Convex Optimization

Minimije $f_{0}(x)$

$$
\begin{gathered}
\text { ST } f_{i}(x) \leqslant 0 \quad i=1,2,-, m \\
h_{j}(x)=0 \quad j=1,2, \cdots p \\
L(\underline{x}, \lambda, \underline{v})=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} r_{i} h_{i}(x)
\end{gathered}
$$

KKT conditions:

$$
\begin{array}{lcc}
0 & f_{i}(x) \varepsilon 0 & \forall i \\
\text { (1) } & h_{j}(x)=0 & \forall j \\
\text { (2) } & \lambda_{i} f_{i}(x)=0 & \forall_{i} \\
\text { (3) } & \lambda \geq 0 & \\
\text { (0) } \left.\nabla_{v} L(\eta, \lambda) v\right)=0
\end{array}
$$

Entropy

$$
\begin{aligned}
& \begin{array}{ll}
\left(p_{1} \cdots p_{k}\right) & f \geqslant 0 \\
\sum_{i=1}^{k} p_{i}=1
\end{array} \\
& (0.9,0.05,0.01 \ldots) \\
& H(q)=\sum_{i=1}^{k} p_{i} \log \frac{1}{p_{i}} \\
& \text { Mankimin } \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}} \bar{i} \text { Minimix } \sum_{i=1}^{k} p_{i} \log p \\
& \text { si } f \geqslant 0 \\
& \sum_{i} p_{i}=1 \\
& \sum_{j=1}^{n} a_{1 j} \rho_{j}<\beta_{1} \quad l_{21} 2,-m
\end{aligned}
$$

$$
\begin{aligned}
& p_{i}=\operatorname{Pr}[x=i] \quad i=0,1,2 \ldots k=1 \\
& \mathbb{E} X=\sum_{i=0}^{k-1} p_{i} i \quad \\
& \mathbb{E} X^{2}=\sum_{i=0}^{k-1} i^{2} p_{i} \\
& H(f)=\sum_{i=0}^{k-1} p_{i} \log \frac{1}{p_{i}} \quad \text { is concove } \\
& f(x)=\sum_{i=0}^{k-1} \psi(i) p_{i} \\
& f^{\prime}(x)=-x \log x \quad f^{\prime \prime}(x)=-\frac{1}{x}<0
\end{aligned}
$$

$$
\begin{aligned}
P(p)=\sum_{i=0}^{k_{1}} p_{i} \log \frac{1}{p_{i}} & =\mathbb{E} \log \frac{1}{p(x)} \\
& \leqslant \log \left(\frac{1}{p_{k}}\right) \\
& =\log \left(\sum_{i=0}^{k_{1}} p_{i} \frac{1}{p}\right) \\
& =\log k \\
y & =x+2
\end{aligned}
$$

Problem

$$
\begin{aligned}
& \text { Minimise } f_{0}(X) \\
& \text { ST } f_{i}(x) \leq 0 \quad 1 \leqslant i \leqslant m \\
& \left.n_{j}(\underline{x})=0 \quad 1 \leqslant j \leq p\right) ~\{ \\
& L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R} \\
& L(\underline{x}, \underline{\lambda}, \underline{v})=f_{0}(\underline{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(\underline{x})+\sum_{j=1}^{p} v_{j} h_{j}(\underline{x}) \\
& g(\lambda, \underline{v})=\operatorname{lin}_{v \in \infty} L(\underline{x}, \lambda, \underline{v}) \\
& \begin{aligned}
f^{*}= & \min f_{0}(x) \\
& \text { si } \underline{x} \in C
\end{aligned}
\end{aligned}
$$

for $\lambda \geqslant 0$ any x,

$$
\begin{aligned}
& g(\lambda, v) \leq f^{*} \\
\Rightarrow & \substack{\sup _{\lambda}^{\lambda} v_{0} \\
\lambda \in a^{*}} \\
& (\lambda, v)=d^{*} \leq f^{*}
\end{aligned}
$$

Eg: Minimize $x^{2}+x \quad \operatorname{Min}_{x \geqslant 1} x^{2}+x=f_{0}(x)$

$$
\text { ST } x \geqslant 1 \quad 1-x \leq 0
$$

$$
L(x, \lambda)=x^{2}+x+\lambda(1-x)
$$

$$
g(\lambda)=\min _{x \in \mathbb{R}} x^{2}+x+\lambda(1-x)
$$

$$
x=\frac{\lambda-1}{2}
$$

$$
=\frac{(\lambda-1)^{2}}{4}+\frac{(\lambda-1)}{2}+\lambda-\frac{\lambda(\lambda-1)}{2}
$$

$$
=\frac{-\lambda^{2}+6 \lambda-r}{4} \rightarrow \text { concave }
$$

$$
\max _{\lambda \geqslant 0} g(\lambda)=2
$$

Minimize $f_{0}(x)$

$$
\begin{aligned}
&\text { St } \left.\begin{array}{rl}
f_{1}(x) & \leq 0 \\
h_{j}(x) & =0 \\
\tilde{f}(x) & =f_{0}(x)
\end{array}\right)=\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right)+\sum_{j=1}^{1} I_{0}\left(h_{j}(x)\right) \\
& I_{1}(y)= \begin{cases}0 & y y \leq 0 \\
\infty & y>0\end{cases} \\
& I_{0}(y)= \begin{cases}0 & y \text { y }=0 \\
\infty & y \neq 0\end{cases} \\
& \tilde{f}(x)= \begin{cases}f_{0}(x) & \text { for } x \in c \\
\infty & \text { for } x \notin c\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Oniginal pros } \Xi \inf _{\tilde{t} \in \infty} \tilde{f}\left(x_{0}\right) \\
& \bar{f}(x)=L(x, \lambda, v)=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\sum_{j} v_{j} h(x)
\end{aligned}
$$

$$
\begin{aligned}
& A=\{\underbrace{\left(f_{1}(x), f_{2}(x) \cdots f_{m}(\underline{x}), h_{1}(x), \ldots h_{p}(x), f_{0}(x)\right.}_{\in R^{m+p+1}}): \\
& =\left\{\left(\underline{f}, h, f_{0}\right)\right\} \\
& f^{*}=\text { inf of } t:(\underline{u}, \underline{v}, t) \in A, \underline{u} \leqslant 0 \rightarrow \text { ing. condraind } \\
& v=Q \rightarrow \text { le, condo }\} \\
& \text { Min } f_{0}(x) \\
& \text { so } f_{1}(x) \leq 0 \\
& A=\left\{\left(f_{1}(x), f_{0}(x)\right): x \in \mathbb{R}\right\} \\
& (n, t)
\end{aligned}
$$

In the example,
$\min x^{2}+x$ St $1-x \leq 0$

$$
\begin{aligned}
& A=\left\{\left(1-x, x^{2}+x\right): \quad x \in R\right\} \\
& u \\
& u
\end{aligned}
$$

$y=\left\{(u, v, t) \in \mathbb{R}^{m} \times \mathbb{R}^{p} \times \mathbb{R}: \quad \exists x \in \infty\right.$
$f(x) \leq u_{i}$
$h_{j}(x)=v_{j}$
$\left.f_{0}(x) \leq t \quad\right\}$

$$
A=\left\{(u, v, t): J x \text { st } \begin{array}{ll}
& f_{i}(x)=u_{i} \\
& h_{j}(v)=v_{j} \\
& f_{0}(x)=t
\end{array}\right\}
$$

$$
\begin{aligned}
y=\left\{(\underline{u}, \underline{v}, t): g x_{i} \text { so } \quad\right. & f_{i}(x)
\end{aligned} \leq u_{:}, ~ \begin{aligned}
h_{j}(x) & =u_{j} \\
f_{0}(x) & <t\}
\end{aligned}
$$

$$
\begin{aligned}
L(x, \lambda, v) & =\left[\begin{array}{l}
\frac{\lambda}{v} \\
v
\end{array}\right]^{\top}\left[\begin{array}{l}
\frac{u}{v} \\
\underline{t}
\end{array}\right] \\
g(\lambda, v) & =\inf \left\{(\lambda, v, \lambda)\left[\begin{array}{l}
\frac{u}{v} \\
t
\end{array}\right]:\left[\begin{array}{l}
u \\
t \\
t
\end{array}\right] \in y\right\}
\end{aligned}
$$

For a given $\lambda \geq, 0, \underline{Y} \in \mathbb{R}$,

$$
[\lambda, v, 1]\left[\begin{array}{l}
u \\
v \\
t
\end{array}\right] \geqslant \underbrace{g(\lambda, v)}_{\text {sin this is }} \quad \forall\left[\begin{array}{l}
u \\
v \\
t
\end{array}\right] t y
$$

the minimum value of the inner product

$$
\therefore\{\Psi:[\lambda \underline{v}, 1] \Psi=g(\lambda, v)\}_{\substack{\text { is } \\ \text { supporting }}}
$$

nypuplow for y

If wi have min $f_{0}(x)$

$$
{ }^{S \sigma} f_{1}(x)<0
$$

$$
\left\{[\lambda, 1]\left[\begin{array}{l}
u \\
t
\end{array}\right]=g(\lambda)\right\} \rightarrow\{(u, t):
$$

$g(\lambda)=$ Intercept of supporting hyperplane with t-and

$$
d^{x}=\sup _{\lambda \geqslant 0} g(\lambda)
$$

$$
f^{\star}=\min \{t:(0,0, t) \in y\}
$$

A sufficient condition for strong dudity (Slater's condition)
If pros is convex, Constraint qualification

$$
\begin{aligned}
& \text { (1) I some } x \in \operatorname{rulint}(\infty) \\
& \text { st } f_{i}(x)<0 \quad i=1,2 \ldots m
\end{aligned}
$$

then the pros satisfies strong duality.
Eg:

$$
\begin{aligned}
& \text { Minimix } e^{-x} \\
& \text { st } \frac{x^{2}}{y} \leq 0 \quad d=\{(x, y): y>0\} \\
& f^{*}=1 \\
& L(x, y, \lambda)=e^{-x}+\lambda \frac{x^{2}}{y}
\end{aligned}
$$

$$
\begin{gathered}
g(\lambda)=\inf _{(x y) \in \infty}\left\{e^{-x}+\frac{\lambda}{x^{2}} \frac{y}{y}\right\}=0 \\
y=x^{4} \\
d^{x}=0
\end{gathered}
$$

$$
\begin{aligned}
\text { Min } & f_{0}(x) \\
\text { st } & f_{i}(x) \leq 0 \quad 1 \leq i \leq m \\
& h_{j}(x)=0 \quad 1 \varepsilon j \leq \rho \\
L(x, \lambda, v) & =f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\sum_{i} V_{j} h_{j}(x) \\
g(\lambda, v) & =\inf _{x \in \infty} L(x, \lambda, v)
\end{aligned}
$$

If thong duality nods,

$$
\begin{aligned}
& f^{*}=f_{0}\left(x^{*}\right)=g\left(\lambda^{*}, y^{*}\right) \quad \text { for } x^{*} \in C \lambda^{*} \geq 0 \\
& =\inf _{x \in \infty}\left\{f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{x} f_{i}(x)+\sum_{j=1}^{1} v^{*} a_{j}(x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \quad f_{0}\left(x^{*}\right)
\end{aligned}
$$

If atrong dudity holds, thin
(1) $\quad \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0 \quad 1 \leq i \leq m \rightarrow$ Necusory
(Complementary slactrus conditions)
(2)

$$
\begin{aligned}
& f_{0}\left(x^{*}\right)=\inf _{x \in \omega} f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\sum_{j} y_{j}^{k} h(g \\
\Rightarrow & \nabla f_{0}(x)+\sum_{i} \lambda_{i}^{k} \nabla f_{i}\left(x^{k}\right)+\sum_{j} \gamma_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0
\end{aligned}
$$

(Necesony)
(3) $\lambda_{i}^{\beta} \geqslant 0 \quad \forall i$
(4) $f_{i}\left(x^{*}\right) \leq 0 \forall_{i}$
(0) $h\left(x^{*}\right)=0 \quad \forall j$

$$
g\left(\lambda_{i}^{\infty}, v^{\omega}\right)=f^{\omega}
$$

Consider an algorithm that produce itonares $\left(\underline{x}^{(k)}, \underline{\lambda}^{(k)}, \underline{y}^{(k)}\right)$

$$
\begin{aligned}
& g\left(\lambda^{(k)}, \gamma^{(k)}\right) \leq f^{*} \\
& f_{0}\left(x^{(k)}\right)+g\left(\lambda^{(l)}, r^{(u)}\right) \leq f_{0}\left(x^{(k)}\right)+f^{*} \\
& \underbrace{f_{0}\left(x^{(k)}\right)-f^{*}}_{\text {Optimality } g a y} \leq \underbrace{f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}, \gamma^{(k)}\right)}_{\text {Dudlity gal }}
\end{aligned}
$$

Stopping rule: $\quad f_{0}\left(x^{(\omega)}\right)-g\left(\lambda^{(L)}, y^{(k)}\right) \leq \epsilon$

Consider the ginendization:
Minimize $f_{0}(x)$
Si $h_{j}(x)=0 \quad 1<j \varepsilon p$

$$
f_{i}(x) \leqslant k_{i} 0 \quad 1 \leqslant i \leqslant m
$$

Lagrangian:

$$
\begin{aligned}
& L\left(\underline{x}, \underline{\lambda}_{1}, \lambda_{2} \cdots \lambda_{m}, \underline{v}\right)=f_{0}(\underline{x})+\sum_{i}\left\langle\lambda_{i}, f_{i}(\underline{x})\right\rangle \\
&+\sum_{i} y_{j} h_{j}(\underline{x}) \\
& g\left(\lambda_{1} \cdots \lambda_{m}, \underline{v}\right)=i_{x \in \infty} L(,)
\end{aligned}
$$

Dual optimization problem
Moximige $g\left(\lambda_{1}, \ldots \lambda_{2}, v\right)$
ST $\lambda_{i} \psi_{k^{*}} 0$
genundijed inguali ity wrl dud cont Kk^{*}

Examples SDP (Semidepinite program)
Minimix $\underline{C}^{\top} \underline{x}$
ST $G+\sum_{i=1}^{n} x_{i} f_{i} \quad$ is PSD

$$
\begin{aligned}
& \equiv \operatorname{Min~c^{i}x} \\
& \text { Si } G_{i}+\sum_{i=2}^{n} x_{i} F_{i} y_{k} 0 \\
& K=S_{+}^{n} \quad \text { symmetruc of PSD motrices) }
\end{aligned}
$$

Lagrang multiplies ($n \times n$, symmuinc)

$$
\begin{aligned}
L(x, 2) & =f_{0}(x)-\operatorname{tn}\left(2\left(G+\sum_{i} x_{i} f_{i}\right)\right) \\
& =f_{0}(x)-\operatorname{tn}\left(z G+\sum_{i} x_{i} 2 f_{i}\right) \\
& =\sum_{i=1}^{n} c_{i} x_{i}-\operatorname{tn}(z G)-\sum_{i=1}^{n} x_{i} \operatorname{tr}\left(z F_{i}\right) \\
& =-\operatorname{tn}(2 G)+\sum_{i=n}^{n} x_{i}\left(c_{i}-\operatorname{tn}\left(2 F_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& g(z)=i_{x} f_{G R^{n}} L(x, z) \\
& =\left\{\begin{array}{cc}
-\operatorname{tr}(2 G) & \text { o } \\
-\infty & d x
\end{array} \quad \operatorname{tr}\left(2 F_{i}\right)=c_{i} \forall i\right. \\
& \text { Maximize - } \operatorname{tr}(2 G) \\
& \text { St } Z \geqslant y_{k} * 0 \text { च } \quad Z \text { isSD } \\
& \operatorname{tn}\left(2 F_{i}\right)=c_{i} \quad i=1,3-n
\end{aligned}
$$

Conic program:

$$
\begin{aligned}
& \text { Minimize } \underline{c}^{\top} x \\
& \text { ST } A x=\underline{b}
\end{aligned}
$$

$$
x \leqslant 0
$$

K is any proper cons

$$
\begin{aligned}
L(x, \lambda, \underline{v}) & =\underline{c}^{\top} \underline{x}+\underline{\lambda}^{\top} x+\underline{v}^{\top}(A x-b) \\
& =-\underline{v}^{\top} b+\left(\underline{c}+\lambda+A^{\top} \underline{r}\right)^{\top} \underline{x} \\
g(\lambda, \underline{v}) & = \begin{cases}-v^{\top} b & \vee \\
-\infty & \text { else }\end{cases}
\end{aligned}
$$

$\begin{array}{ll}\text { Dud program } \quad \begin{array}{l}\text { Maximiziz }-\gamma^{\top} b \\ S T \\ y, k^{\star} 0 \\ c+\lambda+A^{\top} y=0\end{array} \\ & \begin{array}{l}\text { Mar }-\gamma^{+} s \\ S T \\ -A^{\top} v-c y, k^{*}\end{array}\end{array}$

Classification (Linian)

$$
\begin{gathered}
\mathcal{R}^{R}=\left\{x_{1} \cdots \underline{x}_{N}\right\} \\
x_{1} \in \mathbb{R}^{n}
\end{gathered} \quad y=\left\{y_{\left.y_{1} \in \mathbb{R}_{n}\right\}}^{\left.y_{i}\right\}}\right.
$$

Liniar dassitication / discrimination
Given $x \& y$, can we conotruct a hypar pane

$$
\begin{array}{ll}
(\underline{a}, b) \text { st } & \underline{a}^{\top} \underline{x}_{i}>b
\end{array} \begin{array}{ll}
& \forall x_{i} \in z \\
\underline{a}^{\top} y_{i}<b & \forall y_{i} \in y
\end{array}
$$

If yes linearly separobsh.

$$
\begin{aligned}
& A=\operatorname{Com}(X) \quad B=\operatorname{Conv}(y) \\
& \exists x \in A \\
& x=\sum_{i} \alpha_{i} y_{i} \\
& a^{\top} y>b \quad \forall y \in M
\end{aligned}
$$

Prove: If a hyperplane supancter t, y them it also separates

Linlat ducriminction as an optimization problum
Variables: $(a, b) \in \mathbb{R}^{n} \times \mathbb{R}$
0

$$
\begin{array}{ll}
a^{\top} x_{i}<b & \forall x_{i} \in X \\
a^{\top} y_{i}>b & \forall y_{i} \in y
\end{array}
$$

$$
\begin{aligned}
& \text { Min } 1 \\
& \text { ST } \begin{aligned}
a^{\top} x_{i}<b & : x_{i} \in \mathcal{X} \\
a^{\top} y_{i}>b & : y_{i} \in Y
\end{aligned} \\
& \left\{x: a^{\top} x=b\right\} \\
& \text { Y Satisprability }
\end{aligned}
$$

$$
\begin{array}{lll}
\operatorname{Min}_{(a, b)} & 1 & \\
\text { sT } & a^{\top} x_{i} & \geqslant b+1 \\
& a^{\top} y_{i} & <b-1
\end{array}
$$

Arother approach:

$$
\begin{array}{ll}
a^{\top} x_{i} \leqslant b-t & \forall x_{i} \in f \\
a^{\top} y_{i} \geqslant b+t & \forall y_{i} \in y \\
t \geqslant 0 & \\
\|a\|_{2}<1 &
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Min}^{s i}-t \\
& a^{\top} x_{i} \leqslant b-t \\
& a^{\top} y_{i} \geqslant b+t \\
& t \geqslant 0 \\
& \|a\|_{2}<1
\end{aligned}
$$

Consider

$$
\begin{gathered}
\left\{\underline{x}:-t<\underline{a}^{\top} \underline{x}-b \varepsilon t\right\}=s \\
n \underline{a} n=1
\end{gathered}
$$

Exconce: Find min disl b/w S^{c} \& the hyporplane

Prosblim

$$
\begin{array}{ll}
\operatorname{Min}_{S T}-t & \\
a^{\top} \underline{x}_{i} \leq b-t \quad & a^{\top} y_{i} \geqslant b+t \\
& t \geqslant 0 \quad\|a\|_{2} \leqslant 1
\end{array}
$$

$$
\begin{aligned}
L(\lambda, \tilde{\lambda}, 2, \alpha, a, b)=- & +\sum_{i=1}^{N} \lambda_{i}\left(a^{\top} \tilde{x}_{i}-b+t\right) \\
& +\sum_{j=1}^{m} \tilde{\lambda}_{i}\left(-a^{\top} y_{i}+b+t\right) \\
& +2(-t)+\alpha(\|a\|-1) \\
=t\left(-1+\sum_{i} \lambda_{i}+\sum_{i} \tilde{\lambda}_{i}-r\right) & +b\left(\sum_{j} \tilde{\lambda}_{i}-\sum_{i} \lambda_{i}\right) \\
& +a^{\top}\left(\sum_{i} \lambda_{i} \tilde{\chi}_{i}-\sum_{i} \tilde{\lambda}_{j} y_{j}\right)+\alpha\|a\|-\alpha
\end{aligned}
$$

$$
\inf _{b, t} L()=\left\{\begin{array}{r}
a^{\top}\left(\sum_{i} \lambda_{i} \underline{\chi}_{i}-\sum_{i} \tilde{\lambda}_{j} y_{j}\right)+\alpha\|a\|-\alpha \\
\dot{\mu} \sum_{j} \tilde{\lambda}_{j}=\sum_{i} \lambda_{i} L \\
\sum_{i} \lambda_{i}+\sum_{j} \lambda_{j}=1+r \\
-\infty, \quad \text { otherwise }
\end{array}\right.
$$

$$
f(\underline{a})=\underline{a}^{\top} \underline{u}+\alpha\|a\|_{2}, \quad \alpha \geqslant 0
$$

What is ing $f(a)$?

$$
\begin{aligned}
& f(\underline{a})=a^{\top} \underline{u}+\alpha \sqrt{a^{\top} a} \\
& \underline{a}=\beta \underline{u}, \quad \beta<0
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{f}(\beta)=\beta u^{\top} u+\alpha \sqrt{\beta^{2} u^{\top} u} \\
& =\beta \sqrt{u^{\top} u\left(\sqrt{u^{\top} u}-\alpha\right)} \\
& \inf _{\beta<0} \tilde{f}(\beta)=\left\{\begin{array}{cl}
-\infty & \text { if }\|u\|>\alpha \\
0 & \text { use }
\end{array}\right.
\end{aligned}
$$

$$
\begin{array}{rl|l}
\text { Supposi }\|u\| \leq \alpha & \text { Cauchy - Schuanty } \\
f(a)=a^{\top} u+\alpha\|a\|_{2} & \left|a^{\top} u\right| \varepsilon\|u\|\|a\| \\
\geqslant-\|u\| v a\|+\alpha\| a \| & -\left|a^{\top} u\right| \geqslant-\|u\| \| a \\
& \|a\|(\alpha-\| u \underline{u}) & a^{\top} v \geqslant-\|u\|\|a\| \\
\geqslant 0 &
\end{array}
$$

$$
\inf _{c}\left(\underline{a}^{\top} u+\alpha\|a\|\right)=\left\{\begin{array}{cc}
-\infty & \text { in }\|u\|>\alpha \\
0 & \text { il }\|u\| \leq \alpha
\end{array}\right.
$$

$$
g(\lambda, \tilde{\lambda}, a, \tau)=\left\{\begin{array}{rr}
-\alpha & \hat{l} \sum_{i} \lambda_{i} x_{i}-\sum_{i} \tilde{\lambda}_{j} y_{i} \| \\
& \leq \alpha \\
& \sum_{i} \lambda_{i}=\sum_{j} \lambda_{j}, \sum_{i} \lambda_{i}+\sum_{j} \lambda_{j} \\
-\infty & d u
\end{array}\right.
$$

Dud:

$$
\begin{aligned}
& \text { Max - } \alpha \\
& S_{T} \\
& \left\|\sum_{i} \lambda_{i} x_{i}-\sum_{i} \tilde{\lambda}_{j} y_{i}\right\| \rightarrow \min _{\operatorname{lonv}} \operatorname{dut} L / w \\
& \text { < } \alpha \\
& \operatorname{Conv}(x) \& \operatorname{Conv}(y) \\
& \sum_{i} \lambda_{i}=\sum_{j} \tilde{\lambda}_{j}, \sum_{i} \lambda_{i}+\sum_{j} \lambda_{j} \\
& u_{i}=\lambda_{i}\left(\frac{1+\tau)}{2}\right. \\
& =1+\tau \\
& U_{j}=\tilde{\lambda}_{j}\left(\frac{1+r)}{2}\right. \\
& \begin{array}{c}
\lambda \geq 0, \quad \bar{\lambda} \geq 0, \quad z \geqslant 0 \\
\alpha \geqslant 0
\end{array} \\
& \text { Cons(}(x) \\
& \operatorname{Conv}(y)
\end{aligned}
$$

What if the two sets are NOT linearly separable?
Natural problem:
Minimize "misclassfificdion" combindonid optimization
prover l

$$
+\underline{x}_{i} \in x \quad \underline{a}^{\top} \underline{x}_{1} \geqslant b+1
$$

$\left.+y_{j} \in y_{,} \quad \quad a^{\top} y_{j} \leqslant b-1\right\}$

Can bl satisfied only if lis.
$\forall \underline{x}_{i} \in x \quad \underline{a}^{\top} \underline{x}_{i} \geqslant b+1-u_{i}$
$+y_{j} \in y, \quad a^{5} y_{j} \leqslant b-1+v_{j}$
Sugport
Vecdor
Classitiar $\left\{\begin{array}{cc}\text { Minimize } & \sum_{i=1}^{m} u_{i}+\sum_{j=1}^{N} v_{j} \\ \text { ST } & a^{+} x_{i} \geqslant b+1-u_{i} \\ \underline{a}^{T} y_{j} \leqslant b-1+v_{j} \in X \\ & \forall y_{i} \in y \\ \underline{u} \nmid 0 \\ \underline{v} \geqslant 0\end{array}\right.$

Logistic Modeling

$$
f(z)=\frac{e^{\gamma}}{1+e^{z}}=\frac{1}{1+e^{-z}}
$$

Given any pint $u \in \mathbb{R}^{n}$,

$$
\operatorname{Pn}[u \in \operatorname{Class} 1]=\frac{e^{a^{\top} u-b}}{1+e^{a^{\tau} u-b}}
$$

Given $\left\{\underline{u}, \ldots \underline{u}_{k}\right\}$, randomly lobed O LI ale the cove probability

You orly observe $\left\{\underline{u}_{1}-\underline{u}_{2}\right\} \&$ lobes

$$
\begin{aligned}
& \left.\begin{array}{l}
u_{1} u_{2}-u_{M} \rightarrow \text { lobd } 1 \\
u_{M n} \cdots u_{M+N} \rightarrow \text { labd } 0
\end{array}\right\} \text { conplgundion } C \\
& \left.\operatorname{Pn}\left[C \mid \underset{a, b}{u, \ldots} u_{M+N}\right]=\prod_{\text {in }}^{M} \operatorname{Pr} \mid u_{i} \text { is losind } 1\right] \\
& \prod_{j=m+1}^{m+i} \operatorname{Pr}\left[u_{j} \text { is lassede } 0\right] \\
& \prod_{i=1}^{m} \frac{1}{1+e^{-\left(a^{\top} y_{i}-b\right)}} \prod_{j=m+1}^{m i n} \frac{e^{-\left(a^{2} y_{j}-1\right.}}{\left.1+e^{-a a_{-2}}\right)} \\
& \text { Choor }\left(a^{n}, b^{\prime}\right)=\operatorname{argmax} \log P_{n}\left[C \mid \underline{u} \ldots u_{m \omega}, a, b\right]
\end{aligned}
$$

Noneiman dappiter: $\quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

$$
\text { st } \quad \begin{array}{ll}
& f\left(x_{i}\right)>0 \\
& \forall x_{i} \in y_{k} \\
& f\left(y_{j}\right)<0 \quad \forall y_{j} \in y
\end{array}
$$

Numerically solving unconstrained minimization problems
0 Gradient dissent

$$
\underline{x}_{t}=\underline{x}_{t-1}+\sigma_{t} u_{t} \rightarrow \text { freed }
$$ amour

$$
\begin{aligned}
& \text { step desert } \\
& \text { sigh } \\
& \text { dimbtron }
\end{aligned}
$$

Choose $\underline{u}_{f}=-\nabla f\left(x_{t-1}\right)$
How do we door σ_{t} ?

$$
\begin{aligned}
& \text { Fixed } \\
& \text { byopthand }
\end{aligned}\left\{\begin{array}{l}
\text { Constant } \\
-\delta_{t} \rightarrow 0 \text { as } t \rightarrow \infty \\
\sigma_{t}=y_{(t+1)}
\end{array}\right.
$$

Line stanch:
(1) Exact line saint : Chook δ_{r} SI

$$
\begin{gathered}
f\left(q_{t-1}-\gamma_{t} \nabla f\left(q_{t+1}\right)\right) \\
\text { is } \min
\end{gathered}
$$

(c) Backtracking line march

$$
\begin{aligned}
& \text { fix } \underline{x}_{t} \text {, direction } \underline{u}, \alpha, \beta . \\
& \qquad \alpha \in(0,1), \quad \beta \in\left(0, \frac{1}{2}\right) \\
& \text { fix } \delta=1 \\
& \text { While } \begin{array}{l}
f\left(x_{t}+\delta u\right)>f\left(x_{t}\right)+\beta \delta \nabla f(u)^{\top} \underline{u} \\
\delta=\alpha \delta
\end{array}
\end{aligned}
$$

For any convex fr.

$$
\begin{aligned}
& f(y) \geqslant f(x)+\nabla f(x)^{+}(y-x) \\
& f\left(x_{+}+\delta u\right) \geqslant \not\left(x_{t}\right)+\nabla f\left(x_{t}\right)^{r}(\delta \underline{u})
\end{aligned}
$$

Want to choose δ st

$$
f\left(x_{t}+\delta u\right) \leqslant f\left(x_{t}\right)+\beta \nabla f\left(x_{t}\right)^{\tau}(\delta u)
$$

Least squares problem

$$
\begin{aligned}
& \operatorname{Min}_{x \in \mathbb{R}^{n}}\|A x-b\|_{2}^{2} \\
& f_{0}(x)=\| A x-b u_{2}^{2}=(A x-b)^{\top}(A x-b) \\
& \nabla f_{0}(x)=2 A^{\top} A x-2 A^{\top} \underline{b} \\
& \nabla^{2} f_{0}(x)=2 A^{\top} A \\
& x^{*}=\left(A^{\top} A\right)^{-1} A^{\top} \underline{b}
\end{aligned}
$$

Method of steepess duscent
Descent dinection:

$$
\underline{u}_{N S D}=\operatorname{argmin}_{\left\|_{\|}\right\|=1}\left(\underline{u}^{\top} \nabla f(x)\right)
$$

NSD: Normalized
Stapest
Disantr
Diffriment choices of norm:
O Eudidion norm: $\quad \underline{u}_{\text {NSD }}=\frac{-\nabla f(x)}{\|\nabla f(a)\|_{2}}$
(2) Linnorm: $\left.\quad \begin{array}{l}\dot{o}_{i}=\operatorname{argman}(|\nabla f(x)|)_{i} \\ \\ \underline{u}_{\text {NsD }}=-e_{i} \operatorname{sgn}\left((\nabla f(x))_{i}\right)\end{array}\right\}$ Coordindete
(3) $\|\underline{x}\|_{p}=\| p^{y / 2} \underline{\|}_{2}$ for som $P \cdot D$ mation p.

$$
\begin{aligned}
& \|x\|_{p}^{2}=x^{+} \rho x \\
& \begin{array}{r}
\underline{u}_{N S D}=\frac{-\rho^{-1 / 2} x}{\| \rho^{-1 / 2} \underline{\|_{2}}}
\end{array} \rightarrow \begin{array}{c}
\text { Cordinde } \\
\text { transforaction } \\
+O D
\end{array}
\end{aligned}
$$

Second-ondur method: Newton's method
Basic prinupse : 2nd sodow Taylar sovies approan at \underline{x}_{t}

$$
\begin{aligned}
& \tilde{f}_{x_{t}}(v)=f\left(x_{t}\right)+v^{\top} \nabla f\left(x_{t}\right)+\frac{1}{2} v^{\top} \nabla^{2} f(x) \underline{v} \\
& \approx f\left(x_{1}+v\right) \\
& \downarrow \\
& \text { conver if } f \text { is convex } \\
& \operatorname{Min}_{v} \tilde{f}_{x_{T}}(v) \\
& \begin{array}{c}
\underline{v}^{*}=-\left(\nabla^{2} f\left(x_{t}\right)\right)^{-1}\left(\nabla f\left(x_{f}\right)\right) \\
\downarrow \\
N^{*}\left(x_{f}\right)
\end{array}
\end{aligned}
$$

Newton updde:

$$
\begin{aligned}
x_{t}=x_{t-1} & +\delta_{t} \nu^{*}\left(x_{t-1}\right) \\
\delta_{t}=1 & \rightarrow \text { Pure Newton } \\
\delta_{t} \neq 1 & \rightarrow \text { Damped/guandeld }
\end{aligned}
$$

Newton methane,

Newton's method for equality-constrained minimization
Minimin $f(x)$

$$
\text { ST } A x=b
$$

Assume thor we heve x_{τ} s.t

$$
A x_{t}=\underline{b}
$$

Want to choose $x_{\text {tn }}$ si (1) $A x_{\text {In }}=\underline{b}$
(2) $f\left(x_{4+1}\right) \leq f\left(x_{r}\right)$

$$
\tilde{f}_{x_{t}}(\underline{v})=f\left(\underline{x}_{t}\right)+v^{\top} \nabla f\left(x_{t}\right)+\frac{1}{2} v^{\top} \nabla^{2} f\left(x_{t}\right) \underline{v}
$$

Minimize $\tilde{f}_{x_{r}}(v)$
v: $A\left(n_{+}+v\right)=6$
$O R \quad A V=0$

Solve KKT conditions:

$$
L(v, w)=\tilde{f}_{x_{t}}(N)+\underline{w}^{\top}(A v)
$$

KKT conditions: (i) $A v=0$
(ii) $\nabla_{v} L(N, w)=0$
\downarrow

$$
\begin{array}{r}
\nabla f\left(x_{t}\right)+\nabla^{2} f\left(x_{+}\right) \underline{v}+A^{\top} \underline{w}=0 \\
\nabla^{2} f\left(x_{+}\right) v+A^{\top} \underline{w}=-\nabla f\left(x_{+}\right) \\
{\left[\begin{array}{cc}
\nabla^{2} f\left(x_{t}\right) & A^{\top} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
\underline{v} \\
w
\end{array}\right]=\left[\begin{array}{c}
-\nabla f\left(x_{2}\right) \\
0
\end{array}\right]}
\end{array}
$$

$$
V^{x}\left(x_{t}\right)=\left(\left[\begin{array}{cc}
\nabla^{2} f\left(x_{t}\right) & A^{\top} \\
A & 0
\end{array}\right]^{n}\left[\begin{array}{c}
-\nabla f\left(x_{t}\right) \\
0
\end{array}\right]_{\text {lin }}\right.
$$

Upacte: $\quad x_{t+1}=x_{t}+\delta_{t} v^{x}\left(x_{t}\right)$

Inquality constraintes

$$
\begin{aligned}
& \operatorname{Min} f_{0}(x) \\
& f_{1}(x) \leqq 0
\end{aligned}
$$

Suppoie we have x_{y} si $f_{1}\left(x_{2}\right)<0$
find x_{t+1} si $f\left(x_{t+n}\right)<0$ $l f_{0}\left(x_{t+1}\right) \leq f_{0}\left(x_{t}\right)$

$$
\bar{f}_{t}(x)=f_{0}(x)+\epsilon_{t} g\left(f_{1}(x)\right)
$$

g : Barrier fon

$$
g(u)=\left\{\begin{array}{cc}
\text { finist } & \text { for } u<0 \\
\infty & \text { for } u=0
\end{array}\right.
$$

Problem:
Minimize $f_{0}\left(x_{2}\right)$

$$
\text { ST } \begin{gathered}
f_{1}(x) \leq 0 \quad i=1,3 \cdots m \\
A x=b
\end{gathered}
$$

$$
\begin{array}{r}
\equiv \text { Minimize } f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { ST } A x=b^{I}-(\gamma)= \begin{cases}0 & \text { if } z \leq 0 \\
\infty & d x\end{cases}
\end{array}
$$

Replay I.(f) with a barrier function

$$
L_{t}(z)=-\frac{1}{t} \log (-z)
$$

$$
\begin{aligned}
& \phi(\underline{x})=-\sum_{i=1}^{m} \log \left(-f_{i}(\underline{x})\right) \rightarrow \begin{array}{l}
\log \text { bavrien in } \\
\text { for the phys) } m
\end{array} \\
& \text { Solve for } \min _{x: A x-b} t f_{0}\left(x_{2}\right)+\phi\left(x_{2}\right) \\
& \nabla \phi(x)=-\sum_{i=1}^{m} \frac{1}{f_{1}(x)} \nabla f_{i}(x) \\
& \nabla^{2} \phi(\underline{\eta})=\sum_{i=1}^{m} \frac{1}{f_{i}(\underline{x})} \nabla^{2} f_{i}(\eta) \\
& \left.+\sum_{i=1}^{m} \frac{1}{f_{i}^{2}(x)} \nabla f_{i}(\underline{x})\right)\left(\nabla f_{i}(x)\right)^{\top}
\end{aligned}
$$

Barrier Method:
Initialize x that satisfies $A \underline{x}=b$

$$
\mu>1, \quad \epsilon>0, \quad t>0
$$

While not slopping upon reached: $\frac{m}{t} \leq E$
Run Newton's method staking af $x y$
Outer

Call the of $x^{*}(t)$
Sit $t \leftarrow \mu_{t}$

$$
x \leftarrow x^{*}(t)
$$

In ead outor iterction,

$$
\text { sodve } \min _{x: A x=b}+f_{d}(x)+\phi(x)
$$

How mues does $f\left(x^{*}(t)\right)$ differ from f^{*}
4

$$
\begin{aligned}
& \min f_{0}(x) \\
& \text { Si } A x=5 \\
& f_{1}(x) \leq 0 \quad \forall i
\end{aligned}
$$

Uaim: $f\left(x^{*}(t)\right)-f^{*} \leq \frac{m}{t}$
fog 1
$\operatorname{Minimize}_{\text {si }\|A\|^{2} \leqslant 1}\|A x-6\|^{2}$

$$
\text { ST }\left\|\left\|\|^{\|} \leq 1\right.\right.
$$

Z Minimize $x^{\top} A^{\top} A x-25^{5} A x+b^{5} 6$ ST $x^{\top} x-1 \leq 0$

$$
\begin{aligned}
\nabla f_{0}(x) & =2 A^{\top} A x-2 A^{\top} b \\
\nabla^{2} f_{0}(x) & =2 A^{\top} A \\
\phi(x) & =-\log \left(-\left(x^{\top} x-1\right)\right)=-\log \left(1-x^{\top} x\right) \\
\nabla \phi(x) & \left.=+\frac{2 \underline{x}}{\left(1-x^{\top} \underline{x}\right.}\right)
\end{aligned}
$$

$$
\begin{aligned}
\nabla^{2} \phi(x) & =\frac{2 I}{1-x^{\top} x}-\frac{2}{\left(1-x^{\top} x\right)^{2}}\left(-2 x x^{\top}\right) \\
& =\frac{2 I}{1-x^{\top} x}+\frac{4 x x^{\top}}{\left(1-x^{\top} x\right)^{2}}
\end{aligned}
$$

