Review of Linear Algebra

Vecton spau $(\mathbb{V},+$,
$0 x+y=y+x \quad \forall x, y \in \mathbb{V}$
(C) $\underline{x}+(\underline{y}+z)=(\underline{x}+y)+z$
(3) $\exists \underline{Q} \in \mathbb{V}$ st $\underline{0}+\underline{x}=\underline{x} \quad \forall \underline{x} \in \mathbb{V}$.
(0) For $\operatorname{each} \underline{x}, \partial(\underline{x})$ st $\underline{x}+(-\underline{x})=0$
(c) $\alpha(\beta x)=(\alpha \beta) x \quad \forall \alpha, \beta \in \mathbb{R} \ell \underline{x} \in \mathbb{V}$
(6) $\alpha\left(\underline{v}_{1}+\underline{v}_{2}\right)=\alpha \underline{v}_{1}+\alpha v_{2}$
$(\alpha+\beta) v_{1}=\alpha v_{1}+\beta v_{1}$
(0) $1 . v=v$

Ed: $\begin{aligned} & \mathbb{R}^{n}, \mathbb{R}^{k} \\ & \mathbb{R}^{n k} \longrightarrow \operatorname{dim}=\text { All vector spaces }\end{aligned}$
Q Not a vector sou over \mathbb{R}
S_{+}^{n} : st of all $n \times n$ symmetric $P S D$ molricas
A, B SD

$$
\begin{aligned}
x^{\top} A \underline{x} \geqslant 0 & x^{\top} B x>0 & \forall x \\
x^{\top}(A+B) x & >0 & \forall x
\end{aligned}
$$

Not a vector space
\mathbb{S}^{n}. Set of $n \times n$ symmetric matrices

Examples (continued)
O set of all $n \times n$ matricis

$$
A^{(i, j)}=\left[\begin{array}{lll}
0 & \cdots & x^{(i, j)^{\text {th }}} \\
0 & 1 & \\
0 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& B=\sum_{i, j} b_{i j} A^{(i, j)} \\
& \operatorname{dim}\left(R^{n \times n}\right)
\end{aligned} \quad=n^{2}
$$

(2) sut of all $n \times n$ symmatric motricas \mathbb{S}^{n}

$$
\begin{aligned}
& \operatorname{dim}\left(\mathbb{S}^{n}\right)=\frac{n(n+1)}{2} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]-\left[\begin{array}{lll}
0 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
{[00]}
\end{array},[0 \%],[i \circ]\right.} \\
& {\left[\begin{array}{cc}
a & i \\
k & i
\end{array}\right]}
\end{aligned}
$$

0 Sev of polyromide of digru $\leq n \&$ red coifficientr

$$
\begin{aligned}
& \mathbb{P}_{2}=\left\{a_{0}+a_{1} x+a_{2} x^{2}: a_{0} a_{1}, a_{2} \in \mathbb{R}\right\} \\
& \alpha\left(p_{1}(x)+p_{2}(x)\right)=\alpha p_{1}(x)+\alpha p_{2}(x) \\
& \left(\alpha_{1}+\alpha_{2}\right) p(x)=\alpha_{1} p(x)+\alpha_{2} p(x) \\
& \operatorname{dim}\left(p_{n}\right)=n+1
\end{aligned}
$$

(55) What abowt the ser of all polynomids of digne $=n$
(3) Sit al complex ros

$$
\begin{gathered}
a+i b \quad\{1, i\} \\
\operatorname{dim}(\mathbb{C})=2
\end{gathered}
$$

Subspace, test for subspaces

$$
V \text { is a } \mathrm{v} / \mathrm{s} L \quad S \in V
$$

If S is also a vector space, then S is called a subspou of \mathbb{W}.

* Only nub to test ul S is dosed under l.c.

$$
v_{1}, v_{2} \in S \Rightarrow \alpha_{1} v_{1}+\alpha_{2} \underline{v}_{2} \in S
$$

Linear independence

$$
\begin{aligned}
& \left\{v_{1}, v_{2}=v_{m}\right\} \in \mathbb{X} \\
& \sum_{i=1}^{m} c_{i} v_{i}=\underline{0} \quad \text { inf } \quad c_{1}=c_{2} \cdots=c_{m}=0
\end{aligned}
$$

Span

$$
\operatorname{span}\left\{\underline{v}_{1} \cdots v_{m}\right\}=\left\{\underline{v}=\sum_{i=1}^{m} \alpha_{i} \underline{v}_{i}: \alpha_{i} \in \mathbb{R}\right\}
$$

What is a basis for a vector space? Is it unique?
$\left\{v_{1}-v_{n}\right\}$ is a basis for $\mathbb{N} \quad v_{1} \cdots v_{n}$ are limanly independent \& span \mathbb{V}

Dimension of a vector space

$$
\operatorname{dim}(\mathbb{V})=|\operatorname{Basis}| \operatorname{siv} \mid
$$

Four fundamental subspaces associated with a matrix
A: $m \times n$ matron
(1) Row space: span (rows)
(C) Column pau: Span (cols)
(3) Right null appal $N S(A)=\left\{\underline{v} \in \mathbb{R}^{n}: A \underline{v}=\underline{0}\right\}$
(0) Left null apace $\quad\left\{\underline{v} \in \mathbb{R}^{m}: A^{\top} \underline{v}=0\right\}$

Rank and nullity

$$
\operatorname{Rank}(A)+\operatorname{Nullity}(A)=\# \operatorname{cols}
$$

Compute the rank, nullity, column space and right null space:
(1) $\left[\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right]$

$$
\begin{aligned}
\operatorname{nawh}(A) & =1 \\
\text { nullity } & =2-1 \\
\operatorname{CdSp}(A) & =\left\{\alpha\left[\begin{array}{l}
1 \\
2
\end{array}\right]: \alpha \in \mathbb{R}\right\} \\
\operatorname{Rt} \operatorname{NS}(A) & =\left\{\alpha\left[\begin{array}{c}
-3 \\
1
\end{array}\right]: \alpha \in \mathbb{R}\right\}
\end{aligned}
$$

Permutations and determinant

$$
\begin{aligned}
& {[n]=\{1,2, \ldots, n\}} \\
& (1,3,3) \\
& \sigma \quad\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right) \\
& \left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right) \\
& \left(\begin{array}{lll}
2 & 3 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right) \\
& \left(\begin{array}{lll}
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

Difn: σ is a permutation on $[n]$ if it is a bijection on $[n]$

$$
\left.\begin{array}{l}
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1
\end{array}\right)
\end{array} \begin{array}{lllll}
4 & 1 & 3 & 2
\end{array}\right)
$$

paitlwise
fact: The number of swaps reqpirid is always odd or days

$$
\operatorname{sign}(\sigma)=\left\{\begin{array}{lll}
+1 & \text { in even } \\
-1 & \text { in odd }
\end{array}\right.
$$

Difn: $\operatorname{det}(A)=\sum_{\sigma: \operatorname{permutarion} / n)} \operatorname{sign}(\sigma) a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}$

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \\
& \operatorname{sign}(1,2)=1 \quad \operatorname{dut}(A)=a_{11} a_{22}-a_{12} a_{21} \\
& \operatorname{sign}(2,1)=-1 \quad \sigma(1)=1 \quad \sigma(2)=2 \\
& \operatorname{dut}(A)=+1 \times a_{1,1} a_{2,2}+(-1) a_{12} a_{21}=a_{11} a_{22}-a_{21} a_{22}
\end{aligned}
$$

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{32}
\end{array}\right] \quad \begin{aligned}
\operatorname{dut}(A)= & a_{11} a_{22} a_{33} \\
-a_{12} a_{21} a_{33} & +a_{11} a_{23} a_{32} \\
& a_{12} a_{23} a_{31} \\
& a_{13} a_{22} a_{31}+a_{13} a_{21} a_{32}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sign}\left(\begin{array}{lll}
1 & 3 & 3
\end{array}\right)=1 \\
& \operatorname{sign}\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=-1 \\
& \operatorname{sign}\left(\begin{array}{lll}
2 & 1 & 3
\end{array}\right)=-1 \\
& \operatorname{sign}\left(\begin{array}{lll}
2 & 3 & 1
\end{array}\right)=1 \\
& \operatorname{sign}\left(\begin{array}{lll}
3 & 2 & 1
\end{array}\right)=-1 \\
& \operatorname{sign}\left(\begin{array}{lll}
3 & 1 & 2
\end{array}\right)=1
\end{aligned}
$$

$$
\begin{array}{r}
=a_{11}\left(a_{22} a_{23}-a_{23} a_{32}\right) \\
-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{array}
$$

Computationd complenity $=\theta(n!\times n)$

Row operations and determinant

1. Subtracting scaled row from another

$$
\begin{array}{ll}
\quad R_{2}^{\prime} \leftarrow R_{2}-\alpha R_{1} & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\alpha & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
A \longmapsto A^{\prime} \\
\operatorname{dit}\left(A^{\prime}\right)=\operatorname{dut}(A) & {\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & 1 & 1 \\
2 & 0 & 1
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
2 & 0 & 1
\end{array}\right]}
\end{array}
$$

2. Scaling a row

$$
\begin{aligned}
& R_{2}^{\prime} \leftarrow \alpha R_{2} \\
& \operatorname{dit}\left(A^{\prime}\right)=a \operatorname{dut}(A)
\end{aligned}
$$

3. Exchanging rows / columns

$$
\begin{aligned}
& R_{2}^{\prime} \leftarrow R_{1}, R_{1}^{\prime} \leftarrow R_{2} \\
& \operatorname{dul}\left(A^{\prime}\right)=-\operatorname{dul}(A)
\end{aligned}
$$

Computing the determinant

$$
\begin{gathered}
A \xrightarrow{\text { REF }} A^{\prime} \\
\operatorname{dur}\left(A^{\prime}\right)=\left\{_{1}^{1} \begin{array}{ll}
\text { a } A \text { is full rant } \\
0 & \text { duse }
\end{array}\right. \\
\underbrace{C_{1} c_{2}-c_{m}}(-1)^{\text {\#now sp }} \operatorname{drt}(A)=\operatorname{drt}\left(A^{\prime}\right)
\end{gathered}
$$

Scaling factors paryp-2 op

$$
\operatorname{aur}(A)=\frac{(-1)^{\# s u p}}{c_{1} c_{2} \ldots c_{m}}
$$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
2 & 2 & 1
\end{array}\right] \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 1 \\
0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{2}^{\prime}}=\xrightarrow{R_{2}-2 R_{1}}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -2 & -5 \\
0 & 0 & 1
\end{array}\right] \\
& \xrightarrow{R_{2}^{\prime}}=\frac{1}{-2} R_{2}\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 5 / 2 \\
0 & 0 & 1
\end{array}\right] \\
& \operatorname{det}(A)=2 \\
& d t=\frac{(-1)^{\prime}}{(-1 / 2)} \\
& =+2
\end{aligned}
$$

Gram-Schmidt orthogonalization

$$
\begin{aligned}
& \left\{\underline{v}_{1} \cdots \underline{u}_{m}\right\} \\
& \underline{u}_{1}=\underline{\underline{v_{1}}} \\
& u_{1} u \\
& \underline{u}_{2}^{\prime}=\underline{v}_{2}-\left\langle\underline{u}_{2}, \underline{u}_{1}\right\rangle \underline{u}_{1} \\
& \underline{u}_{2}=\frac{u_{2}^{\prime}}{1 u_{2}^{\prime \prime}} \\
& u_{3}^{\prime}=v_{3}=\left\langle v_{3}, u_{2}\right\rangle u_{2}-\left\langle v_{3}, u_{1}\right\rangle u_{1}
\end{aligned}
$$

Eigenvalues and eigenvectors

$$
A \in \mathbb{R}^{n \times n}
$$

λ is an eigenvalue of A N $A \underline{V}=\lambda \underline{V}$ for some $N \neq 0$ ligannedor

Spectrum: set of all eiganvalua of A
Characteristic equn:

$$
\operatorname{dut}(A-\lambda I)=0
$$

roots of $\operatorname{det}(A-\lambda I) \rightarrow$ eigenvalues

Computing eigenvalues and eigenvectors

$$
\begin{aligned}
& \text { Computing eigenvectors: } \lambda_{q} \\
& A \underline{v}=\lambda_{i} \underline{v} \\
& \left(A-\lambda_{i} I\right) \underline{v}=\underline{0}
\end{aligned}
$$

Does every $n x n$ matrix have n real eigenvalues?

Examples
(1) $\left[\begin{array}{ll}0 & \cdots \\ 0 & 0\end{array}\right]$
$\lambda_{i}=0, \quad i=1,2,-n$
Set of eigenvectors : $\mathbb{R}^{n} \backslash\{0\}$
(2) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
$\lambda_{1}=3, \quad \lambda_{2}=0, \quad \lambda_{3}=0$
$\underline{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \quad v_{-2}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right] \quad v_{2}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$

Diagonalizability
$A \in \mathbb{R}^{n \times n}$ is diagondijable \& $\exists P \in \mathbb{R}^{n \times n}$ invatisu $L D$

$$
\text { st } A=P^{-1} D P
$$ digonel

What can go whang?
() A may not have n red eigenvolues
(2) If A has n distindr eigenvalues, it is diggonalizoble
(3) If we can find n linerly indpeondenr eignuedors,

$$
\operatorname{dut}(A-\lambda I)
$$

Is every matrix diagonalizable?

Symmetric matrices and diagonalizability
A is symmetric if $A=A^{\top}$.
(1) All symmorace motricas ar digonalizable

Say $\lambda_{1} \neq \lambda_{2}$ are eignvalues of A
$\underline{v}_{1} \quad \underline{v}_{2}$

$$
\begin{aligned}
& \underline{v}_{1}^{\top} A v_{2}=\underline{v}_{1}^{\top}\left(\lambda_{2} \underline{v}_{2}\right)=\lambda_{2} v_{1}^{\top} v_{2} \\
& v_{2}^{\top} A^{\top} v_{1}=v_{2}^{\top} A v_{1}=\underline{v}_{2}\left(\lambda_{1} v_{1}\right)=\lambda_{1} v_{1}^{\top} v_{2}
\end{aligned}
$$

This can happen only if $\underline{N}_{1}^{\top} \underline{N}_{2}=0$
\Rightarrow Eigenvectoms corrusponding to distind eigenvolues am onthogonal
(2) Suppose λ is a rupected eiganvolue.

Anithmetic multiplicity $=2$
Can we choose $\left\{v_{1}, v_{2}\right\}$ orthagenal eigenvedbur?
$\left\{\underline{U}: A N_{-}=\lambda \underline{U}\right\} \rightarrow$ Set of all eiganvectors corvesp to λ
forms a vector space
(3) If A is onthogonally diagondigable, thin A is symmettric

$$
\begin{aligned}
A & =P D P^{-1} \\
A & =P D P^{\top} \\
A^{\top}=\left(P D P^{\top}\right)^{\top} & =P D^{\top} P^{\top} \\
& =P D P^{\top}
\end{aligned}
$$

Positive semidefinite and positive definite matrices A: Aymnactivic is soid to be positive semidfinite of all eignolucs of A an $\geqslant 0$

$$
\begin{aligned}
& \lambda_{\text {mox }}=\max _{V \neq 0} \frac{V^{\top} A v}{v^{\top} v} \rightarrow \text { lorges }_{\text {of } A} \rightarrow \\
& =\max _{v:\|N\|=1} V^{\top} A N
\end{aligned}
$$

Say, $\underline{v}_{n}, \underline{v}_{2}-v_{n}$ an onthonormal eiganvectors of A

$$
\begin{aligned}
& \underline{v}=\sum_{i=1}^{n} \alpha_{i} \underline{v}_{i} \\
&\|\underline{v}\|^{2}=\underline{v}^{\top} N=\left(\sum_{i=1}^{n} a_{i} v_{i}\right)^{\top}\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \\
&=\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} v_{i}^{\top} v_{j}=\sum_{i=1}^{n} \alpha_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\underline{v}^{\top} A \underline{v} & =\underline{v}^{\top}\left(A \sum_{i=1}^{n} \alpha_{i} v_{i}\right)=v^{\top}\left(\sum_{i=1}^{n} \alpha_{i} A v_{i}\right) \\
& =v^{\top}\left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i} v_{i}\right) \\
& =\left(\sum_{j=1}^{n} a_{j} v_{j}\right)^{\top}\left(\sum_{i=1}^{n} \alpha_{i} \lambda_{i} v_{i}\right) \\
& =\sum_{i=1}^{n} \alpha_{i}^{2} \lambda_{i} \quad \\
& =\sum_{i=1}^{n} \beta_{i} \lambda_{i} \quad \beta_{i} \geqslant 0 \forall_{i}
\end{aligned}
$$

Moximind when

$$
\beta_{1}=1
$$

For a P.SD matrin. $\underline{v}^{\top} A v \geqslant 0$
$\left(V^{\top} N\right) \lambda_{\text {mox }}$
A is positive definite if del eigenvalues ar >0

$$
\max _{A \text { is PSD }} \log d i t(I+A)
$$

- The sir of all $n \times n$ PSD matrices is denoted \mathbb{S}_{+}
- The set of al $n \times n P D$ metrics : \mathbb{S}_{++}

Claim: The st of all PSD matrices is closed

Square root of a positive semidefinite matrix

$$
\begin{aligned}
& A=P D P^{\top} \\
& D=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \lambda_{2} & 0 \\
0 & & \lambda_{n}
\end{array}\right] \\
& D^{1 / 2}=\left[\begin{array}{ccc}
\sqrt{\lambda_{1}} & \sqrt{\lambda_{2}} & 0 \\
0 & \sqrt{\lambda_{n}}
\end{array}\right] \\
& \left(P D^{1 / 2} P^{\top}\right)^{2}=P D^{1 / 2} P^{\top} P D^{1 / 2} P^{\top} \\
& =P D^{1 / 2} D^{1 / 2} P^{\top}=P D P^{\top}=A \\
& P D^{1 / 2} P^{\top}=A^{1 / 2}
\end{aligned}
$$

line

$$
\underline{u}, \underline{v} \in \mathbb{R}^{n}
$$

The straight fin passing through u \& v

$$
=\{\alpha \underline{u}+(1-\alpha) \vartheta
$$

$$
\begin{aligned}
\underline{x} & =\underline{u}+(1-\alpha)(\underline{v}-\underline{u}) \\
& =a \underline{u}+(1-\alpha) \underline{v}
\end{aligned}
$$

$\{\alpha \underline{u}+(1-\alpha) \underline{v}: \alpha \in[0,1]\} \rightarrow$ line segment joining $u \notin \underline{v}$

$$
\begin{aligned}
& \left(x_{1}, y\right) \quad\left(x_{2} y_{2}\right) \\
& \frac{\left(y-y_{2}\right)}{\left(x-x_{2}\right)}=\frac{\left(y_{1}-y_{2}\right)(1-\alpha)}{\left(x_{1}-x_{2}\right)(1-\alpha)} \\
& \left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \\
& \binom{x}{y}=\binom{x_{2}}{y_{2}}+(1-\alpha)\binom{x_{1}-x_{2}}{y_{1}-y_{2}} \\
& (1,2) \quad(2,3) \\
& \binom{x}{y}=\binom{1}{2}+(1-\alpha)\binom{2-1}{3-2} \\
& =\binom{1}{2}+(1-\alpha)\binom{1}{1} \\
& 2
\end{aligned}
$$

Convex Aet: of is convex il $u, v \in \mathcal{A}$

$$
\Rightarrow \quad \alpha \underline{u}+(1-\alpha) v \in A \quad \forall \alpha \in[0,1]
$$

