Convex Optimization Problems: Duality

Considur
Minimin $f_{0}(x)$
ST

$$
\begin{array}{lll}
f_{i}(\underline{x}) \leq 0, & 1 \varepsilon i \varepsilon m \\
h_{i}(\underline{x})=0, & 1 \leqslant i \leqslant k .
\end{array}
$$

Assumption: \exists at hall on fasibh point
Define the Lagrangian $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$

$$
L(\underline{x}, \underline{\lambda}, \underline{v})=f_{0}(\underline{x})+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{k} v_{i} g_{i}(x)
$$

ΔV ar called Lagrange mutiplicy

Lagrange dual function

Property $1, g(\geq, v)$ is concove

Property 2: Ld $p^{*}=\inf _{\text {si }} f_{0}(x)$

$$
\begin{array}{ll}
\text { si } & \left.\begin{array}{ll}
f_{i}(x)<0 & 1 \text { si } s m \\
a_{j}(x)=0 & 18 j a k
\end{array}\right\} c
\end{array} \begin{aligned}
& \text { constraint sot }
\end{aligned}
$$

Then, $g \geq, v) \leq p^{x} \quad \& \quad(\lambda, r)$ with $\lambda \geqslant 0$

$$
\begin{aligned}
& \text { If } x \in C \text {, then } f_{i}(x) \leq 0 \quad \forall i \\
& h_{i}\left(x_{n}=0 \quad H_{i}\right. \\
& \Rightarrow L(x, \lambda, v)<f_{0}(x) \text { for } \lambda \geqslant 0 \text {. } \\
& \Rightarrow \quad g(\lambda, v)=\inf _{\imath f_{\infty}} L(x, \lambda, v) \leqslant \inf _{x \in C} L(x, \lambda, v) \\
& \varepsilon \operatorname{ing}_{x_{0} b c} f_{0}(x)=p^{*}
\end{aligned}
$$

Eq

$$
g(v)=\inf _{x \in \infty} L(\underset{,}{x} v)=-\frac{1}{4} \underline{V}^{\top} A A^{\top} \underline{v}-\underline{V}^{\top} \underline{b}
$$

What is $\max _{V} g(r)$? Compar this with inf $f_{0}(M)$
Tare an na amp: $\quad A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1\end{array}\right] \quad b=\left[\begin{array}{l}2 \\ 2\end{array}\right]$

$$
\begin{aligned}
& f_{0}(x)=x^{\top} x \\
& \text { Si } A x=b \\
& L(x, v)=\underline{x}^{\top} x+V^{\top}(A x-b) \\
& \text { conrea } \\
& \frac{\partial L}{\partial x}=0 \Rightarrow 2 x+A^{\top} v=0 \\
& x=-A^{\top} V
\end{aligned}
$$

Problum. Minimin $x_{1}^{2}+x_{2}^{2}=f_{0}(x)$

$$
\begin{gathered}
\text { Ss } \begin{array}{c}
x_{1}+x_{2}=1 \\
x_{1}+x_{2}-1=0 \\
g(v)= \\
\inf _{x_{2}^{\prime} \in \mathbb{R}^{2}}\left[f_{0}(x)+v\left(x_{1}+x_{2}-1\right)\right] \\
=-\frac{N^{2}}{2}-N \\
\text { Y Minimin } \quad x_{1}^{2}+\left(1-x_{1}\right)^{2} \quad p^{*}=\frac{1}{2} \\
\\
\\
\text { Manimin }-\frac{N^{2}}{2}-v \quad d^{*}=\frac{1}{2}
\end{array}
\end{gathered}
$$

If: $\operatorname{Min} f(x)=x^{3}$

$$
\text { ST } x \geqslant 1 \quad \Rightarrow \quad-x+1 \leq 0
$$

$$
\begin{aligned}
L(x, \lambda) & =x^{3}+\lambda(-x+1) \\
g(\lambda) & =\operatorname{in}\left\{x^{3}+\lambda(-x+1)\right\} \\
& =-\infty
\end{aligned}
$$

Redefins

$$
\sup _{\lambda \geqslant 0} g(\lambda)=
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lll}
x^{3} & \text { fon } x \geqslant 0 \\
+\infty & \text { for } x<0
\end{array}\right. \\
& L(x, \lambda)=f(x)+\lambda(-x+1)=\left\{\begin{array}{l}
x^{3}+\lambda(-x+1 \\
y(x \geqslant 0 \\
\infty \quad \text { of } x<0
\end{array}\right. \\
& g(\lambda)=\inf _{x \in \mathbb{R}} L(x, \lambda) \\
& =\left(\lambda\left(1-\frac{2}{3} \sqrt{\frac{1}{3}}\right) \quad \lambda \geqslant 0\right.
\end{aligned}
$$

Oniginal problum (PMinal)

$$
\left.\begin{array}{rll}
\text { Minimiz } & f_{0}(x) & \\
\text { si } & f_{i}(x) \leq 0 & \mid \varepsilon i \leqslant m \\
h_{j}(x)=0 & 1 \leqslant j \varepsilon k
\end{array}\right\} \begin{aligned}
& \text { Optimum } \\
& \text { dave } \\
& p^{*}
\end{aligned}
$$

Dual prosilem

$$
\begin{aligned}
& \text { Moonimige } g(\lambda, v) \\
& \text { si } \lambda \geqslant 0
\end{aligned}
$$

Wede dual! $y: d x \leq p_{x}$

Wide duality:

$$
d^{x} \leq p^{x}
$$

Strong duality: $\quad d^{x}=p^{x}$

Supper arron duality hade.

$$
\begin{aligned}
f^{*}=d^{*} & =\sup ^{\lambda} \neq 0 \\
& g(\lambda, v) \\
& =\sup _{\substack{\lambda}} \quad \text { in } \\
v & \text { v }
\end{aligned}
$$

Even if snowy duality doses nat hold, can gt a laver bund.

$$
\begin{aligned}
& f(x)=x^{2} \quad \text { st } x \geqslant 1 \\
& L(x, \lambda)=x^{2}+\lambda(-x+1)
\end{aligned}
$$

If: $\quad(x, y)= \begin{cases}e^{-x} & \ln x \in R, y>0 \\ \infty & d x\end{cases}$

$$
\begin{aligned}
s i \quad \frac{x^{2}}{y} \leq 0 & \rho^{2}=1 \\
L(x, y, \lambda) & =f(x, y)+\lambda \frac{x^{2}}{y} \\
& = \begin{cases}e^{-x}+\lambda x^{2}(y \quad \psi x \in R, \infty \\
\infty & x y \leqslant 0\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& g(\lambda)=\inf _{x, y} L(x, y, \lambda) \\
& d^{x}=0
\end{aligned}
$$

$$
\begin{aligned}
& -\infty
\end{aligned}
$$

Weak duality holds strong dually dos nat held.

Streng dualty hodes of
f is unver

$$
\begin{array}{r}
\partial x \in \min r(d) \quad \otimes x \\
f_{i}(x)<0 \quad \forall i \\
h_{i}(x)=0 \quad \forall i \\
f_{i}(x) \leq 0 \quad \bar{f}(x)<0 \\
\\
\bar{h}(x)=0
\end{array}
$$

$$
\begin{aligned}
& g\left(\lambda_{1}, v\right)=\operatorname{in}_{x \in d}\left(f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)\right. \\
& \left.+\sum_{j} v_{i} h_{i}(x)\right) \\
& \text { Minimin } f_{0}(x) \\
& A \eta-b \nless 0 \\
& G-d=0 \\
& g(\partial, v)=\inf _{x \in A}\left(+f_{0}(x)+\sum^{\top}(A x-\underline{b})\right. \\
& +V^{\top}(C x-d)
\end{aligned}
$$

$$
\begin{aligned}
& -\underline{\lambda}^{\top} \underline{b}-\underline{N}^{\top} d+\operatorname{inp}\left(\begin{array}{l}
f_{0}(x) \\
+\lambda^{\top}(A x)
\end{array}\right. \\
& +N^{\Gamma}((x))
\end{aligned}
$$

$$
\begin{aligned}
& g(\lambda, N) \\
& =-\lambda^{\top} b-N^{\top} d=\operatorname{Aus}\left(\begin{array}{l}
-\lambda^{\top}\left(A^{\top} \lambda+c^{\top} N\right) \\
\left.-f_{0}(\underline{X})\right)
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
=-\lambda^{\top} b-N^{\top} d-\sup _{\lambda}\left(x^{\top}\left(-A^{\top} \lambda-c^{\top} v\right)\right. \\
\left.-f_{0}(x)\right) \\
g(\lambda, v)=-\lambda_{1}^{\top} b-N^{\top} d-f^{*}\left(-A^{\top} \lambda-c^{\top} N\right) \\
\downarrow \\
\text { conjugate }
\end{gathered}
$$

Oniginal prabblem (Primal)

$$
\left.\begin{array}{rll}
\text { Minimigu } & f_{0}(x) & \\
\text { si } \\
f_{i}(a) \leq 0 & \mid \varepsilon i \leqslant m \\
h_{j}(x)=0 & 1 \leqslant j \varepsilon k
\end{array}\right\} \begin{aligned}
& \text { Optimwm } \\
& \text { dave } \\
& p^{*}
\end{aligned}
$$

Dual probilum

$$
\begin{aligned}
& \text { Monlimige } \\
& \text { si } \\
& \lambda \geqslant 0
\end{aligned}
$$

Dptimum

Weak duality: $d^{*} \leq p^{*}$
Strang duality: $\quad d^{*}=p^{*}$

If $\sqrt{\operatorname{mon}} \mathrm{m}$ duality holds,

Considar a minimjation prablum

$$
\begin{aligned}
& \operatorname{Min}_{x \in K} \xrightarrow{f(x)} \text { lanven } \\
& \checkmark \text { lanvex } \\
& =\text { Minimix } f(x)+1_{x}(x) \\
& \mathbb{I}_{k}(x)= \begin{cases}0 & \text { if } x(-k) \\
\infty & d x\end{cases} \\
& x_{1} \mu_{2} \alpha \quad x_{1} \nLeftarrow k, x_{2} \notin k \\
& f\left(a x_{1}+(1-x) x_{2}\right) \leq \\
& \alpha f\left(x_{1}\right)+(1-x) f\left(x_{2}\right)
\end{aligned}
$$

$$
F\left(n_{-1}, n_{2}\right)=f\left(x_{1}\right)+1_{k}\left(x_{2}\right)
$$

Suppose

$$
F(\underline{x}) \quad=f_{1}(\underline{x})+f_{2}(A \underline{x}) \rightarrow \text { oniginal }
$$

wher $f_{1} \& f_{2}$ are convex fundion to mindin' x

$$
\begin{aligned}
& F\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right) \rightarrow \text { unstraind } \\
& \rightarrow \text { minimigation } \\
& \text { si } x_{2}=A x_{1} \quad
\end{aligned}
$$

$$
\begin{aligned}
L\left(x_{1}, x_{3}, \underline{v}\right) & =f_{1}\left(x_{2}\right)+f_{2}\left(x_{2}\right)+v^{\top}\left(x_{2}-A x_{1}\right) \\
g(v) & =\inf _{\underline{x}_{1}, x_{2}}\left(f\left(x_{1}\right)+f_{2}\left(x_{2}\right)+\underline{v}^{\top} x_{2}-N^{\top} A x_{1}\right) \\
& =\inf _{x_{2}}\left(f_{1}\left(x_{1}\right)=v^{\top} A x_{1}\right)+\operatorname{ing}_{x_{2}}\left(f_{2}\left(x_{2}\right)+v^{\top} x_{2}\right) \\
& =\sup _{x_{1}}\left(\left(A^{\top} v\right)^{\top} x_{1}-f_{1}\left(x_{1}\right)\right) \\
& -\sup \left(-N^{\top} x_{2}-f_{2}\left(x_{2}\right)\right) \\
& =f_{1}^{*}\left(A^{\top} v\right)-f_{2}^{x}(-v)
\end{aligned}
$$

Fenchel duality. When is

$$
\begin{aligned}
\inf _{q}\left(f_{1}(x)+\right. & \left.f_{2}(A x)\right)= \\
& \sup _{\underline{v}}\left(-f_{1}^{x}\left(A^{\top} v\right)-f_{2}^{x}(-N)\right)
\end{aligned}
$$

Canves ofirmigation praslem 7 bnvero

$$
\text { Minimip } f_{0}(M)
$$

$$
\begin{aligned}
\text { si } & f_{i}(M)<0 \\
& h_{i}(M)=0
\end{aligned}
$$

Problem Anadratio progamming with quadnatic comurraint
Minimize $x^{\top} A x+2 b^{\top} x$
So $\|x\|^{2} \leq 1$

$$
\begin{aligned}
L(x, \lambda) & =x^{\top} A x+2 b^{\top} x+\lambda\left(\|x\|^{2}-1\right) \\
& =x^{\top} A x+2 b^{\top} x+\underbrace{\lambda\left(x^{\top} x-1\right)}_{N(\lambda I) x} \\
& =x^{\top}(A+\lambda I) x+2 b^{\top} x-\lambda
\end{aligned}
$$

$$
\begin{aligned}
& g(\lambda)=\inf _{x}\left[x^{\top}(A+\lambda I) x+2 b^{\top} x-\lambda\right] \\
& =\left\{\begin{array}{cc}
-b^{\top}(A+\lambda)^{-1} b & A+\lambda I \geqslant 0 \\
-\infty & A+\lambda I \geqslant 0
\end{array}\right. \\
& \text { 1) } A+\lambda I \text { is not } P S D \text {, } \\
& \exists x_{0} \text { st } x_{0}^{\top}(\theta+\lambda I) x_{0}<0 \\
& \& 2 b^{\top} n_{0}<0 \\
& \text { Take } x=\alpha x_{0} \text { \& } \alpha \rightarrow \infty
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{\mathscr{L}} L(x, \lambda) & =\nabla_{x}\left(x^{\top}(A+\lambda I) x+2 b^{\top} x-\lambda\right) \\
& =2(A+\lambda I) x+2 b=0 \\
& \Rightarrow x_{c}=-(A+\lambda I)^{\dagger} b
\end{aligned}
$$

Dual aptimization pindlum
$\underset{\text { Si } \lambda \geqslant 0}{\operatorname{Manhinige}} g(\lambda)$

$$
\equiv \operatorname{mammin}_{\text {sT } \lambda \geqslant 0}-b^{T}(A+\lambda I)^{-1} b^{T}-\lambda
$$

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right] \quad b=\left[\begin{array}{c}
1 / 2 \\
1 / 3
\end{array}\right] \quad A_{7} \lambda I=\left[\begin{array}{cc}
2+\lambda & 0 \\
0 & \lambda-1
\end{array}\right] \\
& f(x)=2 x_{1}^{2}-x_{2}^{2}+x_{1}+\frac{2}{3} x_{2} \\
& S \pi \quad x_{1}^{2}+x_{2}^{2} \leq 1 \\
& g(\lambda)=-b^{T}(A+\lambda I)^{-1} \underline{b}-\lambda \text { ST } A+\lambda I \ngtr 0 \\
& =-b^{\top}\left[\begin{array}{cc}
\frac{1}{2+\lambda} & 0 \\
0 & \frac{1}{\lambda-1}
\end{array}\right] \underline{b}-\lambda \\
& =-\frac{1}{4} \frac{1}{2+\lambda}-\frac{1}{9} \frac{1}{\lambda-1}-\lambda \text { ST } \lambda \geqslant 1
\end{aligned}
$$

Standand farm LP
Minimige $c^{\top} x$
St $\quad A x=6$

$$
x \geqslant 0
$$

$$
\begin{aligned}
& L(x, \lambda, v)=C^{\top} x-\lambda^{\top}(x)+N^{\top}(A x-b) \\
& g(\lambda, v)=\inf \left[C^{\top} x-\lambda^{\top}(x)+N^{\top}(A x-b)\right] \\
&=\inf _{x}\left(x^{\top}\left(A^{\top} v-\lambda+C\right)-v^{\top} b\right] \\
&=\int_{-N^{\top} b} \text { ov } A^{\top} v-\lambda+C=0 \\
&-\infty \quad \text { duse }
\end{aligned}
$$

Dual progran: Marimize -VTb

$$
\begin{aligned}
& \text { ST } \lambda \geqslant 0 \\
& A^{\top} v-\lambda+c=0 \\
& \text { Monimig }-V^{+} b \\
& \text { si } \quad A^{\top} v+c \geqslant 0
\end{aligned}
$$

$$
\equiv \quad \text { Monimize }-V^{+} b
$$

Strang duality hads for all LPL.

Entropy Maximization
for any $p m \mid f$, over $\{1,2, \ldots n\}$

$$
H(p)=\sum_{i=1}^{n} p_{i} \log _{2} \frac{1}{p_{i}}
$$

Goals Minimize - H(f)
so $A_{f} \leqslant \underline{b}$
Moment conspaints

$$
\begin{gathered}
\text { Minimize }-1 H(p) \quad f_{2}\left[p_{1} p_{2} p_{3}\right] \\
\text { ST } \quad p_{1}+2 p_{2}+3 p_{3} \leq 1.5 \\
p_{1} \sigma p_{2}+p_{3}=1, p \geqslant 0
\end{gathered}
$$

$x \log n$ is conven \Rightarrow this is a conven gilimigation problem

$$
\begin{aligned}
L(f, \lambda, v)=\sum_{i=1}^{n} \rho_{i} \log p_{i} & +\lambda_{-1}^{T}(-p)+\lambda_{2}^{T}\left(A_{p}-\frac{-}{y}\right) \\
& +V\left(p_{1}+p_{2}+\rho_{3}-1\right)
\end{aligned}
$$

$$
\frac{\partial_{L}}{\partial_{i}}=
$$

Optrmalily conditions

$$
\begin{array}{ll}
\text { Minimigy } & f_{0}(m) \\
\text { si } & f_{i}(m) \leq 0 \\
& \quad i=1,2 \ldots m \\
& h_{j}(m)=0 \quad j=1, \ldots k
\end{array}
$$

Assumpi.on. problem is frasishe

$$
y^{\prime} x^{*} \text { for whin } f_{0}\left(x^{*}\right)=p^{*}
$$

$d^{k}=\operatorname{sug}_{\lambda, 0} g(\lambda, v)$ Assum $\lambda^{x} \& v^{x}$ achieve d^{x}.

$$
p^{*} \geqslant g(\lambda, N) \quad \text { for any pr } \quad \begin{aligned}
& \lambda \geqslant 0, N \in \mathbb{R}^{l}
\end{aligned}
$$

For any pr x satisfying constraint, (dud fables)

$$
f_{0}(x)-p^{x} \leq f_{0}(N)-g(\lambda, v)
$$

\Rightarrow I is an G-approximate solution

$$
G=\underbrace{f_{0}(x)-g(\lambda, v)}
$$

Duality gap

Suppose wi durien an iterative alpoition tract producas $x^{\downarrow(t)}, \lambda^{(t)} v^{(t)}$ nimal dual fonble
peonble if $f_{0}\left(q^{(t)}\right)-g\left(x^{(t)}, v^{(t)}\right) \leq E$ Hom $x^{(t)}$ is 6 -clax to the oplimum

$$
f_{0}(N)-p^{x} \leq G
$$

$$
\begin{aligned}
& f_{0}\left(x^{*}\right)=g\left(x^{*}, v^{k}\right) \\
& \text { (Strieng duduty) } \\
& =\inf _{x}\left\{f_{0}(x)+\sum_{i=1}^{n} \lambda_{i}^{x} f_{i}(x)+\sum_{j=1}^{1} v_{i}^{x} h_{i}(x)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 0 \varepsilon \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}\left(\nu^{\infty}\right)+\sum_{j=1}^{*} v_{i}^{x} h_{j}\left(x^{*}\right) \\
& \lambda^{*} y, 0, \quad v^{6} 6 R, \quad x^{k} \text { is phimal } \\
& \text { quasisu } \\
& \begin{array}{c}
\sum_{j=1}^{k} v_{i}^{x} h_{j}\left(x^{*}\right)=0 \quad \sin u h_{j}\left(x^{x}\right)=0 \\
y_{j}
\end{array} \\
& \Rightarrow \quad \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0 \quad \forall_{i} \\
& \Rightarrow \quad \lambda_{i}^{x}=0 \text { OR } f_{i}\left(\gamma^{x}\right)=0 \\
& \text { Complementany slacknens conditions }
\end{aligned}
$$

Suppose x^{*} nadve tre primol problum $t \lambda^{*}, v^{*}$ advees the dual problem
(and all f_{i}, n_{i} cirl dufpoindiabil)
$0 f_{1}\left(a^{k}\right) \leq 0 \quad \forall_{i} \quad K K T$ londitions
(2) $h_{j}\left(x^{6}\right)=0 \quad \forall j$
(Konush - Kuhn - Tucken)
(B) $\quad \lambda_{i}^{\lambda} \geqslant 0 \quad \forall_{i}$
(3) $\lambda_{i}^{*} f_{i}^{k}(a)=0 \quad \forall i$
(0) $\left.\nabla_{i} L\left(x^{x} \lambda^{*}, v^{*}\right)\right)=\nabla f_{0}\left(x^{k}\right)+\sum_{i} \lambda_{i}^{t} \nabla f_{i}\left(x^{*}\right)$ $+\sum_{j} v_{j}^{*} \nabla h_{j}\left(x^{*}\right)=0$

$$
L\left(v^{*}, \lambda^{*}, v^{*}\right)=f_{0}\left(x^{*}\right)
$$

for any flosses x,

$$
\begin{aligned}
& L\left(n, \lambda^{x}, v^{x}\right)=f_{0}(n)+\underbrace{\sum_{i=1}^{m} \lambda_{i}^{x} f_{i}(v)}_{\leq 0} \\
& f_{0}\left(x^{*}\right)=L\left(x^{x}, \lambda^{x}, v^{x}\right) \leq L\left(x, \lambda^{x}, \nu^{x}\right) \\
& g\left(\lambda^{n}, v^{b}\right)=\inf _{x} L\left(x, \lambda^{\infty}, v^{x}\right)
\end{aligned}
$$

If $f_{0}, f_{1}-f_{m}$ aive conrex \& $h_{1}-h_{2}$ are affin, then KKT conditions abl sufficient

If $x^{6}, \lambda^{x}, v^{6}$ aalisy kKr condatioms, Vun

$$
\begin{aligned}
& \nabla L\left(n_{1}^{t} \lambda^{b}, v^{b}\right)=0 \Rightarrow x^{b} \text { minimizss } \\
& L\left(x, \lambda^{b}, v^{b}\right) \\
& L\left(x^{6}, \lambda^{*}, v^{k}\right)\left.=g \lambda^{b}, v^{b}\right) \\
&=f_{0}\left(x^{x}\right)
\end{aligned}
$$

Zuo duality gop $\Rightarrow w^{*}$ us tor optimien

Power allocestion acrow channds

$$
\begin{aligned}
& R_{i}=\frac{1}{2} \log \left(1+\frac{P_{i}}{r_{i}^{2}}\right) \\
& R=\sum_{i z_{1}}^{m} R_{i} \\
& \text { Power corsthaint. } \\
& \sum_{i=}^{m} p_{i} \varepsilon p
\end{aligned}
$$

$$
\begin{aligned}
& f(\underline{p})=-\sum_{i=1}^{m} \log \left(\sigma_{i}^{2}+p_{i}\right) \quad \text { Minipritiliziz } \\
& p \geqslant 0 \quad \sum_{i=1}^{m} p_{1} \leq p \\
& L(\rho, \lambda)=-\sum_{i=1}^{m} \log \left(\sigma_{i}^{2}+\rho_{i}\right)+\lambda_{i}\left(\sum_{i=1}^{m} \rho_{i}-\rho\right) \\
& \text { - } \lambda_{2}^{\dagger} \underline{?} \\
& 0-\frac{1}{\sigma_{i}^{2}+p_{i}}+\lambda_{1}-\lambda_{2 i}=0 \\
& \Rightarrow \quad \lambda_{2 i}=\lambda_{1}-\frac{1}{\sigma_{i}^{2}+\rho_{i}}
\end{aligned}
$$

(2)

$$
\begin{aligned}
\lambda_{2} \geqslant 0 \Rightarrow \lambda_{2 i} & \geqslant 0 \quad \forall i \\
\lambda_{1}-\frac{1}{\sigma_{i}^{L}+p_{i}} & \geqslant 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } \lambda_{1} \geqslant 0 \\
& \text { (9) } \lambda_{1}\left(\sum_{i=1}^{n} p_{i}-p\right)=0 \\
& \lambda_{2}^{\top} p=0 \Rightarrow \lambda_{2 i} \rho_{i}=0 \\
& \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow P_{i}=0 \text { or } \lambda_{1}=\frac{1}{\sigma_{i}^{2}+\rho_{i}} \\
& P_{i}=\frac{1}{\lambda_{1}}-\sigma_{i}^{2} \\
& \rho_{i} \geqslant 0 \quad \Rightarrow \rho_{i}= \begin{cases}0 & a \left\lvert\, \frac{1}{\lambda_{1}}-\sigma_{i}^{2}<0\right. \\
\frac{1}{\lambda_{1}}-\sigma_{i}^{2} \quad \text { i } \frac{1}{\lambda_{1}}-\sigma_{i}^{2} \geqslant 0\end{cases} \\
& P_{i}=\operatorname{man}\left\{0, \frac{1}{\lambda_{1}}-\sigma_{i}^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\lambda_{1}}-\sigma_{i}^{2}>0 \quad \lambda_{2 i}=\lambda_{1}-\frac{1}{p_{i}+\sigma_{i}^{2}} \geqslant 0 \\
& \frac{1}{\lambda_{1}} \geqslant \sigma_{i}^{2} \\
& \frac{1}{\sigma_{1}^{2}} \geqslant \lambda_{1} \quad \lambda_{1}-\frac{1}{\sigma_{i}^{2}}<0
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i}=p \\
& \sum_{i=1}^{n} \bmod \left\{0, \frac{1}{\lambda_{1}}-\sigma_{i}^{2}\right\}=p
\end{aligned}
$$

Watomilling solution

ClASSification
Gmound troth: $S_{1} S_{2}$ dusjoint

$$
\begin{gathered}
S_{1}, S_{2} \in \mathbb{R}^{n} \\
\downarrow \\
\text { labd } 0 \\
\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right) \\
y_{i}=
\end{gathered} \begin{array}{lll}
0 & \text { if } & x_{i} \in S_{1} \\
1 & \text { if } & x_{i} \in S_{2}
\end{array}
$$

Goal: duign of that predocto if $x \in S_{1}$ or

$$
x \in S_{2}
$$

$$
f(x)=\left\{\begin{array}{lll}
0 & \text { if } & a^{\top} x \leq b \\
1 & \text { if } & a^{\top} x>b
\end{array}\right.
$$

limen dansifien

For y: $\quad S=B(0,1) \quad S_{2} \cdot B(2!, 1)$
 all ones vector

Assume that $\delta \& \&$ ane spanoble.

Minimize $\sum_{x_{i}^{(9)}: a_{a}\left(x_{i}^{(9)}>b\right.}+\sum_{x_{i}^{(9)}: a^{\top} x_{i}^{()^{(1)}} \leq s} 1$

Finding a classier is the lame on solving
Min I

$$
\underline{a}^{r} x_{i}^{(.)} \geqslant 6 \quad i=1,3-k_{2}
$$

This is a Masibility problem

$$
\begin{array}{ll}
\text { Min } & -t \\
\text { sT } & \underline{a}^{\top} n_{-i}^{(0)} \leqslant b<t \\
& \underline{a}^{\top} n_{i}^{(1)} \geqslant b+t \\
& \|a\|^{2} \leq 1
\end{array}
$$

Lagrangian:

$$
\begin{aligned}
& L\left(t, a, b, \underline{\lambda}_{1}, \underline{\lambda}_{2}, \lambda_{3}\right)=-t+\sum_{i=1}^{k_{1}} \lambda_{1 i}\left(\underline{a}^{\top} \underline{x}_{i}^{(0)}\right. \\
&-b+t) \\
&+\sum_{j=1}^{k_{2}} \lambda_{2 j}\left(b+t-\underline{a}^{\top} x_{j}^{(1)}\right) \\
&+\lambda_{3}\left(\|\underline{a}\|^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& =t\left[-1+\sum_{i=1}^{k_{1}} \lambda_{1 i}+\sum_{j=1}^{k_{2}} \lambda_{2 j}\right] \\
& +b\left[-\sum_{i=1}^{k_{1}} \lambda_{1 i}+\sum_{j=1}^{k_{2}} \lambda_{2 j}\right] \\
& +\sum_{i=1}^{k_{1}} \lambda_{1 i} a^{\top} x_{i}^{(0)}+\sum_{j=1}^{k_{2}}\left(-\lambda_{2 j}\right) a^{\top} x_{j}^{(1)} \\
& \quad+\lambda_{3}\left(\|a\|^{2}-1\right)
\end{aligned}
$$

$$
\begin{aligned}
& \inf _{t, 6} L()= \begin{cases}() & \sum_{1} \lambda_{1 i}=\sum_{j} \lambda_{2 j}=\frac{1}{2} \\
-\infty & d x\end{cases} \\
& i_{\underline{p}} \sum_{i=1}^{u_{1}} \lambda_{1 i} a^{\top} \underline{\underline{i}}_{i}^{(0)}+\sum_{i=1}^{n_{2}}\left(-\lambda_{2}\right) \underline{a}^{\top} x_{j}^{(\cdot)} \\
& +\lambda_{3}\left(\|a\|^{2}-1\right) \\
& g\left(\left.\lambda_{1} \lambda_{2}=\left\{\begin{array}{cc}
-\lambda_{3} & \text { A }
\end{array} \frac{\|}{\lambda_{2}}\right)=\lambda_{i n} x_{i}^{(0)}-\sum_{j} \lambda_{2 j} x_{i}^{(j)} \right\rvert\, \varepsilon \lambda_{3}\right.
\end{aligned}
$$

Dud optimizction problim
Manlimize
$-\lambda_{3} \rightarrow$ pt in the conver holl of
st
in convinule

$$
\begin{array}{r}
\frac{1}{2}\left\|\sum_{i=1}^{x_{i=1}} 2 \lambda_{1 i} x_{1}^{(0)}-\sum_{j} \lambda_{2 j} x_{j}^{(i)}\right\| \leq \lambda_{3} \\
\sum_{i=1}^{x_{1}} 2 \lambda_{1 i}=\sum_{j} 2 \lambda_{2 j}=\frac{1}{2} \times 2 \\
\lambda_{-1} \geqslant 0 \quad \lambda_{2} \geqslant 0 \quad \lambda_{3} \geqslant 0
\end{array}
$$

$$
\begin{array}{r}
\text { Minimize } \frac{\frac{1}{2}\left\|\sum_{i=1}^{x_{1}} 2 \lambda_{1 i} x_{i}^{(\cdot)}-\sum_{j \lambda_{2 j}} x_{j}^{(1)}\right\|}{\sum_{i=1}^{x_{1}} 2 \lambda_{1 i}=\sum_{j 2 \lambda_{2 j}}=\frac{1}{2} \times 2} \\
\lambda_{-1} \geqslant 0 \quad \lambda_{2} \geqslant 0 \quad \lambda_{3} \geqslant 0
\end{array}
$$

conves cambination

Mar mangin = Min dosi 6/w canves halls

What of point ans NOT linouly apanable?
$y_{i}=\left\{\begin{array}{c}-1 \\ 1\end{array} \rightarrow\right.$ New lester
for all point i,

$$
y_{i}\left(a^{\top} x_{i}-b\right) \geqslant 1-a_{i}
$$

Comisualuto t

$$
y_{i}\left(\frac{a^{\top} x_{i}}{\|a\|}-b\right) \geqslant\left(\frac{1}{\|a\|}\right)-\frac{a_{i}}{\left\|a^{\prime}\right\|}
$$

$a n<6 \Rightarrow-1$ $a x>b \Rightarrow+1$

Groal:
Minmix $\|a\|^{2}+\sum_{j=1}^{m} \alpha_{j}^{p}$
St

$$
y_{i}\left(\underline{a}^{\top} \underline{x}_{i}-6\right) \geqslant 1-\alpha_{i} \quad \forall i
$$

HW: Simalete thas!

Principal component Analysis

Given points sampan from a distribution $f x$, alary what directions in the "variation" In larges?

$$
\underbrace{X_{-1} X_{-12}, \ldots \underline{X}_{N}}_{\text {Zero mean }}
$$

Find unit norm of $\mathbb{E}\left(N^{\sigma} \underline{X}\right)^{2}$ is maximized V
$\operatorname{Manimize}_{\text {St }}^{\operatorname{MoU}} \mathbb{F}_{2}\left[\left(V^{\top} X\right)^{2}\right]$
Manlinizing v is called the friss prinigal camponery

$$
\begin{aligned}
\text { Mandinize } \mathbb{E}\left[\left(v^{\top} X\right)\left(X^{\top} V\right)\right] & =\mathbb{E}\left[V^{\top}\left(X X^{\top}\right) v\right] \\
& =V^{\top}\left(\mathbb{E} X X^{\top}\right) v \\
& =V^{\top} \sum_{Y} U \text { covarionu mal inin }
\end{aligned}
$$

$\operatorname{Monlimize~}^{\text {So }}\|N\|=1 \quad V^{\top} \sum V$ symmatic PSD
Langest eiganrolue of \sum
$v^{*} \rightarrow$ langas ligenvector.
k-paincipal comporenter
random refor \mathbb{R}^{n}
Manimiar $F_{2}\left\|V^{\top} \underline{X}\right\|$
$n \times k$ matrix with oltionormal
wob.

Monlimizing $v^{r} \sum_{v}$

$$
\begin{aligned}
& \equiv \text { Minimizing }\left\|N v^{r}-\sum\right\|_{F}^{2} \\
& \left\|W w^{\top}-\Sigma\right\|_{f}^{2}=\operatorname{tn}\left(\left(V v^{\top}-\Sigma\right)^{\top}\left(N v^{\top}-\Sigma\right)\right) \\
& =\operatorname{tn}\left[N u^{\top} v u^{\top}-2 N v^{\top} \Sigma\right. \\
& \left.+\Sigma^{i} \Sigma\right] \\
& =\operatorname{rn}\left[\left(V^{T} V\right)^{2}+\Sigma^{2}\right. \\
& \left.-2 v w^{+} \Sigma\right] \\
& =1+\operatorname{ta}\left(\Sigma^{2}\right)-2 v^{\top} \Sigma v
\end{aligned}
$$

$$
\begin{aligned}
& \text { Minimize } \| V N^{T}-\sum U_{f} \\
& \text { Sr }(N \|=1 \\
& V=V U^{T} \quad \begin{array}{l}
\text { rante }=1 \\
P S D \\
V^{2}=V \text { eprogedion }
\end{array}
\end{aligned}
$$

Axsune $\operatorname{variancic}(\underline{x})=1$ matrin)

$$
\begin{aligned}
& \left.\lambda_{\max }(\Sigma)=1 \quad \text { (Prove this }\right) \\
& I=\Sigma \geqslant 0
\end{aligned}
$$

Minimize $\left\|V-\sum\right\|_{f} \rightarrow \operatorname{ta}\left(\sum \sum V\right)$ Si $\operatorname{nank}(V)=1 \rightarrow+\tan (1)=1$
$V^{2}-V=0 \rightarrow$ yulor then
$V \geqslant 0$
$1-v \geqslant 0$

If Y is a projedion molvion, then eigruvalues ake

