Some basics of topology and real analysis

Upper and lower bounds; sup and max; inf and min

* Similarly infimum is the guatest lower bound.

bound.

* If sups lies in S, we call it the maximum inf S E S, we call it the minimum.

* Il Sis not bounded from above, sup S = 00 below, inf S = -00

$\begin{array}{c} (\text{Onsiden} & \text{manimize} & n^2 \\ & \mathcal{N} \in (0, 1) \\ & & & \\ & &$

Countable and uncountable sets

A set S is countable if 7 a one-one map from S to N E_{2} , N, Z, $Q \equiv (Z, Z)$ Rk

22, 22+1

Eq: R, C, Co, iJ, etc.

Functions: domain, co-domain, range, image, inverse image

$$f: A \rightarrow B$$

$$domain$$

$$domain$$

$$(a) = \int f(a) : a \in A \\ y \rightarrow hange$$

$$for \quad S \leq A,$$

$$f(a) : a \in S \\ y \rightarrow hage$$

$$S = \int f(a) : a \in S \\ y \rightarrow hage$$

$$S = \int f(a) : a \in S \\ y \rightarrow hage$$

$$S = \int f(a) = \int f(a) = g \\ y \rightarrow hage$$

$$f(a) = \int f(a) = \int f(a) = g \\ hage$$

$$f(a) = \int f(a) = \int f(a) = g \\ hage$$

imay.

Metric A

F metric
$$d: A \times A \rightarrow R$$

(a) $d(n, y) \ge 0$ $\forall n, y \in A$
(b) $d(n, y) \ge 0$ if bondy if $n \ge y$
(c) $d(n, y) \ge d(y, n)$
(c) $d(n, z) \ge d(n, y) + d(y, z)$

Eg:

$$d(n, y) = \left(\sum_{i=1}^{n} (n_i - y_i)^2\right)^{1/2}$$
 is a metric
 $d^2(n, y) = \sum_{i=1}^{n} (n_i - y_i)^2$

$$(N_1 - N_3)^2 = 49$$

 $(N_1 - N_2)^2 = 36$
 $(N_2 - N_3)^2 = 1$

$$d_i(n, y) = \left(\sum_{i=1}^n [n; -y_i]^p\right)'^p \rightarrow L_p$$
 metric

Norm and inner product

V

Norm:
$$f: A \rightarrow R$$
 satisfying (A is a vector
 $O f(n) = 0$ if $x = 0$
 $O f(n) = 0$ if $x = 0$
 $O f(n) = 0$ if $x = 0$
 $O f(n) = 101 f(n)$ + $n \in A$
 $a \in R$
 $O f(n+y) = f(n) + f(y)$
 $T_{1} = f$ is a norm, then $d(n,y) = f(n-y)$

is a metric.

J

F vector space

$$f: f \times f \rightarrow \mathbb{R}$$
 is called on inner product if
 $O f(\mathcal{X}, \mathcal{Y}) = f(\mathcal{Y}, \mathcal{Y}) + \mathcal{Y}, \mathcal{Y} \in \mathcal{Y}$
 $O f(\mathcal{X}, \mathcal{Y}) = O + \mathcal{X}$
 $quality iff \mathcal{Y} = O$
 $O f(\mathcal{X}, \mathcal{Y}, +\beta\mathcal{X}_{2}, \mathcal{Y}) = \alpha f(\mathcal{X}, \mathcal{Y}) + \beta f(\mathcal{X}_{2}, \mathcal{Y})$

Eq:
$$f(\mathcal{X}, \mathcal{Y}) = \sum_{i=1}^{n} \mathcal{X}_i \mathcal{Y}_i$$

lonsidin F-R² \mathcal{D}

 $f(\underline{N},\underline{Y}) = 2\underline{N}_{1}\underline{Y}_{1} + 3\underline{N}_{2}\underline{Y}_{2}$ $z \left[2y, 3y_{2}\right] \left[n, \frac{1}{n_{2}}\right]$

This is an inner product (3) f(2,y) = 29,y - 39,yz Not an inner product

(3)
$$f(x,y) \ge x^T A y$$
 is an inner product if
A is symm. P.D.

Sequences and limits

A signed on R is
$$f! d!, 2, 2, - y \rightarrow R$$

Limit: A signeria on a metric span
$$(A, d)$$
 for $x_1, x_2 - y$
converges to a limit of if for every $\in >0$,
we can find N Ar
 $d(M_n, \chi) < \in +n > N$

Eq!
$$(0, 1)$$
 $N_n = V_{2^n} + n = 1, 2, --$

Closed sets. A set A is closed if every convergent signence of eliments from A, converges to some eliment in A

0 (0, 1)

(a) $A = d_{1,2,5,10}$ is closed $\chi_{n} = \int_{1}^{1} \frac{1}{2} \frac{1}{100} n$ $\chi_{n} = \int_{2}^{1} \frac{1}{2} \frac{1}{100} n$

O Every prinite subset of Rn w closed

Open neighborhood:

$$B(n, e) = \left(y \in A : d(n, y) < e \right)$$

Open neighborhood of nadius C around N

A net S is open if for every
$$r \in S$$
, $F \in S$
st $B(r \in S) \in S$

Eq (O (O, I) Exercy open neighbourhood is open B R is Open 1) The complement of a closed set is open. $[0,1] = (-\infty,0) \cup (1,\infty)$ 1,2,35 is open $z (-\infty, 1) \cup (1, 2) \cup (2, 3) \cup (3, \infty)$ Union & open jets is open B R is open & closed 6 @ Complement of an open set is closed (0,1) z $(-\infty,\overline{0})$ $v(1,\overline{0})$ $(0, \bar{\mu})$

- \times All then difinitions assume you have a find methic space -R is open & dosed: R, d = absolute volue of dH
 - C, d = 1 n-y1 If this is own methic space then R is closed but not open

A is bounded if
$$\exists \alpha \in \mathbb{R}$$
 at
 $d(n, y) \equiv \infty + n, y \in A$.
If $A \in \mathbb{R}^n$ is closed & bounded, we say that it is
Compact

N 6-S

Eg: Of: R-)R find = n² Man does not opist

$$\Im$$
 S $\stackrel{>}{=}$ (0,1) \rightarrow open
f(n) $\stackrel{>}{=}$ n² (sup 4 inf endst)
min 4 man do not onlor

(3)
$$f: [0, 1] \rightarrow \mathbb{R}$$
 not continuous.

$$f(n) = \int n^2 \qquad n \in (0, 1)$$

$$\int \frac{1}{2} \qquad n \in (0, 1)$$

$f: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is continuous if for every $\in >0$, $\exists \ \forall > 0$ at

 $d(n,y) < \sigma \Rightarrow d(f(n), f(y)) < \epsilon$

 $\chi_n \rightarrow \chi \rightarrow f(\chi_n) \rightarrow f(\chi)$

 $\left\{ 1 \right\}$

Derivative

 $f: R \rightarrow R$ $f'(R) = \lim_{E \rightarrow 0} f(R + E) - f(R)$ $E \rightarrow 0$ E

If The derivative ensists, then

Dy(a) is equal to the Jardsian

If all partial dissivatives are continuous, thun Dyny - Jacobian.

$$f(\alpha) = n n + 2 = 2 = n^{2}$$

$$D_{f(\alpha)} \in \mathbb{R}^{1 \times n^{1/2}}$$

$$\nabla f(\alpha) = \begin{cases} 2n \\ 2n \\ 2n \\ 1 \end{cases}$$

$$= 2n$$

(a)
$$f(n) = 5n$$

 $\nabla f(n) = 5$

$$3$$
 $f(n) = nAn$

 $\nabla f(\chi) = (A + A^T) \chi$

Ex: Prove this

1. Metric, norm and inner product

1. Limits of sequences

2. Open, closed, compact sets

3. Limits and continuity of functions

4. Derivative and gradient

Derivative: examples

 $f: \mathbb{R}^n \longrightarrow \mathbb{R}$

 $f(\chi) = \|\chi\|_2^2 = \chi \chi$

 $D_{f(N)} = \begin{bmatrix} 2f & 2f & -- & 2f \\ 0N, & 0N_2 & -- & 0X_n \end{bmatrix}$ z $\left[2n, 2n_{2}\right]$ - $-2n_{n}^{2}=2n^{2}$

Inner product for matrices

f(A,B) = Tn(ATB)Uaim & to an inner product

O Symmethic (2) Tn(ATA) > 0

 $a_1 a_2 - a_n \int \left[b_1 b_2 - b_n \right]$

 $Tn(A^{T}S) = \sum_{i=1}^{m} a_{i}^{\dagger}b_{i} = \sum_{i=1}^{m} \sum_{j=1}^{m} a_{ij}^{\dagger}b_{jj}$

Derivative $f: P. D_{n \times n}$ matrices $\rightarrow \mathbb{R}$ $f(A) = \log det(A)$ Z, X an PD $Z = X + \Delta X$ × 72720, 7X720 +4770 * All eigenvalues el X, Z ar malf + Ve-* Z^{V2}Z^{V2} = Z

 $(2^{1/2})^{-1} = 2^{-1/2}$

 $|f(z) - f(x) - \langle D, z - \chi \rangle|$ $\rightarrow 0$ 11 Z-XN $f(X) + \langle D, Z - X \rangle + o(\|Z - X\|)$ f(z) =

 $z f(X) + \langle D, \Delta X \rangle + o(\|\Delta X \|)^{asten}$

 $z \log dut (X + \Delta X)$ $z \log dut (X'' + \Delta X)$ $z \log dut (X'' + \Delta X)$ $z \log dut (X'' + \chi'' + \Delta X)$ $x \times \chi'' + \chi''' + \chi'' + \chi''$ $f(z) = f(X + \Delta X)$

= X^{1/2} X^{1/2} + X^{1/2} X^{-1/2} DX X^{1/2} X^{1/2} X+UX

 $Z = \chi''^{2} \left(\Sigma \chi''^{2} + \chi^{-1/2} \Delta \chi \chi^{-1/2} \chi''^{2} \right)$ $z \chi''^{\prime} \left(I + \chi^{-\prime} \sum \Delta \chi \chi^{-\prime} \right) \chi''^{\prime}$

 $\frac{\log\left((dut X''z) \times dut(I + X^{-r_2} \Delta X X^{-l_2}) \times dut(X''z)\right)}{dut(X''z)}$ $z \quad \log\left(dut(X) \times dut(I + X^{-r_2} \Delta X X^{-l_2})\right)$ f(Z) = $z f(X) + \log dut (I + X''^2 \Delta X X''^2)$

 $\lambda_1 \lambda_2 - \lambda_n$ and ligen values of $\chi^{-1/2} \Delta \chi \chi^{-1/2}$ Suppose

 $f(z) = f(\chi) + \log \prod_{i=1}^{n} (i + \lambda_i)$ $r f(x) + \sum_{in}^{n} log(1+\lambda_i)$

= $f(\chi) + \sum_{i=1}^{n} \left(\lambda_i + o(\lambda_i)\right)$ $= f(X) + \sum_{i=1}^{m} \lambda_i + o\left(\sum_{i=1}^{m} \lambda_i\right)$

 $= f(x) + Tn \left(X^{-1/2} \Delta X X^{-1/2} \right) + o \left(Tn \left(X^{-1/2} \Delta X X^{-1/2} \right) \right)$

 $= f(X) + Tn(X'''X''' \Delta X) + o(Tn(X''' \Delta X)) + o(Tn(X''' \Delta X'')) + o(Tn(X'' \Delta X'')) + o(Tn(X''' \Delta X'')) + o(Tn(X'' \Delta X'')) + o(Tn(X'' \Delta X'')) + o(Tn(X''' \Delta X'')) + o(Tn(X''' \Delta X'')) + o(Tn(X'' \Delta X'')) + o(Tn(X'' \Delta X'')) + o(Tn(X'' \Delta X'')) + o(Tn(X''' \Delta X'')) + o(Tn(X''' \Delta X'')) + o(Tn(X'' X''))) + o(Tn(X'' X'')) + o(Tn(X'' X'')) + o(Tn(X'' X'')) + o(Tn(X'' X''))) + o(Tn(X'' X'')) + o(Tn(X'' X'')) + o(Tn(X'' X'')) + o(Tn(X''))) + o(Tn(X'' X'')) + o(Tn(X'')) + o(Tn(X'' X'')) + o(Tn(X''))) + o(Tn(X''))) + o(Tn(X'')) + o(Tn(X''' X'')) + o(Tn(X'''))) + o(T$

 $\neg f(X) + Tn(X'\Delta X) = o(Tn(X'OX))$

 $= f(X) + \langle X^{-1}, \Delta X \rangle + o(Th(X^{-1}\Delta X))$ (t(z)

Df(x) = X~

Chain rule for gradients h(x) = g(f(x))Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ $D_{h(x)} = D_{g(f(x))} D_{f(x)}$ $D_h(\chi) \sim D_g(f(\chi)) D_f(\chi)$

$$f(x) = 11 A x + 5 N_2^2 = g(f(x))$$

 $g = 11 - 11^2, f = A x + 5.$

$$D_{f}(n) = D_{g}(f(n)) \times D_{f}(n)$$

$$= 2 \times (An(+b))^{T} A^{T}$$

$$-2(ANL+b)^T A^T$$

$$\nabla f(n) = 2A(An+6)$$

Second derivative and hessian

 $D_{f(\mathcal{X})}^{2} \sim D_{p(\mathcal{X})}$ $f: \mathbb{R}^{n} \to \mathbb{R}$ $D_{f(n)} \in \mathbb{R}^{1\times n}$ $D_{f} \in \mathbb{R}^{n} \to \mathbb{R}^{n}$ $D_f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$ $D_{f}(\mathcal{U}) = \begin{bmatrix} \underline{\partial} \mathbf{f} & \underline{\partial} \mathbf{f} \\ \underline{\partial} \mathbf{f} & \underline{\partial} \mathbf{f} \end{bmatrix} = \overline{94}$

 $D_f(\mathcal{X}) =$ 27 07 027 027 012 01201, On or, 054 02f 01, 91 n

Thanspose of this matrix is called the Hessian

 $f(n) \sim \chi^{T} A n + 5$ Eg:

Dy(N)~ (A+A+) N

 $D_{f}^{2}(\chi) \simeq A + A^{T}$

Review of Linear algebra

Vector space (V, +, ·) ONTA- ATN ANTEN 0 + (4 + 2) - (4 + 4) + 3FOEN ST OTHER HUEN. B For each M 7 (-N) At N+ (-N) 20 P a(pn) ~ (ap) n + a, ber l new Ó (6) $\alpha(\underline{V}+\underline{V})$ ~ $\alpha \underline{V}$ + $\alpha \underline{V}$ $(\alpha + \beta) \nu_1 = \alpha \nu_1 + \beta \nu_1$ (7) 1 - N - N

Rⁿ, R^k All vector spaces ES : Rnx K \mathbb{Q}^{k} Not a vector space over R sut of all nxn symmetric PSD motions St. A B PSD NTA 12,0 NT BN 7,0 AU $\chi^{r}(A+B)\eta > 0 + \eta$ Not a vedar spau Set of nxn symmetric motrices S