself as its uniquely
colored neighbor. Further, condition (*) for Invariant 2 holds since b ̸= x.

Vertex vj: Invariant 1 is satisfied, since vi is not colored b. Invariant 2 is
vacuously true.

Case 2a′. Vertex vi: Invariant 1 is satisfied for vi, since vj is its only neighbor
with color a. Invariant 2 is vacuously true.

Vertex vj: Invariants 1 and 2 (due to condition (**)) are true. The argu-
ments are the same as those in the Case 1a′.

Vertices in Ni(vj) \ {vi}: Invariant 1 remains true for these vertices, since
vi is colored with x, and x ̸= d. Invariant 2 is vacuously true.

Case 2a′′. Vertex vi: Invariant 1 holds since vj has color a and vj is uniquely
colored among the vertices in Ni−1[vj ]. Invariant 2 is vacuously true.

Vertex vj: Invariants 1 and 2 (due to condition (**)) are true. The argu-
ments are the same as those in the Case 1a′′.

Vertices in Ni(vj) \ {vi}: Invariant 1 holds since vi is colored 0. For w ∈
Ni(vj)\{vi}, if C(w) = (x, x′), where x ̸= x′, the Invariant 2 is vacuously
true. For w ∈ Ni(vj) \ {vi}, if C(w) = (x, x) for some x ∈ {1, 2, 3}, the
Invariant 2 held by condition (**) in G[i − 1] (since C(vj) = (a, a)).
Invariant 2 continues to hold in G[i] by condition (**) since vi is colored
0.

Case 2b. Vertex vi: Invariant 1 holds since Ni[vj ] = Ni[vi] and since vi is
colored 0. Invariant 2 is vacuously true.

Vertex vj: Invariant 1 holds since since vi is colored 0. Invariant 2 is vacu-
ously true.

Vertices in Ni(vj) \ {vi}: Invariant 1 holds since since vi is colored 0. For
w ∈ Ni(vj) \ {vi}, if C(w) = (x, x′), where x ̸= x′, the Invariant 2 is
vacuously true. Suppose that for w ∈ Ni(vj) \ {vi}, if C(w) = (x, x) for
some x ∈ {1, 2, 3}.



14 Bhyravarapu, Hartmann, Hoang, Kalyanasundaram and Reddy

If Invariant 2 held by condition (*) for w in G[i − 1], it means that for
all w′ ∈ Ni−1(w), we have C(w′) = (0, b) (since C(vj) = (a, b) by the
case assumption). Invariant 2 continues to hold by condition (*) for w
in G[i− 1] since C(vi) = (0, b).
If Invariant 2 held by condition (**) for w in G[i− 1], then it continues
to hold by condition (**) in G[i] since vi is colored 0.

Case 3a′. Vertex vi: Invariants 1 and 2 hold for vi since Ni(vi) = Ni(vj) =
Ni−1(vj).

Vertex vj: Invariants 1 and 2 continue to hold as the neighborhood of vj
is unaffected by the false twin operation.

Vertices in Ni(vj): Invariant 1 is true for w ∈ Ni(vj) since a ̸= d. Invariant
2 is vacuously true.

Case 3a′′. Vertex vi: By the case assumption, w ∈ Ni−1(vj) = Ni(vi) is the
unique vertex in Ni(vi) that is colored y. Hence Invariant 1 holds. In-
variant 2 is vacuously true.

Vertex vj: Invariants 1 and 2 continue to hold as the neighborhood of vj
is unaffected by the false twin operation.

Vertices in Ni(vj): Invariants 1 and 2 are true. The arguments are identi-
cal to those in the Case 2a′′.

Case 3b. Vertex vi: Note that by the case assumption, there is a unique ver-
tex w ∈ Ni−1(vj) that is colored b. Since Ni(vi) = Ni−1(vj) and since vi
is colored 0, Invariant 1 holds. Invariant 2 is vacuously true.

Vertex vj: Invariants 1 and 2 continue to hold as the neighborhood of vj
is unaffected by the false twin operation.

Vertices in Ni(vj): Invariants 1 and 2 are true. The arguments are identi-
cal to those in the Case 2b.

⊓⊔

Since the CFCN* chromatic number of distance hereditary graphs is at most
3, its CFCN chromatic number is at most 4. Hence the algorithm of Theorem 5
combined with these bounds provides the following result:

Corollary 12. For distance hereditary graphs, the CFCN* and CFCN coloring
problems are polynomial time solvable.

In the following lemma, we show that we need fewer colors when we restrict
the operations used to construct the distance hereditary graphs.

Lemma 13. Let G be distance hereditary graph defined by a one-vertex exten-
sion sequence which only uses two of the three operations: adding a pendant
vertex, adding a false twin and adding a true twin. Then χ∗

CN (G) ≤ 2. In par-
ticular, this holds for cographs and block graphs.

Proof. In principle, we use the same construction and case distinction as in
Lemma 11.

If the pendant operation is absent (i.e., G is a cograph), observe that Cases
1a and 1b do not occur. The only remaining case that assigns C(vi) = (x, x)
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for some color x ∈ {1, 2, 3} is Case 3a′. However, the prerequisite of this case
is that C(vj) = (a, a) for some a ∈ {1, 2, 3}. Hence, starting with C(v1) = (1, 2)
and C(v2) = (2, 1), by induction, Case 3a never occurs and we never assign
C(u) = (x, x) for some color x ∈ {1, 2, 3} to any vertex u. This means that only
Cases 2b and 3b occur, and therefore all vertices other than v1 and v2 are colored
0. Hence, 2 colors suffice for a CFCN* coloring. Notice that v1 and v2 have each
other as their uniquely colored neighbor. Further, all other vertices have v1 or v2
as their uniquely colored neighbor. Thus, this CFCN* coloring is also a CFON*
coloring.

If the true twin operation is absent, the graph is bipartite. We can color one
part of the bipartition with color 1 and the other part with color 2. Since all
vertices with the same color are not adjacent to each other, each vertex is its
own uniquely colored neighbor.

If the false twin operation is absent (this subclass includes the block graphs),
we modify the coloring scheme as follows. Recall that v1 and v2 are adjacent to
one another. We assign C(v1) = (1, 2) and C(v2) = (2, 1).

For i ≥ 3, we consider two cases, where we assume C(vj) = (a, b) for some
a ∈ {0, 1, 2} and b ∈ {1, 2}:

– Case 1: vi is a pendant of vj.
• Case 1′: a ̸= 0.
We assign C(vi) = (0, a).

• Case 1′′: a = 0.
We assign C(vi) = (x, x), for an arbitrary color x in {1, 2} \ {b}.

– Case 2: vi is a true twin of vj.
We assign C(vi) = (0, b).

Note that the color assignments above are similar to those in Case 1b and
Case 2b in the proof of Lemma 11.

We prove by induction that at the end of every iteration i ∈ [n], every vertex
has a uniquely colored neighbor in G[i]. This holds for the base case i = 2. For
the inductive step, it is easy to see that if vi has color 0, then we only need
to show the claim for vi, and otherwise, we have to show the claim also for all
vertices in Ni[vi] (recall that this refers to the neighborhood of vi in G[i]).

Case 1′. The vertex vj is the uniquely colored neighbor of vi.
Case 1′′. The vertex vi is its own uniquely colored neighbor.

It remains to consider vj , the only other vertex in Ni[vi]. As C(vj) = (0, b)
and b ̸= x, vj retains its uniquely colored neighbor from G[i− 1].

Case 2. In this case, Ni[vi] = Ni[vj ]. Hence vi and vj share the same uniquely
colored neighbor whose color is b.

⊓⊔

From Lemma 13, we have that χ∗
CN (G) ≤ 2, when G is a block graph. This

bound is tight when G is a bull graph, illustrated in Figure 2. To see that there
is no CFCN* coloring that uses only one color, observe that the degree 2 vertex
in G necessitates that exactly one of the vertices of the K3 subgraph is colored.
A simple case analysis completes the proof.
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Fig. 2. Bull graph G with χ∗
CN (G) = 2.

4.2 CFON* chromatic number

In contrast to the closed neighborhood setting, the class of distance heredi-
tary graphs has unbounded CFON chromatic number and consequently also
unbounded CFON* chromatic number.

Lemma 14. For any k ≥ 1, there exists a bipartite distance hereditary graph G
such that χON (G) ≥ k.

a0 a1 a2

L1

L2

L3

L4
b40

b30 b31

b20 b21 b22 b23

a4 a5 a6a3 a7

Fig. 3. A bipartite distance hereditary graph G4 with χON (G4) ≥ 4.

Proof. We define a family of graphs G2, G3, . . . as follows. Each graph Gk, for
k ≥ 2, is bipartite with the vertex sets A and B that satisfy the following:

– Set A consists of 2k−1 vertices a0, . . . , a2k−1−1.
– Set B consists of vertices in k levels L1, . . . , Lk. Level Li contains 2

k−i ver-
tices bi0, . . . , b

i
2k−i−1, for i ∈ [k].

– There are 2k−1 edges between each level Li and A in a binary fashion. To be
precise, the vertex bij is connected with vertices at for t = 2i−1j, . . . , 2i−1(j+
1)− 1.

Figure 3 illustrates the graph G4. We construct Gk recursively, starting from
the graph of only one vertex called the root. Our construction satisfies the prop-
erty (⋆): Every vertex of A\{a0} is indirectly a false twin of a0; which means that
it is created by a sequence of false twin operations on some vertices u0, u1, . . . , uz,
z ≥ 1 where u0 = a0, and each ui, i ≥ 1, is introduced as a false twin of ui−1.
The construction is as follows:

– For k = 2, we add a pendant to the root, i.e., G2 is isomorphic to K2.
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– For k ≥ 3, as mentioned above, we call a0 the root. We add bk0 as a pendant of
a0. Next, we add a false twin of a0, called a2k−2 . Then, recursively construct
a Gk−1 with root a0 and another Gk−1 with root a2k−2 . The first Gk−1

introduces a1, . . . , a2k−2−1, the second Gk−1 introduces a2k−2+1, . . . , a2k−1−1.
The property (⋆) holds for these copies of Gk−1. That is, every vertex of
A\{a0, a2k−2} is created indirectly as a false twin of a0 or a2k−2 . Since a2k−2

is created as a false twin of a0, property (⋆) holds for Gk. Further, because
(⋆) is true, bk0 is adjacent to all of A. Thus, we have constructed Gk.

We will show that the CFON chromatic number of Gk is at least k. This holds
trivially for k = 2. Consider the case where k ≥ 3. Observe that bk0 needs to have
a neighbor with a unique color. Without loss of generality, we color a2k−1−1 with
the color ck. Next, bk−1

0 also needs a neighbor with a unique color. Note that this
color must be different than ck, because all neighbors of bk−1

0 are neighbors of
bk0 , while a2k−1−1 is not a neighbor of bk−1

0 . Without loss of generality, we color
a2k−2−1 with the color ck−1. Repeating the above argument, we can see that we
need at least k colors. ⊓⊔

Notice that the number of vertices in the graph Gk constructed above is
Θ(2k). Since χON (Gk) ≥ k, we have the following corollary.

Corollary 15. There exists a distance hereditary graph G on n vertices for
which χON (G) = Ω(log n).

Although in general, a distance hereditary graph can have arbitrarily large
CFON* chromatic number, we show that this number is bounded for two sub-
classes, as in the following two lemmas.

Lemma 16. If G is a cograph, then χ∗
ON (G) ≤ 2.

Proof. As observed in the proof of Lemma 13, the coloring scheme there gives
a CFON* coloring with the colors {0, 1, 2}. In this coloring, v1 has color 1, v2
color 2, and all other vertices color 0. ⊓⊔

Lemma 17. If G is a block graph, χON (G) ≤ 3, hence χ∗
ON (G) ≤ 3.

Proof. Our proof is by induction on |V |. Trivially, if |V | ≤ 3, then χON (G) ≤ 3.
For the inductive step, if G is 2-connected, then by definition of a block graph,
G is a clique. We can color two vertices with two different colors and all other
vertices with the third color. It is easy to see that this is a CFON coloring.

Now suppose G is not 2-connected. Then there exists a vertex v whose
removal disconnects the graph, and a connected component C satisfies that
V (C) ∪ {v} induces a 2-connected component in G, i.e., a clique. (This com-
ponent is sometimes called a leaf block, for example, in [35].)

Consider the induced subgraph G′ of G obtained by removing V (C) from G.
It is easy to see that G′ is also a block graph. Hence, applying the inductive
hypothesis, we can obtain a CFON coloring of G′ with 3 colors. Let c1 be the
the color of v and c2 be the color of its uniquely colored neighbor. We apply the
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same coloring of G′ to the vertices in G, where we additionally color all vertices
in C with the color other than c1 and c2. Certainly, this does not invalidate the
uniquely colored neighbor of v. No other vertex in G′ is adjacent to a vertex
of C in G. Further, all vertices in C have v as their uniquely colored neighbor.
Hence, this is a CFON coloring of G with 3 colors. ⊓⊔

We show that the above result is tight.

Lemma 18. There is a block graph G with χ∗
ON (G) = 3.

m

ℓ

xℓ
3xℓ

2

xℓ
1

xℓ
3xℓ

2

xℓ
1

r

xr
3 xr

2

xr
1

xr
3 xr

2

xr
1

Fig. 4. A block graph G with χ∗
ON (G) = 3.

Proof. Let G have vertex set V = {ℓ,m, r} ∪
⋃

i∈{1,2,3}{xℓ
i , x

ℓ
i , x

r
i , x

r
i }, see also

Fig. 4. Let the edge set be defined by the set of maximal cliques {xs
1, x

s
2, x

s
3, s,m}

and {xs
i , x

s
i} for every s ∈ {ℓ, r} and i ∈ {1, 2, 3}. It is easy to see that G is a

block graph. To prove that χ∗
ON (G) > 2, suppose for a contradiction that there

is a χ∗
ON coloring C : V → {0, 1, 2}. Then there is a mapping h on V that assigns

each vertex v ∈ V its uniquely colored neighbor w ∈ N(v). Note that xs
i , for

s ∈ {ℓ, r} and i ∈ {1, 2, 3}, has to be colored 1 or 2, since it is the only neighbor
of xs

i . Without loss of generality, we may assume that h(m) ∈ {ℓ, xℓ
1}. Further,

we may assume that C(h(m)) = 2.
First suppose that h(m) = ℓ and hence C(ℓ) = 2. Then (xs

i ) = 1 for every
s ∈ {ℓ, r} and i ∈ {1, 2, 3}. It follows that h(ℓ) = m and hence C(m) = 2. Then
the vertex xℓ

1 contains two neighbors colored 1 and two neighbors colored 2,
which is a contradiction.

Thus it remains to consider that h(m) = xℓ
1 and hence C(xℓ

1) = 2. Then
C(w) = 1 for every vertex w ∈ {xℓ

2, x
ℓ
3, x

r
1, x

r
2, x

r
3}. It follows that h(r) = m and

C(m) = 2. Then the vertex ℓ has two neighbors colored 1 and two neighbors
colored 2, which is a contradiction.

Since both cases lead to a contradiction, it must be that χ∗
ON (G) > 2. ⊓⊔

Together with the fact that distance hereditary graphs have clique-width at
most 3, Theorem 5, Lemma 16 and Lemma 17 imply the following corollary.

Corollary 19. For cographs and block graphs, the CFON* and CFON coloring
problems are polynomial time computable.
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5 Interval Graphs

In this section, we consider interval graphs. We prove that three colors are suf-
ficient and sometimes necessary to CFON* color an interval graph. For proper
interval graphs, we show that two colors are sufficient.

Definition 20 (Interval Graph). A graph G, G = (V,E), is an interval graph
if there exists a set I of closed intervals on the real line such that there is a
bijection f : V → I satisfying the following: v1v2 ∈ E if and only if f(v1) ∩
f(v2) ̸= ∅.

For an interval graph G, we refer to the set of intervals I as an interval represen-
tation of G. An interval graph G is a proper interval graph if it has an interval
representation I such that no interval in I is properly contained in any other
interval of I. An interval graph G is a unit interval graph if it has an interval
representation I where all the intervals are of unit length. It is known that the
class of proper interval graphs and unit interval graphs are identical [16].

For each interval I ∈ I, we use L(I) and R(I) to denote its left endpoint and
right endpoint respectively. Throughout this section, we assume that no two in-
tervals share the same endpoint (either left or right). If there exists two intervals
that share an endpoint, we can carefully adjust them such that they do not share
the same endpoint. We use the terms “vertex” and “interval” interchangeably.

It was shown in [15] that χ∗
CN (G) ≤ 2, when G is an interval graph. We use

similar ideas to show the bound for χ∗
ON (G).

Lemma 21. If G is an interval graph, then χ∗
ON (G) ≤ 3.

Proof. Let G be an interval graph and I be an interval representation of G. We
use the function C : I → {1, 2, 3, 0} to assign colors. We assign the colors 1, 2
and 3 cyclically. We start with the interval I1 for which R(I1) is the least and
assign C(I1) = 1. Then choose the interval I2 such that I2 ∈ N(I1) and R(I2) >
R(I),∀I ∈ N(I1) and assign C(I2) = 2. For j ≥ 3, we do the following: choose
the interval Ij such that Ij ∈ N(Ij−1) and R(Ij) > R(I),∀I ∈ N(Ij−1) and
assign the color {1, 2, 3} \ {C(Ij−1), C(Ij−2)} to the interval Ij . The procedure
terminates at the value j for which R(Ij) maximizes R(I) amongst all I ∈ I.
We refer to this value of j as ℓ. Now we assign 0 to all the uncolored intervals.

Since G is connected and because of the coloring procedure, the graph in-
duced on the intervals I1, I2, . . . , Iℓ is a path. For 1 ≤ j ≤ ℓ−1, the interval Ij+1

will be a uniquely colored neighbor for the interval Ij . The interval Iℓ−1 will be
a uniquely colored neighbor for Iℓ.

Consider an interval I assigned the color 0. Recall that the intervals I1, I2, . . . , Iℓ
induce a path. This implies that I is adjacent to an interval Ij , where 1 ≤ j ≤ ℓ
and R(Ij) > R(I). We claim that Ij will be a uniquely colored neighbor of I.
Assume for the sake of contradiction that I is adjacent to Ij−3, the vertex that
was assigned the color C(Ij) immediately before Ij . This implies that I is adja-
cent to Ij−2 and Ij−1 as well. Since the graph induced by I1, I2, . . . , Iℓ is a path,
Ij−2 is not adjacent to Ij . Since I ∈ N(Ij), it follows that R(I) > R(Ij−2). This
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contradicts the coloring procedure as we must have chosen I in place of Ij−2.
Thus I is not adjacent to Ij−3. By a similar argument, we can see that I is not
adjacent to Ij+3 as well. ⊓⊔

The bound of χ∗
ON (G) ≤ 3 for interval graphs is tight. In particular, there

is an interval graph G (see Figure 5) that cannot be CFON colored with three
colors. This implies that χ∗

ON (G) > 2.

u

u′ u′′ u⋆

v

v′ v′′ w⋆ w′ w′′

w

Fig. 5. On the left hand side, we have the graph G′, and on the right hand side we
have an interval representation of G, a graph in which χON (G) > 3. The graph G is
obtained by adding two true twins each to the vertices u, v, w, u⋆, v⋆ of G′ and adding
three true twins each to the vertices u′, u′′, v′, v′′, w′, w′′ of G′.

Lemma 22. There is an interval graph G such that χON (G) > 3 (and thus
χ∗
ON (G) ≥ 3).

Proof. We define the graph G = (V,E), an interval representation seen in
Figure 5, with the help of a preliminary graph G′ = (V ′, E′). V ′ consists
of vertices u, v, w and u′, u′′, u⋆, v′, v′′, w⋆, w′, w′′. Let E′ be the edges which
form the maximal cliques {u′, u}, {u′′, u}, {u⋆, u, v}, {v, v′}, {v, v′′}, {w⋆, v, w},
{w,w′}, {w,w′′}. By this ordering of maximal cliques, we observe that G′ is
an interval graph.

For a vertex z, recall that a vertex z′ is said to be a true twin of z if z′

is adjacent to z and all the vertices in N(z). The graph G is obtained by
adding two true twins each to the vertices u, v, w, u⋆, w⋆ of G′ and adding
three true twins each to the vertices u′, u′′, v′, v′′, w′, w′′ of G′. In other words,
V =

⋃
x∈V ′{x1, x2, x3} ∪ {u′

4, u
′′
4 , v

′
4, v

′′
4 , w

′
4, w

′′
4} and E =

⋃
pq∈E′, i,j∈[4] piqj (for

those where vertices pi and qj exist). Since G is an interval graph, G′ is also an
interval graph.

Now we show that G cannot be CFON colored with 3 colors. Suppose there is
a CFON coloring C : V → {1, 2, 3}. Let h map each vertex x ∈ V to a uniquely
colored neighbor y ∈ N(x).

Claim. |C({u1, u2, u3})| = |C({v1, v2, v3})| = |C({w1, w2, w3})| = 2.

Proof. Suppose for a contradiction that |C({u1, u2, u3})| = 1. Without loss
of generality, we may assume C(u1) = C(u2) = C(u3) = 1. Note that the
neighborhood N({u′

1, u
′
2, u

′
3, u

′
4}) = {u1, u2, u3, u

′
1, u

′
2, u

′
3, u

′
4}. It follows that the

uniquely colored neighbors for each vertex in {u′
1, u

′
2, u

′
3, u

′
4} belong to the same
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set {u′
1, u

′
2, u

′
3, u

′
4}. This implies further that a vertex amongst u′

1, u
′
2, u

′
3, u

′
4 is

colored 2, and another one is colored 3. Analogously it follows that there are a
vertex colored 2 and one colored 3 amongst u′′

1 , u
′′
2 , u

′′
3 , u

′′
4 . Then each vertex in

{u1, u2, u3} has two neighbors each of the colors from {1, 2, 3}, which is a contra-
diction to the fact that C is a CFON coloring using three colors. By symmetry
we can also show that |C({v1, v2, v3})| ≠ 1 and |C({w1, w2, w3})| ≠ 1.

It remains to show that |C({u1, u2, u3})| ̸= 3, |C({v1, v2, v3})| ≠ 3 and
|C({w1, w2, w3})| ≠ 3. For the sake of contradiction, assume without loss of gen-
erality that C(u1) = 1, C(u2) = 2, and C(u3) = 3. These vertices are adjacent to
{v1, v2, v3}. As shown in the previous paragraph, we have |C({v1, v2, v3})| ≥ 2. If
|C({v1, v2, v3})| = 3, then each of the colors {1, 2, 3} appear twice in the neigh-
borhood of the vertex u⋆

1. Hence, u⋆
1 does not have a uniquely colored neighbor.

If |C({v1, v2, v3})| = 2, then without loss of generality, we assume C(v1) =
1, C(v2) = 1, C(v3) = 2. Then each of the colors {1, 2} appear twice in the
neighborhood of u3 and thus C(h(u3)) = 3. However, since h(u3) ∈ N(u1), the
vertex u1 has two neighbors each of the colors from {1, 2, 3} and u1 cannot have a
uniquely colored neighbor. By symmetry, we can show that |C({v1, v2, v3})| ≠ 3
and |C({w1, w2, w3})| ≠ 3. ⊓⊔

Without loss of generality, we may now assume that C(v1) = 1, C(v2) =
2, C(v3) = 2. If 3 /∈ C({u1, u2, u3}), then C(h(u⋆

1)) = 3 and h(u⋆
1) ∈ {u⋆

2, u
⋆
3}.

Without loss of generality, let h(u⋆
1) = u⋆

2. This means C(u⋆
2) = 3 and C(u⋆

3) ∈
{1, 2}. By a similar reasoning C(h(u⋆

2)) = 3. This forces h(u⋆
2) = u⋆

1 and C(u⋆
1) =

3. However now u⋆
3 has at least two neighbors from each of the colors in {1, 2, 3}.

Therefore, u⋆
3 does not have a uniquely colored neighbor. Hence, 3 ∈ C({u1, u2, u3}),

and analogously, 3 ∈ C({w1, w2, w3}).
However, v1 is now adjacent to at least two vertices of color 3 and two of color

2. Hence, v1 must be adjacent to exactly one vertex with color 1. This implies
either 1 /∈ C({u1, u2, u3}) or 1 /∈ C({w1, w2, w3}). Without loss of generality,
suppose 1 /∈ C({u1, u2, u3}). By the claim above, C({u1, u2, u3}) = {2, 3}.

However, v2 is then adjacent to two vertices with color 1 (i.e., v1 and h(v1)),
two vertices of color 2 (i.e., v3 and at least one in {u1, u2, u3}), two vertices of
color 3 (i.e., a vertex in {u1, u2, u3} and one in {w1, w2, w3}). That means v2
does not have a uniquely colored neighbor, a contradiction. Therefore, G cannot
be CFON colored with 3 colors. ⊓⊔

Lemma 23. If G is a proper interval graph, then χ∗
ON (G) ≤ 2.

Proof. Let G be a proper interval graph and I be a unit interval representation
of G. We use the function C : I → {1, 2, 0} to assign colors as follows.

At each step i ≥ 1, we pick two intervals Ii1, I
i
2 ∈ I. The interval Ii1 is

chosen such that L(Ii1) is the least among intervals for which C has not yet been
assigned. The choice of Ii2 depends on the following two cases.

– Case 1: Ii1 has a neighbor for which C is unassigned.
We choose Ii2 such that R(Ii2) is the largest amongst the intervals in N(Ii1)
for which C is yet to be assigned. Notice that L(Ii1) < L(Ii2) and hence
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R(Ii1) < R(Ii2). We assign C(Ii1) = 1 and C(Ii2) = 2. We assign the color 0
to all the other intervals adjacent to either Ii1 or Ii2.

– Case 2: C is already assigned for all the neighbors of Ii1.
This cannot happen for i = 1, because otherwise the graph has an isolated
vertex. Let Î be an interval in N(Ii−1

2 ) ∩ N(Ii1). Such an Î exists, because

otherwise G is disconnected. We reassign C(Ii−1
1 ) = 0, C(Ii−1

2 ) = 1, C(Î) =
2 and assign C(Ii1) = 0.

By the choice of Ii1, all intervals whose left endpoints are smaller than L(Ii1)
have been assigned a color (which may be the color 0). Therefore, Case 2 can
only occur at the last step. Let the last step be the j-th step of the coloring
process.

We prove by induction on i that C is a CFON* coloring for the induced
subgraph containing N [Ii1 ∪ Ii2] and all the intervals whose left endpoints are
less than L(Ii1). For the base case i = 1, the subgraph only contains I11 , I

1
2 , and

their neighbors. The claim then holds by construction. Since Case 1 applies for
the base case, the intervals I11 and I12 see each other as their uniquely colored
neighbors, and the vertices colored 0 see I12 as their uniquely colored neighbor.

For the inductive step for i > 1, we first consider the situation when Case 1
applies at step i. Note that the intervals Ii1 and Ii−1

1 have the same color, and
so do Ii2 and Ii−1

2 . However, because of the unit length of the intervals and the
choice of the two intervals in each step, it is easy to see that no interval intersects
both Ii1 and Ii−1

1 . We have the following cases based on whether N(Ii2)∩N(Ii−1
2 )

is empty.

– N(Ii2) ∩N(Ii−1
2 ) = ∅.

All intervals colored in the previous steps (till i − 1) retain their uniquely
colored neighbors.

– There is an interval I ∈ N(Ii2) ∩N(Ii−1
2 ).

Notice that by construction, Ii−1
2 and Ii2 are disjoint, and L(Ii−1

2 ) < L(Ii2).
Hence, L(Ii−1

2 ) < L(I). Further, I /∈ N(Ii−1
1 ), because otherwise we would

have chosen the interval I in place of Ii−1
2 .

Moreover, I ∈ N(Ii1). We have Ii1 as the uniquely colored neighbor for the
interval I. This argument holds for all the intervals in N(Ii2)∩N(Ii−1

2 ). For
all the other intervals colored in the previous steps (till i− 1), the uniquely
colored neighbors remain the same.

Further, the intervals Ii1 and Ii2 act as the uniquely colored neighbors for
each other. Lastly, as every interval has unit length, all neighbors of Ii1 that are
assigned 0 in step i are also neighbors of Ii2. Therefore, I

i
2 is the uniquely colored

neighbor of all intervals that are assigned 0 in this step.
Now suppose that Case 2 applies to step i, i.e., we are at the last step i = j.

That is, there is no Ij2 . In the j-th step, we reassign C(Ij−1
1 ) = 0, C(Ij−1

2 ) = 1

and C(Î) = 2. As argued above, before the reassignment in this step, the set of
intervals that relied on Ij−1

1 for their uniquely colored neighbor is {Ij−1
2 } ∪ {I |

I ∈ N(Ij−1
2 ) ∩ N(Ij−2

2 )}. After the reassignment, the set of intervals {I | I ∈



Conflict-Free Coloring: Bounded Clique-Width and Intersection Graphs 23

N(Ij−1
2 ) ∩ N(Ij−2

2 )} depend on Ij−1
2 (which is reassigned the color 1) for the

uniquely colored neighbor. This is fine as I /∈ N(Ij−2
1 ). The intervals Ij−1

2 and

Ij1 rely on Î while all other intervals that relied on Ij−1
2 previously will continue

to rely on Ij−1
2 . ⊓⊔

5.1 Algorithmic Status of Conflict-free Coloring on Interval Graphs

Fekete and Keldenich [15] studied CFCN* coloring on intersection graphs. They
showed that for an interval graph G, χ∗

CN (G) ≤ 2. The CFCN* coloring problem
was shown to be polynomial time solvable on interval graphs in [5].

From Lemma 21, we have that χ∗
ON (G) ≤ 3. Bhyravarapu, Kalyanasun-

daram and Mathew in [6] showed that CFON* coloring problem is solvable in
time O(n20) using the structural properties of interval graphs. Independently,
Gonzalez and Mann in [21] showed that all the four variants of conflict-free
coloring can be solved in time nO(w), where w is the mim-width of the graph.
Interval graphs have mim-width one. The algorithms resulting from the formu-
lation in [21] result in a running time of O(n300) on interval graphs. Thus the
complexity status of the problem on interval graphs is settled.

Corollary 24. CFCN* and CFON* coloring problems are polynomial time solv-
able on interval graphs.

6 Unit Square and Unit Disk Intersection Graphs

Unit square (or unit disk) intersection graphs are intersection graphs of closed
unit sized axis-aligned squares (or disks, respectively) in the Euclidean plane.
Figure 6 is a unit square and unit disk graph. It is shown in [15] that χ∗

CN (G) ≤ 4
for a unit square intersection graph G. They also showed that χ∗

CN (G) ≤ 6 for
a unit disk intersection graph G. We study the CFON* coloring problem on
these graphs and obtain constant upper bounds. To the best of our knowledge,
no upper bound for CFON* chromatic number was previously known on unit
square and unit disk graphs.

6.1 Unit Square Intersection Graphs

We first discuss the unit square intersection graphs. Consider a unit square
representation of such a graph. Each square is identified by its center, which
is the intersection point of its diagonals. By unit square, we mean that the
distance between its center and its sides is one, i.e., the length of each side
is two. Sometimes we interchangeably use the term “vertex” for unit square.
Throughout, we denote the X-coordinate and the Y -coordinate of a vertex v
with vx and vy respectively. A stripe is the region between two horizontal lines,
and the height of the stripe is the distance between these two lines. We consider
a unit square as belonging to a stripe if its center is contained in the stripe. For a
unit square whose center lies on a horizontal line, we consider it belonging to the
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x

y

z

Fig. 6. A unit square graph G for which χ∗
ON (G) ≥ 3. The vertices x, y, z have to be

assigned distinct non-zero colors. Note that G is also a unit disk graph.

stripe that is immediately below the horizontal line. We say that a unit square
intersection graph has height h, if the centers of all the squares lie in a stripe of
height h.

Lemma 25. If G is a unit square intersection graph of height 2, then χ∗
ON (G) ≤

2.

Proof. Let G be a unit square intersection graph of height 2. Note that vertices
u and v are adjacent if and only if |ux − vx| ≤ 2. We may represent G as a
unit interval graph (with each interval of length 2) by mapping every vertex v
to an interval from vx − 1 to vx +1. It is easy to note that two vertices in G are
adjacent if and only if the corresponding vertices in the interval representation
are adjacent. By Lemma 23, we obtain that χ∗

ON (G) ≤ 2. ⊓⊔

Theorem 26. If G is a unit square intersection graph, then χ∗
ON (G) ≤ 27.

Proof. We assign colors for the vertices of G, G = (V,E), in two phases — in
phase 1, we color all the vertices and in phase 2, we modify the coloring to
ensure that all the vertices have a uniquely colored neighbor. In phase 1, we
use 6 colors C : V → {0} ∪ {ci0, ci1 | i ∈ {0, 1, 2}}. Without loss of generality,
we assume that the centers of all the squares have positive Y -coordinates. We
partition the plane into stripes Sℓ for ℓ ∈ N where each stripe is of height 2. We
assign vertex v with Y -coordinate vy to Sℓ if 2(ℓ − 1) < vy ≤ 2ℓ. Let G[Sℓ] be
the graph induced by the vertices belonging to the stripe Sℓ. Then G[Sℓ] has
height 2. Notice that G[Sℓ] may be disconnected. We apply Lemma 25 on each
of the connected components, and color vertices in Sℓ using colors ci0 and ci1
where i = ℓ mod 3. Then every vertex u ∈ Sℓ that is not isolated in G[Sℓ] has a
uniquely colored neighbor v in G[Sℓ]. The isolated vertices in G[Sℓ] are assigned
the color 0. Every w /∈ Sℓ with color C(w) = C(v) must be in a stripe Sℓ⋆ with
|ℓ− ℓ⋆| ≥ 3. Thus w /∈ N(u) and hence v is also a uniquely colored neighbor of u
in G. It remains to determine uniquely colored neighbors for the vertices u ∈ Sℓ

which are isolated in G[Sℓ]. Let I be the set of all such vertices, which belong to
all the stripes in the graph.

In phase 2, we reassign colors to some of the vertices of G to ensure a uniquely
colored neighbor for each vertex in I. For each vertex v ∈ I, choose an arbitrary
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v

wu

Sℓ+1

Sℓ−1

Sℓ

Fig. 7. The vertex v ∈ Sℓ+1 is adjacent to two vertices u and w in Sℓ, which are
representative vertices for some isolated vertices. In the worst case, |ux −wx| = 4. The
picture describes the positions of the isolated vertices whose representative vertex r is
such that ux ≤ rx ≤ wx.

representative vertex r(v) ∈ N(v). Let R = {r(v) | v ∈ I} ⊆ V be the set of
representative vertices. We update the coloring C by recoloring the vertices in
R using the colors {cij | i ∈ {0, 1, 2}, j ∈ {2, 3, . . . , 8}}. Consider a stripe Sℓ for
ℓ ∈ N. We order the vertices Sℓ ∩R non-decreasingly by their X-coordinate and
sequentially color them with ci2, . . . , c

i
8 where i = ℓ mod 3.

Total number of colors used: The numbers of colors used in phase 1 and
phase 2 are 6 and 21 respectively, giving a total of 27.

Correctness: We now prove that the assigned coloring is a valid CFON* col-
oring. For this we need to prove the following,

– Each vertex in I has a uniquely colored neighbor.
– The coloring in phase 2 does not upset the uniquely colored neighbors (de-

termined in phase 1) of the vertices in V \ I.

We first prove the following claim.

Claim. For each vertex v ∈ V , all vertices in N(v) ∩ R are assigned distinct
colors in phase 2.

Proof (Claim’s proof). Let v ∈ Sℓ+1 (see Figure 7). Suppose for a contradiction
that there are two vertices u,w ∈ N(v) ∩ R such that C(u) = C(w). Then u
and w have to be from the same stripe that neighbors Sℓ+1. Without loss of
generality, we may assume that u,w ∈ Sℓ, ℓ = 0 mod 3 and ux ≤ wx. We may
further assume that C(u) = C(w) = c02. Then there are eight vertices (including
u and w), R′ ⊆ R∩Sℓ, that are assigned the colors c02, c

0
3, . . . , c

0
8, c

0
2 and have their

X-coordinates between ux and wx. Note that |ux − vx| ≤ 2 and |wx − vx| ≤ 2.
Vertices R′ are the representative vertices of some eight vertices I ′ ⊆ I. By
definition, I ′ ⊆ Sℓ+1 ∪ Sℓ−1.

First, let us consider I ′ ∩ Sℓ+1. We claim that there is at most one vertex
u′ ∈ I ′∩Sℓ+1 such that u′

x < vx. Indeed any such vertex u′ ∈ I ′ must be adjacent
to some representative r ∈ R′ with |rx − vx| ≤ 2. Thus the distance between u′

x

and vx is at most 4 and hence there is at most one vertex in I ′∩Sℓ+1 with lower
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X-coordinate than v. Analogously, there is at most one vertex w′ ∈ I ′∩Sℓ+1 such
that w′

x > vx. Considering the possibility that v ∈ I ′, we have |I ′ ∩ Sℓ+1| ≤ 3.
Now, consider the vertices in I ′ ∩ Sℓ−1. Again any vertex in I ′ ∩ Sℓ−1 must

be adjacent to some representative r ∈ R′ with |rx − vx| ≤ 2. Thus the X-
coordinates of the vertices in I ′ ∩ Sℓ−1 differ by at most 8. Since the vertices
in I ′ ∩ Sℓ−1 are non-adjacent, we have that |I ′ ∩ Sℓ−1| ≤ 4. This contradicts
the assumption that |I ′| = 8. Thus all vertices N(v) ∩ R are assigned distinct
colors. ⊓⊔

We now proceed to the proof of correctness.

– Every vertex v ∈ I has a uniquely colored neighbor.
Let v ∈ Sℓ+1 ∩ I. By the above claim, no two vertices in N(v) ∩ R are
assigned the same color in phase 2. Since v is not isolated in G, we have that
|N(v) ∩R| ≥ 1 and v has a uniquely colored neighbor.

– The coloring in phase 2 does not upset the uniquely colored neigh-
bors of vertices in V \ I.
Let v ∈ V \ I and u be its uniquely colored neighbor after the phase 1
coloring. If u is no longer the uniquely colored neighbor of v after phase 2, it
has to be the case that u was recolored in phase 2, and v had another vertex
w ∈ N(v) which was assigned the same color as u in phase 2. This implies
that both u and w are representative vertices for some vertices in I and they
are recolored in phase 2. This contradicts the above claim. ⊓⊔

6.2 Unit Disk Intersection Graphs

In this section, we prove an upper bound for the CFON* chromatic number on
unit disk intersection graphs. Consider a unit disk representation of such a graph.
Each disk is identified by its center. By unit disk, we mean that its radius is 1.
Sometimes we interchangeably use the term “vertex” for unit disk. We consider
a unit disk as belonging to a stripe if its center is contained in the stripe. If a
unit disk has its center on the horizontal line that separates two stripes then it
is considered in the stripe below the line.

We say that a unit disk intersection graph has height h, if the centers of all
the disks lie in a horizontal stripe of height h. The approach is to divide the
graph into horizontal stripes of height

√
3 and color the vertices in two phases.

Throughout, we denote the X-coordinate and the Y -coordinate of a vertex v
with vx and vy respectively.

Theorem 27. If G is a unit disk intersection graph, then χ∗
ON (G) ≤ 54.

The proof of this theorem is similar to the proof of Theorem 26, but different
in the following three aspects:

– In Theorem 26, we used the result that unit square graphs of height 2 are
CFON∗ 2-colorable. In this theorem, we will use the result that unit disk
intersection graphs of height

√
3 are CFCN* 2-colorable, and not CFON*

2-colorable.
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– In Theorem 26, the set I for which we needed to identify the uniquely colored
neighbor was the set of isolated vertices in the respective stripe. In this
theorem, the set I will be the set of vertices colored in phase 1.

– In Theorem 26, the phase 2 coloring involved considering the representative
vertices in the order of their X-coordinate. For the phase 2 coloring of this
theorem, we consider the vertices in I in the order of their X-coordinate and
then color their representative vertices.

We will use the following lemma from [15].

Lemma 28 (Theorem 5 in [15]). If G is a unit disk intersection graphs of
height

√
3, then χ∗

CN (G) ≤ 2. Further, the horizontal distance between two col-
ored vertices is greater than 1.

Note that the above lemma pertains to CFCN∗ coloring and not CFON∗

coloring. The second sentence in the above lemma is not stated in the statement
of Theorem 5 in [15], but rather in its proof. We will use the CFCN∗ coloring used
in the lemma stated above to obtain a CFON∗ coloring for unit disk intersection
graphs. Below we reproduce the coloring process used in the proof of the above
lemma in [15].

Coloring process used in the proof of Lemma 28: Let G = (V,E) be a unit
disk intersection graph such that the centers of all the disks in G lie in a stripe
of height

√
3. The vertices in V are colored in the order of their non-decreasing

X-coordinates. A vertex v is covered if and only if it is colored or has a colored
neighbor. In each step of the algorithm, we choose a vertex v whose vx is the
maximum and that covers all uncovered vertices to its left. We assign the color 1
(or 2) to v if the previously colored vertex was assigned the color 2 (or 1). At the
end, each uncolored vertex is assigned the color 0. It follows from the algorithm
that the horizontal distance between any two colored vertices is greater than 1.

Proof (Proof of Theorem 27). We assign color C(v) to each unit disk v of G in
two phases. In phase 1, we use 6 non-zero colors to color the vertices of G, i.e.,
C : V → {0} ∪ {ci0, ci1 | i ∈ {0, 1, 2}}. WLOG we assume that the centers of
all the disks have positive Y -coordinates. We partition the plane into horizontal
stripes Sℓ for ℓ ∈ N where each stripe is of height

√
3. We assign vertex v with

Y -coordinate vy to Sℓ if
√
3(ℓ− 1) < vy ≤

√
3ℓ. Let G[Sℓ] be the graph induced

by the vertices belonging to the stripe Sℓ. Then G[Sℓ] has height
√
3. We CFCN*

color vertices in Sℓ accordingly using (nonzero) colors ci0, c
i
1 where i = ℓ mod 3,

according to Lemma 28. Let I be the set of all colored vertices after this phase.
Our goal is to CFON* color all the vertices. After phase 1, each vertex not in I
has a uniquely colored neighbor that is not itself. Hence we only need to identify
uniquely colored neighbors for vertices in I.

In phase 2, we modify the colors assigned to some vertices of G to ensure a
uniquely colored neighbor for each vertex in I. For each vertex v ∈ I, choose
an arbitrary representative vertex r(v) ∈ N(v). Note that two vertices in I
may share the same representative vertex. Let R = {r(v) | v ∈ I} be the set
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of representative vertices. We use the coloring function D : R → {dij | i ∈
{0, 1, 2, 3, 4, 5}, j ∈ {0, 1, . . . , 7}} to assign colors to vertices in R. Consider a
stripe Sℓ for ℓ ∈ N. We order the vertices Sℓ ∩ I non-decreasingly by their
X-coordinate. We consider the vertices sequentially in that order. If the repre-
sentative vertex of the current vertex has not yet been colored in phase 2, we
color it with a color in {di0, . . . , di7 | i ≡ ℓ mod 6} in a cyclic manner (i.e., the
first vertex to be colored will take color di0, and the next di1, and so on).

Total number of colors used: The number of colors used in phase 1 and phase
2 are 6 and 48 respectively, giving a total of 54.

Correctness: We now prove that the assigned coloring is a CFON* coloring,
by showing that every vertex has a uniquely colored neighbor.

Firstly, we consider a vertex v in G[Sℓ], for some ℓ, and not in I. By definition
of the set I, v is adjacent to its uniquely colored neighbor u colored by C, after
phase 1. Suppose that u is not recolored in phase 2. Then since C is a CFCN*
coloring of G[Sℓ], v is adjacent to a uniquely colored neighbor u ̸= v in G[Sℓ]. By
the coloring, the distance between v and other vertices in another stripe with the
same color as u is at least 2

√
3 > 2. Hence, u is the uniquely colored neighbor

of v in G.
Now suppose u is recolored in phase 2 to some color dij . For a contradiction,

suppose that v is also adjacent to another vertex w with the same color dij . Then u
and w must be the representative vertices of two vertices a and b in I that are
in stripes Sℓ′ and Sℓ′′ , respectively, such that ℓ′ ≡ ℓ′′ mod 6. Since (a, u, v, w, b)
forms a path in G, and since two adjacent vertices in G have Euclidean distance
at most 2, we conclude that a and b are at the distance of at most 8. If ℓ′ ̸= ℓ′′,
then |ℓ′ − ℓ′′| ≥ 6. This implies |ay − by| ≥ 5

√
3 > 8, a contradiction. Hence,

a and b are in the same stripe. Because u and w have the same color, there
must be 7 other vertices in I between a and b in terms of the X-coordinate. By
Lemma 28, this implies |ax− bx| > 8, another contradiction. Hence, v cannot be
adjacent to two vertices of the same color.

Lastly, we consider a vertex v in I. Then the representative u of v is colored
by D. For v to not have a uniquely colored neighbor, there should exist another
representative vertex w such that D(u) = D(w). As in the above paragraph, we
can use distance arguments to note that two neighbors of v cannot be assigned
the same color in phase 2. Thus we can conclude that v is not adjacent to any
other vertex with the same color as D(u). ⊓⊔

7 NP-completeness on Unit Square and Unit Disk
Intersection Graphs

In this section, we show that the CFON* coloring problem is NP-hard for unit
disk and unit square intersection graphs. The idea of the proofs is similar to the
NP-completeness proofs in [7, 15] for the CFCN* coloring problem.

Theorem 29. It is NP-complete to determine if a unit disk intersection graph
can be CFON* colored using one color.
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Proof. Given a unit disk intersection graph G = (V,E), and a partial vertex-
coloring using one color, we can verify in polynomial time whether the coloring
is a CFON* coloring. To show that the problem is NP-hard, we give a reduction
from Positive Planar 1-in-3-SAT. The input to Positive Planar 1-in-3-
SAT is a Boolean CNF formula where each clause has exactly three literals with
each literal being positive, and the clause-variable incidence graph is planar.
The objective is to check if there exists an assignment of Boolean values to
the variables such that each clause has exactly one true literal. This problem is
known to be NP-hard, see Mulzer and Rote [30] for more details.

Given ϕ, an instance of Positive Planar 1-in-3-SAT, we construct a unit
disk intersection graph G(ϕ) as follows.

Construction of the graph G(ϕ): Let {x1, x2, . . . , xn} be the variables and
{t1, t2, . . . , tk} be the clauses of the formula ϕ. For each variable xj , 1 ≤ j ≤ n, we
introduce a variable gadget which is isomorphic to a cycle of length 8k, where
k is the number of clauses. We start with an arbitrary vertex and name the
vertex as a1,j . The next three consecutive vertices (in anti-clockwise direction)
are called b1,j , c1,j and d1,j . The vertices are named in sets of 4. After a1,j , b1,j ,
c1,j and d1,j , the next four vertices are named a2,j , b2,j , c2,j and d2,j , then a3,j ,
b3,j , c3,j and d3,j , and so on till a2k,j , b2k,j , c2k,j and d2k,j . See Figure 8 (right)
for an illustration.

The clause gadget is illustrated in Figure 8 (left). Each clause tℓ, 1 ≤ ℓ ≤ k
is represented by a clause vertex cℓ. The vertex cℓ is adjacent to a tree of five
vertices, depicted below cℓ in the figure. Additionally, there are three paths
connecting the clause vertex cℓ with the three corresponding variable gadgets;
for each variable xj of the clause tℓ, a path connects cℓ with the vertex ay,j of
the corresponding gadget, for a suitable y ∈ [2k]. While choosing y, we ensure
that a vertex ay,j connects to at most one clause gadget. The length of each path
(defined as the number of vertices excluding cℓ and the vertex ay,j in the variable
gadget) is a multiple of 4. For illustration, we show such a path in Figure 9.

We now argue that the graph G(ϕ) is a unit disk intersection graph and
can be constructed in polynomial time. The arguments are similar to those in
[15]. We start with a planar embedding of the clause-variable incidence graph
of ϕ. We transform all the curved edges in the embedding into straight line
segments with vertices placed on an O(n+ k)× O(n+ k) grid. Fraysseix, Pach
and Pollack [11] showed that such a straight line segment embedding can be
obtained in polynomial time. We spread out the vertices in this embedding to
ensure that the clause and variable gadgets can be accommodated with adequate
distance between them. The clause vertex in the embedding is replaced by the
clause gadget and the variable vertex is replaced with variable gadget.

The edges between variables and clauses are replaced by paths whose lengths
are multiples of 4. We perform some local shifting (we move the vertices of the
path by a small distance, retaining the adjacencies) to ensure that the path
lengths are multiples of 4. When connecting a clause gadget to a variable gadget
xj , we choose an ay,j that is not already connected to any clause gadget. Note
that we may have to bend some paths while trying to make the connections, and
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cℓ

c1,j

b1,j

d1,j

a1,j

ci,j

ai,j bi,j

di,j

. . .

. . .

. . .

. . .

Fig. 8. The clause gadget is on the left. The dotted disks around the clause vertex cℓ
indicate the connection with the variable gadgets. The shaded vertices force the clause
vertex to not draw its uniquely colored neighbor from within the clause gadget.
On the right side, we have the variable gadget for xj .

ensure that the connecting paths between clause gadgets and variable gadgets
do not intersect.

Below, we show that G(ϕ) is CFON* colorable using one color if and only if
ϕ is 1-in-3-satisfiable.

Observation 30 In any CFON∗ coloring of G(ϕ) using one color, each clause
vertex cℓ, where 1 ≤ ℓ ≤ k, remains uncolored. Further, the uniquely colored
neighbor of cℓ is not from the tree adjacent to it.

Proof. Consider the tree of 5 vertices adjacent to cℓ. In any CFON∗ coloring, the
shaded vertices of the tree (See Figure 8) are forced to be assigned the non-zero
color because of its pendant neighbors. This forces the remaining three vertices
of the tree and cℓ to remain uncolored. Since the neighbor of cℓ in the tree is
uncolored, its uniquely colored neighbor does not belong to the tree. ⊓⊔

Lemma 31. If G(ϕ) is CFON* colorable using one color, then ϕ is 1-in-3-
satisfiable.

Proof. Let G(ϕ) have a CFON* coloring using one color. We first consider the
clause gadgets. Let m1

ℓ ,m
2
ℓ ,m

3
ℓ ∈ N(cℓ) be the first vertices of the paths that

connect the clause vertex cℓ to each of the variable gadgets. Let the paths from cℓ
to the variable gadgets terminate at the vertices ay1,j1 , ay2,j2 and ay3,j3 respec-
tively. As noted in Observation 30, one of these vertices has to be the uniquely
colored neighbor of cℓ. Without loss of generality, let m1

ℓ be the uniquely colored
neighbor of cℓ. This implies that m2

ℓ and m3
ℓ are not colored. Let g1ℓ be the last

vertex in the path that connects cℓ to the variable gadget. Recall that the length
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. . . ay1,j1

by1,j1

cy1,j1

dy1−1,j1

g1ℓm1
ℓm3

ℓ

m2
ℓ

cℓ

...

...

...

. . .

Fig. 9. Illustration of a CFON* coloring of the path connecting the clause vertex cℓ
to the vertex ay1,j1 in the variable gadget of xj1 . The dotted vertices are a part of the
clause gadget.

of the path from m1
ℓ to g1ℓ connecting cℓ to ay1,j1 , in the corresponding variable

gadget, is a multiple of four. Consider the path starting from the colored ver-
tex m1

ℓ to g1ℓ . Since m1
ℓ is colored, it follows that in any CFON∗ coloring using

one color, the first two vertices have to be colored, the next two vertices have
to be uncolored, the next two have to be colored and so on. Consequently, the
vertex g1ℓ is uncolored and ay1,j1 is colored (to be the uniquely colored neighbor
of g1ℓ ). An illustration is given in Figure 9.

Now consider the path from m2
ℓ (resp. m3

ℓ) to its corresponding variable
gadget. The starting vertex m2

ℓ (resp. m3
ℓ) is not colored. The next two vertices

have to be colored, followed by two uncolored vertices, then followed by two
colored vertices and so on. The last vertex g2ℓ (resp. g3ℓ ) in the path will be
uncolored. This implies that the vertices ay2,j2 and ay3,j3 in the corresponding
variable gadgets are uncolored.

Notice that for i ∈ {1, 2, 3} the vertex giℓ is uncolored. Hence the vertex ayiji ,
for i ∈ {1, 2, 3}, has its uniquely colored neighbor within the variable gadget
of xji . Because of this, we also have the same coloring pattern along the cycle of
any variable gadget, i.e. a pair of colored vertices followed by a pair of uncolored
vertices repeating. This implies that in any CFON* coloring using one color, for
each variable gadget of a variable xj , the vertices ay,j , for 1 ≤ y ≤ 2k, are either
all colored or all uncolored. In addition, as argued above, if ay,j is connected to
a clause vertex cℓ, then ay,j is colored if and only if the corresponding adjacent
vertex mi

ℓ of cℓ is colored.
To obtain the desired 1-in-3-satisfying assignment of ϕ, we consider the

vertices ay,j in the clause gadget corresponding to xj . If the vertices ay,j for
1 ≤ y ≤ 2k are colored in the CFON* coloring, we set xj to true. Else we set
xj to false. The arguments above imply that for each clause tℓ, exactly one of
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the variables xj in the clause will be set to true. This implies that ϕ is 1-in-3-
satisfiable. ⊓⊔

Lemma 32. If ϕ is 1-in-3-satisfiable, then G(ϕ) is CFON* colorable using one
color.

Proof. Consider a 1-in-3-satisfying assignment of ϕ. For each variable xj in ϕ
that is set to true, color all vertices ay,j and by,j for each 1 ≤ y ≤ 2k. Else,
color all vertices by,j and cy,j for each 1 ≤ y ≤ 2k. In either case, the remaining
vertices in the gadget are left uncolored. Such a coloring ensures that every
vertex in the variable gadget associated with xj has a uniquely colored neighbor
from the gadget. Figure 9 illustrates the case when all vertices ay,j and by,j are
colored.

Consider the case when all the vertices ay,j are colored for 1 ≤ y ≤ 2k.
Suppose a vertex ay′,j is adjacent to a vertex giℓ along the path to a clause
gadget representing the clause tℓ. We leave giℓ uncolored along with its other
neighbor in N(giℓ) \ {ay′,j} on the path. We now color the next two vertices on
the path, leave the next two vertices uncolored and so on till we reach mi

ℓ (which
is the vertex adjacent to cℓ). Since the length of the path is a multiple of four,
the vertices mi

ℓ and N(mi
ℓ) \ {cℓ} will be colored.

The other case is that all ay,j are left uncolored in the variable gadget of
xj . Consider the connecting paths to the clause gadgets starting from a vertex
say giℓ (adjacent to ay′,j) and ending at mi

ℓ, where mi
ℓ is adjacent to the vertex

cℓ from the clause gadget. In this case we leave giℓ uncolored, coloring the next
two vertices in the path, leaving the next two vertices uncolored and so on. The
vertex mi

ℓ is hence uncolored.
Since ϕ is positive planar 1-in-3-satisfiable, the assignment assigns true to

exactly one variable of each clause tℓ. This ensures that there is exactly one
colored neighbor of cℓ. The rest of the vertices in the clause gadget can easily
be CFON* colored. We have a CFON* coloring using one color according to the
above rules. ⊓⊔

Lemmas 31 and 32 imply that G(ϕ) is CFON* colorable using one color if
and only if ϕ is 1-in-3-satisfiable. ⊓⊔

Theorem 33. It is NP-complete to determine if a unit square intersection graph
can be CFON* colored using one color.

Proof. The reduction is from Positive Planar 1-in-3 Sat, and similar to the
reduction in the proof of Theorem 29. The graphs corresponding to the clause
and the variable gadgets are the same as the ones used in the proof of Theorem
29. The clause and variable gadgets can be realised as unit square graphs. For
instance, see Figure 10 for an illustration of the clause gadget. ⊓⊔

8 Kneser Graphs

In this section, we study CFON* and CFCN* colorings of Kneser graphs. We
shall use the words κ-set or κ-subset to refer to a set of size κ. We shall sometimes
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cℓ

Fig. 10. The clause gadget corresponding to the clause tℓ. The dotted squares around
the clause vertex cℓ indicate the connection with the variable gadgets. The shaded
vertices force cℓ to not draw its uniquely colored neighbor from within the clause
gadget.

refer to the κ-subsets of [n] and the vertices of K(n, κ) in an interchangeable
manner. We also use the symbol

(
S
κ

)
to denote the set of all κ-subsets of a set S.

Definition 34 (Kneser graph). The Kneser graph K(n, κ) is the graph whose

vertices are
(
[n]
κ

)
, the κ-sized subsets of [n], and the vertices x and y are adjacent

if and only if x ∩ y = ∅ (when x and y are viewed as sets).

Observe that for n < 2κ, K(n, κ) has no edges, and for n = 2κ, K(n, κ) is a
perfect matching. Since we are only interested in connected graphs, we assume
n ≥ 2κ+ 1. For this range of values of n, we show that χ∗

ON (K(n, κ)) ≤ κ+ 1.
Further, we prove that this bound is tight for n ≥ 2κ2 + κ. We conjecture that
this bound is tight for all n ≥ 2κ+1. In addition, we also show an upper bound
for χ∗

CN (K(n, κ)).

Theorem 35. For n ≥ 2κ2 + κ, χ∗
ON (K(n, κ)) = κ+ 1.

The above theorem is an immediate corollary of the two lemmas below.

Lemma 36. κ+1 colors are sufficient to CFON* color K(n, κ) for n ≥ 2κ+1.

Proof. Consider the following assignment of colors to the vertices of K(n, κ):

– For any vertex (κ-set) v that is a subset of {1, 2, . . . , 2κ}, we assign C(v) =
maxℓ∈v ℓ− (κ− 1).

– All the remaining vertices are assigned the color 0.

For example, for the Kneser graph K(n, 3), we assign the color 1 to the vertex
{1, 2, 3}, color 2 to the vertices {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, color 3 to the ver-
tices {1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}, color 4 to the vertices
{1, 2, 6}, {1, 3, 6}, {1, 4, 6}, {1, 5, 6}, {2, 3, 6}, {2, 4, 6}, {2, 5, 6}, {3, 4, 6}, {3, 5, 6},
{4, 5, 6}, and color 0 to all the remaining vertices.

Now, we prove that the above coloring is a CFON* coloring. Let Ci be the
set of all vertices assigned the color i. Notice that C1 ∪C2 ∪ · · · ∪Cκ+1 =

(
[2κ]
κ

)
.
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In other words, all the colored vertices induce a K(2κ, κ), which, as observed at
the beginning of this section, is a perfect matching. Thus each colored vertex has
exactly one colored vertex as its neighbor, which serves as its uniquely colored
neighbor.

Now we have to show the presence of uniquely colored neighbors for vertices
that have some elements not contained in [2κ]. Let v be such a vertex. That is,
v∩ [2κ] ̸= v. Let t be the smallest nonnegative integer such that |[κ+ t] \ v| = κ.
Since v has at least one element not contained in [2κ], t is at most κ− 1.

By construction, the vertex u = [κ+ t]\v has color t+1 and is adjacent to v.
Also by construction, [κ+ t] contains exactly κ elements not in v and all these κ
elements are in u. Hence, for another vertex with color t+1, all of its κ elements
are in [κ + t] and at least one of them is contained in v. This implies that no
other neighbors of v have color t+ 1, and u is the uniquely colored neighbor of
v. ⊓⊔

Lemma 37. κ + 1 colors are necessary to CFON* color K(n, κ) when n ≥
2κ2 + κ.

Proof. We prove this by contradiction. Suppose that n ≥ 2κ2 + κ and K(n, κ)
can be colored using the κ colors 1, 2, 3, . . . , κ, besides the color 0. For each i,
1 ≤ i ≤ κ, let Ci denote the set of all vertices colored with the color i.

We will show that there exists a vertex x that does not have a uniquely
colored neighbor, i.e., |N(x) ∩ Ci| ̸= 1, for all i, 1 ≤ i ≤ κ. We construct the
vertex (κ-set) x, by choosing elements in it as follows. Suppose that there are Ci’s
that are singleton, i.e., |Ci| = 1. For every i, 1 ≤ i ≤ κ such that |Ci| = 1 add
to x an arbitrary element from the lone vertex in Ci. In other words, we choose
elements in x so as to ensure that x intersects with the vertices in all the singleton
Ci’s. This partially constructed x may also intersect with vertices in other color
classes. Some of the other Ci’s might become “effectively singleton”, that is x
may intersect with all the vertices in those Ci’s except one. We now choose
further elements in x so that x intersects these effectively singleton Ci’s too.
Finally, we terminate this process when all the remaining Ci’s are not singleton.

At this stage, if x has exactly κ elements, then it must be the case that
x intersects with all the vertices in all the Ci’s. Hence no colored vertices are
adjacent to x.

Otherwise, the number of elements in x is t < κ. There are two possible
subcases. The first subcase is when x intersects with all the colored vertices. In
this case, we add κ − t arbitrary elements to x from [n] \ x. This vertex x is
not adjacent to any colored vertex. The second subcase is when there are color
classes that do not become effectively singleton. This is because each of these
color classes contain at least two vertices that do not intersect with x. For each
of these color class(es) Cj , we choose two distinct vertices, say yj , y

′
j ∈ Cj . We

choose the remaining elements of x so that x∩yj = ∅ and x∩y′j = ∅. The number
of such sets Cj is κ − t. So for choosing the remaining κ − t elements of x, we
have at least n−t−2κ(κ−t) choices. The t elements already present in x cannot
be used again. There could be a maximum of κ − t color classes Cj which do
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not become effectively singleton. In each of these color classes, we want to avoid
intersecting two vertices each, which forbids a maximum of 2κ(κ− t) elements.
Because n ≥ 2κ2+κ, it follows that the available n− t−2κ(κ− t) choices suffice
to fill up the remaining κ−t elements in x. Thus in this subcase, by construction,
we ensure that x has no neighbors in the color classes that become effectively
singleton, and has at least two neighbors in the remaining color classes. ⊓⊔

Next, we consider CFCN* coloring of Kneser graphs. Observe that since the
chromatic number of K(n, κ) is n − 2κ + 2 [28], we have that χCN (K(n, κ)) ≤
n− 2κ+ 2. We show the following:

Theorem 38. When 2κ+1 ≤ n ≤ 3κ− 1, we have χ∗
CN (K(n, κ)) ≤ n− 2κ+1.

When n ≥ 3κ, we have χ∗
CN (K(n, κ)) ≤ κ.

Lemma 39. When n ≥ 2κ+ 1, we have χ∗
CN (K(n, κ)) ≤ κ.

Proof. We assign the following coloring to the vertices of K(n, κ):

– For any vertex (κ-set) v that is a subset of {1, 2, . . . , 2κ − 1}, we assign
C(v) = maxℓ∈v ℓ− (κ− 1).

– All the remaining vertices are assigned the color 0.

For 1 ≤ i ≤ κ, let Ci be the color class of the color i. Notice that C1 ∪
C2 ∪ · · · ∪ Cκ =

(
[2κ−1]

κ

)
. Since any two κ-subsets of {1, 2, . . . , 2κ− 1} intersect,

it follows that
(
[2κ−1]

κ

)
is an independent set. Hence each of the color classes

C1, C2, . . . , Cκ are independent sets, and each colored vertex serves as its own
uniquely colored neighbor.

If v is assigned the color 0, then v ̸⊂ [2κ − 1]. That is, v has some elements
not contained in [2κ − 1]. Let t be the smallest nonnegative integer such that
|[κ+ t] \ v| = κ. Since v has at least one element not contained in [2κ − 1], t is
at most κ− 1. We claim that the vertex w = [κ+ t] \ v is the only neighbor of v
with color t+ 1.

First note that κ + t /∈ v, because otherwise, the minimality of t would not
hold. It follows that the vertex w is colored t + 1. To show that w is the only
neighbor of v with color t+ 1, assume the contrary. Let w′ be another neighbor
of v that is colored t + 1. By the coloring used, w′ ⊆ [κ + t]. Since w ̸= w′, it
follows that |w∪w′| ≥ κ+1, and hence |[κ+t]\v| ≥ κ+1. This again contradicts
the choice of t. Thus w is a uniquely colored neighbor of v. ⊓⊔

Lemma 40. χCN (K(2κ+ 1, κ)) = 2, for all κ ≥ 1.

Proof. Consider a vertex v of K(2κ + 1, κ). If v ∩ {1, 2} ̸= ∅, we assign color 1
to v. Otherwise, we assign color 2 to v.

Let C1 and C2 be the sets of vertices colored 1 and 2 respectively. Below, we
discuss the unique colors for every vertex of K(n, κ).

– If v ∈ C1 and {1, 2} ⊆ v, then v is the uniquely colored neighbor of itself.
This is because all the vertices in C1 contain either 1 or 2 and hence v has
no neighbors in C1.
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– Let v ∈ C1 and |v ∩ {1, 2}| = 1. WLOG, let 1 ∈ v and 2 /∈ v. In this
case, v has a uniquely colored neighbor w ∈ C2. This vertex w is the κ-set
w = [2κ+ 1] \ (v ∪ {2}).

– If w ∈ C2, w is the uniquely colored neighbor of itself. This is because C2

is an independent set. For two vertices w,w′ ∈ C2 to be adjacent, we need
|w ∪ w′| = 2κ, but vertices in C2 are subsets of {3, 4, 5, . . . , 2κ + 1}, which
has cardinality 2κ− 1.

⊓⊔

Lemma 41. χCN (K(2κ+ d, κ)) ≤ d+ 1, for all κ ≥ 1.

Proof. We prove this by induction on d. The base case of d = 1 is true by
Lemma 40. Suppose K(2κ + d, κ) has a CFCN coloring that uses d + 1 colors.
Let us consider K(2κ + d + 1, κ). For all the vertices of K(2κ + d + 1, κ) that
appear in K(2κ+ d, κ) we use the same assignment as in K(2κ+ d, κ). The new
vertices (the vertices that contain 2κ+ d+ 1) are assigned the new color d+ 2.
As all the new vertices contain 2κ+ d+1, they form an independent set. Hence
each of the new vertices serve as their own uniquely colored neighbor.

The vertices of K(2κ + d + 1, κ) already present in K(2κ + d, κ) get new
neighbors, but all the new neighbors are colored with the new color d+2. Hence
the unique colors of the existing vertices are retained. ⊓⊔

Lemma 41 implies that χ∗
CN (K(n, κ)) ≤ χCN (K(n, κ)) ≤ n − 2κ + 1, when

n ≥ 2κ+ 1. So, from Lemma 39 and Lemma 41 we get Theorem 38.

χ∗
CN (K(n, κ)) ≤

{
n− 2κ+ 1, for 2κ+ 1 ≤ n ≤ 3κ− 1
κ, for n ≥ 3κ

}
.

9 Split Graphs

In this section, we study CFON* and CFCN* colorings of split graphs. We
show that the CFON* coloring problem is NP-complete and the CFCN* coloring
problem is polynomial time solvable.

Definition 42 (Split Graph). A graph G, G = (V,E), is a split graph if there
exists a partition of its vertex set V = K ∪ I such that the graph induced by K
is a clique and the graph induced by I is an independent set.

Theorem 43. The CFON* coloring problem is NP-complete on split graphs.

Proof. We give a reduction from the classical Graph Coloring problem. Given
an instance (G = (V,E), k) of Graph Coloring, we construct an auxiliary
graph G1, G1 = (V1, E1) from G such that V1 = V ∪ {x, y} and E1 = E ∪
{xy} ∪

⋃
v∈V {xv, yv}. Note that N(x) = V ∪ {y} and N(y) = V ∪ {x}. Now we

construct the graph G2, G2 = (V2, E2), from G1 such that

V2 = V1 ∪ {Iuv | uv ∈ E1} ∪ {Iv | v ∈ V1}, and
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E2 = {uv | u, v ∈ V1} ∪ {uIuv, vIuv | uv ∈ E1} ∪ {uIu | u ∈ V1}.
Note that G2 is a split graph (K, I) with the clique K = V1 and I = V2 \ V1.

See Figure 11 for an illustration. The construction of the graph G2 from G can
be done in polynomial time. Let I = I1 ∪ I2 where I1 and I2 represent the set of
degree one vertices and the set of degree two vertices in I respectively.

Now, we argue that χ(G) ≤ k if and only if χ∗
ON (G2) ≤ k+2, where k ≥ 3. We

first prove the forward direction. Given a k-coloring CG of G, we extend CG to
the coloring CG2 forG2 using k+2 colors. For all vertices v ∈ V , CG2(v) = CG(v).
We assign CG2(x) = k+1, CG2(y) = k+2. All vertices in I1∪I2 are left uncolored.
Every vertex v ∈ K \ {x} has x as its uniquely colored neighbor whereas the
vertex y is the uniquely colored neighbor for x. For each vertex Iuv ∈ I2, we
have N(Iuv) = {u, v} and CG2

(u) ̸= CG2
(v). Hence the vertices u and v act as

the uniquely colored neighbors for Iuv. Each vertex Iu ∈ I1 will have the vertex
u as its uniquely colored neighbor.

Now, we prove the converse. Given a CFON* (k+2)-coloring CG2
of G2, we

show that the restriction of CG2
to the vertices of G gives a proper k-coloring

CG of G. Observe that each vertex in K receives a non-zero color in any CFON*
coloring of G2, because it is adjacent to a degree-one vertex in I1. For every edge
uv ∈ E1, we have CG2(u) ̸= CG2(v) as N(Iuv) = {u, v}. This implies that x and
y do not share the same color with each other nor with other vertices in V . It
also implies that for every edge uv ∈ E, we have CG2

(u) ̸= CG2
(v). Hence, the

coloring CG2
when restricted to the set K \ {x, y} = V is a k-coloring of G. ⊓⊔

a

cb

G G1

G2

a

cb

x

y
ca b x y

IcIa Ib Ix Iy

Iab Iac Iax Iay Ibx Iby Icx Icy Ixy

Clique K

Fig. 11. Illustration of the graphs G (on the left), G1 (in the middle) and G2 (on the
right). The vertices {a, b, c, x, y} of G2 drawn inside the ellipse form the clique K.

Theorem 44. The CFCN* coloring problem is polynomial time solvable on split
graphs.

The proof of Theorem 44 is through a characterization. We first show that
for split graphs G, χ∗

CN (G) ≤ 2. Then we characterize split graphs G for which
χ∗
CN (G) = 1 thereby proving Theorem 44.
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Lemma 45. If G is a split graph, then χ∗
CN (G) ≤ 2.

Proof. Let V = K ∪ I be a partition of vertices into a clique K and an inde-
pendent set I. We use C : V → {1, 2, 0} to assign colors to the vertices of V .
Choose an arbitrary vertex u ∈ K and assign C(u) = 2. The remaining vertices
(if any) in K \ {u} are assigned the color 0. For every vertex v ∈ I, we assign
C(v) = 1. Each vertex in I will have itself as the uniquely colored neighbor and
every vertex in K will have the vertex u as the uniquely colored neighbor. ⊓⊔

We now characterize all the split graphs that are CFCN* colorable using one
color.

Lemma 46. Let G be a split graph with V = K ∪ I, where K and I are the
clique and the independent set respectively. We have χ∗

CN (G) = 1 if and only
if at least one of the following is true: (i) G has a universal vertex, or (ii)
∀v ∈ K, |N(v) ∩ I| = 1.

Proof. We first prove the “if” statement. If there exists a universal vertex u ∈ V ,
then we assign the color 1 to u and assign the color 0 to all the other vertices.
This is a CFCN* coloring.

Suppose that for each vertex v ∈ K, |N(v) ∩ I| = 1. (Note that K cannot
be empty because we assume G to be connected.) We assign the color 1 to each
vertex in I and color 0 to the vertices in K. Each vertex in I acts as the uniquely
colored neighbor for itself and for its neighbor(s) in K.

For showing the “only if” statement, let C : V → {1, 0} be a CFCN* coloring
of G. We further assume that there exists y ∈ K such that |N(y) ∩ I| ≠ 1 and
show that there exists a universal vertex. We assume that |K| ≥ 2 and |I| ≥ 1
(if either assumption is violated, G has a universal vertex). We first prove the
following claim.

Claim. Exactly one vertex in K is assigned the color 1.

Proof. Suppose that there are two vertices v, v′ ∈ K such that C(v) = C(v′) = 1.
Then none of the vertices in K have a uniquely colored neighbor.

Suppose that all vertices in K are assigned the color 0. For vertices in I to
have a uniquely colored neighbor, each vertex in I has to be assigned the color
1. By assumption, there is a vertex y ∈ K such that |N(y)∩ I| ≠ 1. This means
that y does not have a uniquely colored neighbor.

In either case, it follows that C is not a CFCN* coloring of G, which is a
contradiction. ⊓⊔

By the above claim, there is a unique vertex v ∈ K such that C(v) = 1.
We will show that v is a universal vertex. If not, there is a w′ ∈ I such that
w′ /∈ N(v)∩I. For w′ to have a uniquely colored neighbor, either w′ or one of its
neighbors in K has to be assigned the color 1. The latter is not possible because
v is the lone vertex in K that is colored 1. If C(w′) = 1, then its neighbor(s) in
K does not have a uniquely colored neighbor because of the vertices w′ and v.
Hence, v is a universal vertex. ⊓⊔
By Lemmas 45, 46, and the fact that conditions in the latter lemma can be
checked in polynomial time, we obtain Theorem 44.
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10 Conclusion

In the preliminary version of our paper [5], we had shown that the conflict-free
coloring problem is FPT when parameterized by combined parameters clique-
width w and number of colors k. Since the problem is NP-hard for any k ≥ 3, the
problem is not FPT when parameterized by k unless P = NP. As we have shown
in Theorems 6 and 7, the conflict-free chromatic numbers are not bounded by
a function of the clique-width. Therefore it remains an open question if there
exists an FPT algorithm with only clique-width as a parameter.

Recently, Gonzalez and Mann [21] showed that both open neighborhood and
closed neighborhood variants are polynomial time solvable when mim-width and
the number of colors are bounded. In particular, they design XP algorithms
in terms of mim-width and k. Since mim-width generalizes clique-width, it is
interesting to see if there exists an FPT algorithm parameterized by mim-width
and k.

Further, we presented an upper bound of conflict-free chromatic numbers for
several graph classes. For most of them we established graph classes that match
or almost match the upper bounds for their respective conflict-free chromatic
numbers. For unit square and square disk graphs there is still a wide gap, and
it would be interesting to improve those bounds.
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