Convex Sets

Reference: Chapter 2, Boyd \& Vandenberghe

Why convex?

$$
x_{-x}^{x}=\underset{g(x) \leq 0}{\arg \min f(x)}
$$

- Lincan programming. itg anc both linech
- Quadratic programming
- Semidufinite programanng
- Conver opilmization δ is conrex
conotrainta form a corved str

Lines, and line segments

$$
\begin{aligned}
& N_{1}, x_{2} \in \mathbb{R}^{n} \\
& \left\{a x_{1}+(1-\alpha) x_{2}: a \in R\right\} \text { is the line } \\
& \text { packing group } \\
& x_{1}, x_{2} \\
& x_{1}+(1-\alpha)\left(x_{2}-x_{1}\right) \\
& \downarrow \text { friction } \\
& x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{y-y_{1}}{1-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left[\begin{array}{l}
x-x_{1} \\
y-y_{1}
\end{array}\right]=\left[\begin{array}{l}
\alpha\left(x_{2}-x_{1}\right) \\
y\left(y_{2}-y_{1}\right)
\end{array}\right] \\
&=\left[\begin{array}{l}
x_{1} \\
y
\end{array}\right]+\alpha\left[\begin{array}{l}
x_{2}-x_{1} \\
y_{1}-y_{2}
\end{array}\right] \\
&=\left[\begin{array}{l}
x_{1} \\
y
\end{array}\right]+\alpha\left[\begin{array}{l}
x_{2} \\
y_{v}
\end{array}\right]-\alpha\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
&=\alpha\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]+(1-\alpha)\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \\
&=\alpha x_{1}+(1-\alpha) x_{2}
\end{aligned}
$$

$$
\left.q \underline{x}=\alpha x_{1}+(1-\alpha) x_{2}: \quad 0 \varepsilon \alpha \leq 1\right\}
$$

is the line segment joining $x_{1} \& x_{2}$

Affine sets

$$
\begin{aligned}
& \text { A wa } S \text { is affine in } \\
& x_{1}, x_{2} \in S \text {, then } \alpha x_{1}+(1-\alpha) x_{2} \in \mathbb{S} \\
& \forall \alpha \in \mathbb{R} .
\end{aligned}
$$

Considall R^{2}

- Any suraigor line is affine
- $\alpha x y$ is appoint
$-R^{2}$
$-A x=\underline{b}$
x_{1}, x_{2} ane dolution of $A \underline{x}=\delta$

$$
\begin{aligned}
A\left(a x_{1}+(1-\alpha) x_{2}\right) & =\alpha A x_{y}+(1-\alpha) A x_{2} \\
& =a b_{c}+(1-\alpha) \underline{b} \\
& =b
\end{aligned}
$$

Aftine combination of $x_{1}, x_{2}-x_{2}$

$$
\begin{array}{r}
a_{1} x_{2}+a_{2} x_{2}+\cdots+a_{k} x_{k} \\
\sum_{i=1}^{k} a_{i}=1
\end{array}
$$

Every affine set is a shift of a vector subspace
Consider S affine $c \in S$
Claim: $S-\underline{c}=\{\underline{x}-\underline{c}: x \in \mathbb{S}\}$ is a vector subspace

$$
\begin{aligned}
\alpha\left(x_{1}-c\right)+\beta\left(x_{2}-c\right) & =\alpha x_{1}+\beta x_{2}-(\alpha+\beta) c \\
& =\underbrace{\alpha x_{1}+\beta x_{2}+(1-\alpha-\beta) c}_{\text {Affine cars of } x_{2}, x_{2}, c \& \text { enc }}-c
\end{aligned} \text { Dimension of affine space } \quad \begin{aligned}
& \text { in }
\end{aligned}
$$

$$
\operatorname{dim}(S)=\operatorname{dim}(S-c)
$$

b rector sou dimension

Every affine set is the solution space of a system of linear equations
Every affine ait can be warden as

$$
\begin{aligned}
S= & V+b \\
& \downarrow=A x=0\} \\
S & \{\underline{x}+\underline{b}: A x=0 \\
S & \{y: A(y-b)=0\} \\
= & \{y: A y=A b\}
\end{aligned}
$$

Affine hull, examples
foiven a ut $C \subseteq \mathbb{R}^{n}$, the affint hull

$$
\left.\operatorname{aff}(c)=h x=\sum_{i=1}^{n} a_{i} x_{-i}: \begin{array}{l}
x_{1} \cdots x_{k} \in \mathbb{R}^{n} \\
\sum_{i=1}^{n} \alpha_{i}=1
\end{array}\right\}
$$

\rightarrow Smallens affini Mr that cantains C

No

PI axgmin $f(x) \quad$ PI argmin $f(x)$

$$
C=\left\{\begin{array}{lll}
a_{1}<x_{1} & c b_{1} \\
a_{2}<x_{2} & <b_{2}
\end{array}\right\} \quad \operatorname{int}(c)=\left\{\begin{array}{l}
a_{1}<x_{1}<b_{1} \\
a_{2}<x_{2}<b_{2}
\end{array}\right\}
$$

Relative interior and boundary of a set

$$
\begin{aligned}
& \operatorname{Raint}(c)=\left\{\underline{x}: B_{n}(x, \varepsilon) \cap \operatorname{aff}(c) \subseteq C\right. \\
& \text { for pome } \varepsilon>0\}
\end{aligned}
$$

Convex combinations, convex sets and convex hulls

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+\alpha_{k} x_{\underline{k}}: \sum_{i=1}^{k} \alpha_{i}=1
$$

Convex combination of

$$
\alpha_{i} \geqslant 0 \quad \forall_{i}
$$

$$
x_{1} \ldots x_{k}
$$

$$
\begin{array}{r}
C \text { is convex if } x_{1}, x_{2} \in C \Rightarrow \alpha_{1} x_{1}+(1-\alpha) x_{1} \in C \\
\\
\forall \alpha \in[0,1]
\end{array}
$$

conses hull $\operatorname{con}(C)=$ sur of all convex camb. of pts in C

A, B

$$
\begin{aligned}
& \operatorname{An} B=\varnothing \\
& \operatorname{van}(A) \cup \operatorname{conv}(B) \\
& \operatorname{canv}(A \cup B)
\end{aligned}
$$

Infinite convex combinations

$$
\begin{aligned}
& C \quad x_{1} x_{2}-x_{n} \ldots \\
& \sum^{\infty} a_{i} x_{i} \\
& \alpha_{i} \geqslant 0 \quad \forall i \\
& \text { ais } \\
& \sum^{\infty} \alpha_{i} \quad i 1 \\
& \text { M mists } \\
& \begin{aligned}
C \rightarrow p d y \text { on } C & \int f(x) d x=1 \\
& \int_{x \in C} x f(x) d x
\end{aligned}
\end{aligned}
$$

Cones and conic combinations
C is a corn of $x \in C$, ven

$$
\begin{aligned}
& \alpha x \in c \quad \forall a \geqslant 0 \\
& \{ \\
& \{(x,|x|): x \in \mathbb{R} \\
& \{(x, y): y \geqslant|x|\}
\end{aligned}
$$

Conic hull
boric combination:

$$
\begin{aligned}
& x_{1} x_{2}-x_{k} \\
& a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}: a_{i} \geqslant 0 \\
& \forall i
\end{aligned}
$$

$$
\begin{gathered}
a_{1} v_{1}+\alpha_{2} v_{2} \\
=a_{3} v_{1}-\alpha_{4} v_{2} \\
\left(a_{1}-a_{3}\right) v_{1}+\left(a_{2}-\alpha_{6} v .\right.
\end{gathered}
$$

Examples
conver appine
cone
(1) \varnothing
(2) subspan of \mathbb{R}^{n}
(C) Lin mgment
(9)

$$
\begin{aligned}
& \left.\alpha \eta_{0}+a\left(v-x_{0}\right) ; a \geqslant 0\right\} \text { No ponerd } \\
& x_{=0}, v \in \mathbb{R}^{n} \\
& \text { Yes oy } \\
& \text { Yu of } \%=0 \\
& n_{0}=N .
\end{aligned}
$$

Hyperplanes and halfspaces

$$
\begin{array}{ll}
H=\{x: & a^{+} x=b \\
& \left.\underline{a} \in \mathbb{R}^{n} \forall o\right\} b \in \mathbb{R}
\end{array}
$$

Affine or of dim $n-1$

$$
\left.\left.\begin{array}{ll}
\{x: & a^{\top} x \geqslant b \\
\{x: & a^{\top} x
\end{array}\right\} b\right\} \text { Haplspare }
$$

$$
a_{1}^{\top} x_{2} \quad c_{2} b_{1}
$$

$a_{2}^{\top} x \leqslant b_{2}$
$a_{i} \in \mathbb{R}^{n}$
$b_{i} \cdot \mathbb{R}$

Polyindron/polytiope: Inturaction of halfspaces

Linar program

$$
\begin{array}{lll}
f(x)=\underline{a}^{\top} x \\
\text { st } & a_{1}^{\top} x<b_{1} & \underline{c}_{1}^{\top} x=d_{1} \\
& a_{2}^{\top} x \leq b_{2} & \underline{c}_{2}^{\top} x=d_{2}
\end{array}
$$

Man flow problem

Variably, flows along each edge
(ii): $x_{i j}$ (\# of packets sent from

$$
x-n \times n \text { matrix }
$$

$$
\text { ito } j \text { per sec) }
$$

Capacities: For each pair of vertices i j

$$
\begin{aligned}
c_{i j} & \geqslant 0
\end{aligned} \begin{gathered}
c_{i j}
\end{gathered}=c_{j i}
$$

Objective
$f(\underline{x})=$ Total how laving sown/ toted flow

$$
f(x)=\sum_{j=1}^{n-1} x_{0 j}=\sum_{j=0}^{n-L} x_{j, n-1}
$$

Constraints:
(1) Capacity contraint: $x_{j}+x_{i j} \leq c_{i j}$
(2) $x_{j j} \geqslant 0 \quad \forall i, j$
(3) $f_{i}, \quad \sum_{j=0}^{n-1} x_{j i}-\sum_{j=0}^{n-1} x_{i j}=0$
$1 \varepsilon_{j} \leqslant n-2$
$j p_{i}$
(4) $\quad \sum_{j=1}^{n_{1}} x_{j 0}=0$

$$
\sum_{j=0}^{n-2} x_{n-1, j}=0
$$

Varioble: $\quad X: n \times n$ notrix
Objective: $\max _{\operatorname{ar}}\{\operatorname{sum}(x[0,:])\}$
Consthaints: $x \geqslant 0$ (dementwisc) totd inflow

$$
C=\left[\begin{array}{llll}
0 & 2 & 1 & 0 \\
2 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

$$
X^{*}=\left[\begin{array}{cccc}
0 & 1.34 & 0.658 & 0 \\
0 & 0 & 0.5 & 1 \\
0 & 0.16 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$f(x y)=x^{2}+y^{2}, \quad$ Minimize

$$
\begin{aligned}
& -1 \varepsilon x \leqslant 1 \\
& -1 \varepsilon y \leqslant 1
\end{aligned}
$$

Two different ways of looking at a closed convex set
$C=n /$ Is a halfspar that contains C\} ~

Hayspar alsuniption of a closed convex set
$C=\operatorname{conv}\left(C^{\prime}\right) \rightarrow$ corves hull discouption

Polytope

conver hull of finitly many pls

Two different ways of looking at a polytope

Maximum weight matching on a complete bipartite graph

$1-1$
$2-2$
$3-1$

$$
1-1
$$

$2-7$
$3-2$
n students
n adiusos

Problem
$W: n \times n$
$W_{i j}$ is the score given by I dour j

$$
\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right]
$$

Variably, $\frac{x: n \times n}{x_{1 j}(-10,1]}$, yulan the to $x_{i j} \in[0,1]$
Constraints

Objective, $\max _{x} \sum_{i, j} w_{i j} M_{i j}$

Doubly stochastic matrices and the Birkhoff polytope

$$
\begin{aligned}
& x \text { is a doubly stocrapitic matrix if: } \\
& x_{i j} \in(0,1)^{2} \quad \sum_{i} \eta_{i j}=1 \quad \forall j
\end{aligned}
$$

If $x_{i j} \in\{0,1\}$ in addition, x is a promutation motirix

* Any canver combination of permutation matrics is docbly stochastuo
* Birkhoff-ron Neumann theorem: Birkhofl poly tope $=\operatorname{conv}($ pirm. matrico $)$

Norm balls and ellipsoids

$$
\begin{aligned}
& B_{n}\left(x_{c}, n\right)=\left\{\underline{x} \in \mathbb{R}^{n}:\left\|x-x_{c}\right\| \leq n\right\} \\
& x_{1}, x_{2} \in B_{n}\left(x_{c}, n\right) \\
& \left\|a_{1}+(1-\alpha) x_{2}-x_{c}\right\| \\
& =\left\|\alpha\left(x_{1}-x_{c}\right)+(1-\alpha)\left(x_{2}-x_{c}\right)\right\| \\
& \leqslant\left\|\alpha\left(x_{c}-x_{c}\right)\right\|+\left\|(1-\alpha)\left(x_{2}-x_{c}\right)\right\| \\
& \left.=a \| x_{1}-x_{c}\right)\|+(-\alpha)\| x_{2}-x_{c} \| \\
& \leq \alpha n+(1-\alpha) n=n
\end{aligned}
$$

fallipsoid.

$$
\begin{aligned}
& \left\{\underline{x}: \mid A\left(x-x_{c}\right) \| \leqslant x\right\} \\
& \left\{\underline{x}:\left(x-x_{c}\right)^{\top}\left(A^{\top} A\right)\left(x-x_{c}\right) \leqslant 1\right\} \\
& \left\{\underline{x}:\left(x-x_{c}\right)^{\top} P\left(x-x_{c}\right) \leqslant 1\right\}
\end{aligned}
$$

symandro postive dufinite

$$
x^{T}\left(A^{\top} A\right) x=\|A x\|^{2}
$$

Norm cones and the positive semidefinite cone
$\underset{\text { Nom }}{\text { com }}:\left\{(x, t): \underset{t \geq 0}{x \in \mathbb{R}^{n}},\|x\|_{2}=t\right\}$

$$
E^{C} e^{C}
$$

$$
\begin{aligned}
& \alpha_{1}\left[\begin{array}{c}
x_{1} \\
t_{1}
\end{array}\right]+\alpha_{2}\left[\begin{array}{l}
x_{2} \\
t_{2}
\end{array}\right] \quad \alpha_{1}, \alpha \\
& {\left[\begin{array}{l}
\alpha_{1} x_{1}+\alpha_{2} x_{2} \\
\alpha_{1} t_{1}+\alpha_{2}
\end{array}\right]} \\
& \Rightarrow \alpha_{1}\left[\frac{x_{1}}{t_{1}}\right]+\alpha_{2}\left[\begin{array}{c}
x_{2} \\
t_{2}
\end{array}\right] \in C
\end{aligned}
$$

$$
a_{1}, a_{2} \geqslant 0
$$

$$
=\alpha_{1}\left\|\underline{x}_{1} \mid+\alpha_{2}\right\| \underline{x}_{2} \|
$$

$$
\varepsilon \quad \alpha_{1} t_{1}+\alpha_{2} t_{2}
$$

$$
\begin{aligned}
S^{n} & =\left\{A \in \mathbb{R}^{n \times n}: A^{\top}=A\right\} \\
\operatorname{dim}\left(S^{n}\right) & =n(n+1) / 2 \\
S_{+}^{n} & =\left\{A \in S^{n}, A \text { is } P S D\right\} \\
& \text { Convex? } \\
& A_{1}, A_{2} \quad P S D \\
&
\end{aligned}
$$

S_{t}^{n} is a convex cone

Transformations of Convex Sets

1. Intersection of convex sets
$A_{1} A_{2}$ ane convex
$A_{1} \cap A_{2}$ is also convex

$$
\begin{aligned}
& x_{1}, x_{2} \in A_{1} \cap A_{2} \quad y_{2}=\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2} \\
& x_{1}, x_{2} \in A_{1} \Rightarrow y \in A_{1} \\
& x_{1}, x_{2} \in A_{2} \Rightarrow y \in A_{2}
\end{aligned}
$$

Consider a family of sets $A_{t}: t \in R$

$$
\begin{aligned}
& x_{1}, x_{2} \in A_{t} \quad \forall t \\
& y \in A_{t} \Rightarrow y \in \cap_{t} A_{t}
\end{aligned}
$$

Evample

$$
\text { ample : } \left.\begin{array}{r}
\mid x \in \mathbb{R}^{n} \text { st } \quad \left\lvert\, \begin{array}{c}
\sum_{k=1}^{n} x_{k} \cos (k t)
\end{array} \leq 1\right. \\
\forall-\frac{\pi}{3} \leq t \leq \frac{\pi}{3}
\end{array}\right\}
$$

$$
\begin{aligned}
A_{t}=\mid x \in R^{n}: & \underbrace{\left|\sum_{k=1}^{n} n_{k} \cos k t\right|} \leqslant 1 \\
& <\underline{x}, \cos k t>\leqslant 1 \\
& <\underline{x}, \cos k t\rangle \geqslant-1
\end{aligned}
$$

$$
\begin{aligned}
& A=\cap A_{t} \\
& t \in\left[-\pi_{3}, N_{3}\right] \\
& A_{t}=\left\{x: \quad \sum_{k=1}^{n} x_{k} e^{k t} \leq 1\right\} \\
& A_{t}=\left\{\left(x_{1}, x_{2}\right), \begin{array}{l}
x_{1} \cos t+x_{2} \cos 2 t \leqslant 1 \\
x_{1} \cos t+x_{2} \cos 2 t \geqslant-1
\end{array}\right\} \\
& x_{1}<\frac{1-x_{2} \cos 2 t}{\cos t} \\
& x_{1} \geqslant \frac{-1-x_{2} \cos (2 t)}{\cos t}
\end{aligned}
$$

2. Minkowski sum of convex sets
A_{1}, A_{2} convex

$$
\begin{aligned}
& A_{1}+A_{2}=\left\{\underline{x}_{1}+\underline{x}_{2}: \underline{x}_{1} \in A_{1}, x_{2} \in A_{2}\right\} \\
& \underline{x}_{1}, x_{2} \in A_{1}+A_{2} \\
& x_{11}+x_{2} \quad x_{n}+x_{n} \\
& \hat{x}_{x_{1}}+(1-\alpha) x_{2} A_{1} A_{A_{2}} \alpha_{x_{11}}+\left(\alpha x_{22}+(1-\alpha) x_{2}+(1-\alpha) x_{22}\right. \\
& \in A_{1}+A_{2}
\end{aligned}
$$

3. Cartesian product of convex sets

$$
\begin{aligned}
& A_{1} A_{2} \text { ar convex } \\
& A_{1} \in \mathbb{R}^{n} \quad A_{2} \in \mathbb{R}^{m} \\
& A_{1} \times A_{2}=\left\{(x, y): \geq \in A_{1} y \in A_{2}\right\} \quad \leqslant \mathbb{R}^{n+m}
\end{aligned}
$$

4. Affine transform of a convex set

If a is convex then $\left(\right.$ for $A \in R^{m \times n}, b\left(\mathbb{R}^{m}\right)$
$A^{\prime}=A A+\underline{b}=\{A x+\underline{b}: x \in A\}$ is convex

Proper core A cone $\mathbb{1}$ is proper of
(1) It is closed
(0) It is convex
(3) It is solid: has a nonempty interior
(6) It is pointed: $\underline{x} \in \mathcal{K}, \underline{x} \mathcal{O} \Rightarrow-\underline{x} \notin K$.

- Con that is not closed $d\left(x_{1}, x_{2}\right)$:

$$
\begin{aligned}
& x_{1}>0 \\
& x_{2}>0 \\
& \text { or } \left.x_{1}=x_{2}=0\right\} \\
& \quad\left(x_{1}, a x_{1}\right)
\end{aligned}
$$

Com not solid:

$$
\begin{aligned}
\text { May in } R^{2} & - \text { Not solid } \\
& =\text { convex } \\
& =\text { closed } \\
& =\text { pointed. }
\end{aligned}
$$

- Cone -not pointed: O line passing through origin:
- Not solid
- Convex
- closed
- Nor pointed
(2) \mathbb{R}^{2} : Solid
convex
closed not pointed

Example: (1) $\left\{x: x_{i} \geqslant 0 \quad-V i\right\} \rightarrow$
(2) The si of all PSD matrices $\leqslant S^{n}$
in If A is PSD thun αA is PSD for $\alpha \geqslant 0$
(ii) If $A_{1}, A_{2} \in S_{+}^{n}$ the $\alpha A_{1}+(1-\alpha) A_{2}$ is $P S D$

$$
\begin{aligned}
& x^{\top}\left(\alpha A_{1}+(1-\alpha) A_{2}\right) x \quad \text { for any } x \in \mathbb{R}^{n} \\
& =\alpha \underline{x}^{\top} A_{1} x+(1-\alpha) x^{\top} A_{2} x \\
& \geqslant 0 \quad \text { Hent convex }
\end{aligned}
$$

(iii) $A \in \mathbb{S}_{+}^{n} \quad A \neq \underline{O} \quad-A$ is not $P S D$ -

$$
-A \varnothing S_{+}^{n}
$$

(iv) $I_{n} \mathbb{R}^{n}$

$$
\begin{aligned}
B_{n}(n)=\left\{x \in \mathbb{R}^{n}: \quad\right. & \left.\|x\|_{2}^{2} \leq n^{2}\right\} \\
& \sum_{i=1}^{n} x_{i}^{\prime \prime}
\end{aligned}
$$

For \mathbb{S}^{n}, (or even $\mathbb{R}^{n \times n}$), we we the Frobenius norm

$$
\|A\|=\sqrt{\sum_{i j j} a_{i j}^{2}}
$$

Consider $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{12} & a_{22}\end{array}\right] \quad\|A\|^{2}=a_{11}^{2}+a_{22}^{2}+2 a_{12}^{2}$ 3 fo variables

$$
\left[\begin{array}{l}
a_{11} \\
a_{22} \\
a_{22}
\end{array}\right]
$$

Maim: $\operatorname{int}\left(S_{t}^{n}\right)=S_{t+}^{n}$
If $A \in S_{++}^{n}$ the \exists a ball of Madura ε around A

III
Fix any $A \in \$_{++}^{n} \quad \exists \varepsilon>0$

$$
A \in S_{++}^{n}
$$

st $A+A^{\prime}: A^{\prime} \in \mathbb{S}^{n} \quad A^{\prime} \in \mathbb{S}^{n}$
\hat{S}_{++}^{n} as long as $\left\|A^{\prime}\right\|<\varepsilon$

$$
\begin{aligned}
& \lambda_{\min }(A) \leqslant \lambda_{\min }\left(A+A^{\prime}\right) \leqslant \lambda_{\text {max }}\left(A+A^{\prime}\right) \leqslant \lambda_{\text {max }}(A)+\lambda_{\text {max }}\left(A^{\prime}\right) \\
& \left.+\lambda_{\min }\right)
\end{aligned}
$$

As long as $\lambda_{\min }\left(A^{\prime}\right)>-\lambda_{\min }(A)$

$$
\lambda_{\min }\left(A+A^{\prime}\right)>0 \Rightarrow A+A^{\prime} \quad N P D \text {. }
$$

Gieneralized Enequalities Given any proper cane K.

$$
\underline{x} \leqslant x y \text { \| } \quad y-x \in k
$$

O K the nennegative otheat $\left(\right.$ in $\left.\mathbb{R}^{\prime \prime}\right)$

$$
\begin{aligned}
& K=\left\{x \in \mathbb{R}^{n}:\right.\left.x_{i} \geqslant 0 \forall i\right\} \\
& \underline{k} \leqslant_{x} y \Rightarrow y-x \in K \\
& \Rightarrow y_{i}-x_{i} \geqslant 0 \quad \forall_{i} \\
& y_{i} \geqslant x_{i} \forall_{i}
\end{aligned}
$$

(1) $k=$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \leqslant 爪\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
x_{1}-x_{1} \\
y_{2}-y_{1}
\end{array}\right] \in K} \\
& \Leftrightarrow \quad \begin{array}{l}
x_{2} \geq x_{1} \\
y_{2}-y_{1} \leqslant x_{2}-x_{1}
\end{array}
\end{aligned}
$$

(C) \mathbb{R}^{2}

$$
k=\left\{(x, y): \begin{array}{l}
x \leqslant 0 \\
\\
y \geqslant 0
\end{array}\right\}
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \leqslant k\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right] } & \Leftrightarrow\left[\begin{array}{l}
x_{2}-x_{1} \\
y_{2}-y_{1}
\end{array}\right] \in k \\
& \Leftrightarrow \quad m_{2}-x_{1} \leqslant 0 \& y_{2}-y_{2} \geqslant 0 \\
& \Leftrightarrow \quad l_{2} \leqslant x_{1} \& y_{2} \geqslant y_{1}
\end{aligned}
$$

(1) $\quad \quad x=S_{+}^{n}$

$$
A S_{k} B \quad A \quad B-A \text { is } P S D
$$

fropaties
0 x $\leqslant_{x} y$ then $x+z \leqslant x y+z \quad \forall z \in \mathbb{R}^{n}$
 $y-x \in \mathcal{K} \quad z=y \in \mathcal{K}$
Sinu K is a conver cone, $(y-x)+(z-y) \in \mathbb{K}$

$$
\begin{aligned}
& \Rightarrow \quad z-x \in k \\
& \Rightarrow \quad\left\{\leq_{k} z\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
& v \leq_{k} y \quad \Rightarrow \quad \alpha x \leq_{\mu} d y \quad \forall \alpha \geqslant 0 \\
& y-x \in K \Rightarrow \alpha(y-x) \in K \\
& \text { (i) } \quad x<x \quad \sin \quad 0 \in \mathcal{K}
\end{aligned}
$$

(6)

$$
\begin{aligned}
x \leqq_{k<} \& \quad y \& x & \Rightarrow x=y \\
y-x \in k \quad(1-y) & =-(y-x) \in k \\
& \Rightarrow y=x
\end{aligned}
$$

(6) If $x_{n} \leqslant k y_{n}$ for $n=1,3,3,4, \ldots$

$$
\lim _{n \rightarrow \infty} x_{n} \approx x_{k} \lim _{n \rightarrow \infty} y_{n}
$$

If

$$
x_{n} \leqslant y_{n} \quad \forall n
$$

then is

$$
\begin{array}{ll}
\lim _{n \rightarrow \infty} x_{n} \leqslant \lim _{n \rightarrow \infty} y_{n} ? \\
x_{n}=\frac{1}{n} & y_{n}=\frac{2}{n}
\end{array}
$$

Wart to ST S_{++}^{n} is open in S^{n}
ST for any $A \in S_{++}^{n}$, a ball of radius $\varepsilon \ll 1$ centered ar A \& contain d in
B
$A+B G \mathbb{S}_{++}^{n}$ for any B

$$
\|B\|<\varepsilon
$$

Example
If X is a random vector
Correlation : $\mathbb{E}\left[\underline{X} x^{\top}\right]=C_{X}$
matrix

I $x, 4$ nus
Correlation matrix $=\left[\begin{array}{ll}E X^{2} & \mathbb{E} X Y \\ \mathbb{E} X Y & E Y^{2}\end{array}\right]$

$$
\begin{aligned}
\underline{u}^{\top} C_{x} \underline{u} & =u^{\top} \mathbb{E}\left[\underline{X} X^{\top}\right] u \\
& =\mathbb{E}\left[u^{\top} X x^{\top} \underline{u}\right] \\
& =\mathbb{E}\left[\left(u^{\top} x\right)^{2}\right] \geqslant 0
\end{aligned}
$$

x, y, z no's

$$
C_{x}=\left[\begin{array}{lll}
1 & e_{x y} & e_{x z} \\
e_{x y} & e_{y z} \\
e_{x z} l_{y z} & 1
\end{array}\right]
$$

What is max Pyz?
Problem

$$
\begin{array}{r}
\max \rho_{y z} \text { st } \quad-0.2 \leqslant \rho_{x y} \leqslant 0.3 \\
\rho_{x z} \geqslant 0
\end{array}
$$

$\& C_{x}$ is $P S D$.

Gomeralizid inqualitios only form a patiol ondr

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right] \leq\left[\begin{array}{l}
3 \\
4
\end{array}\right] \quad\left[\begin{array}{l}
1 \\
2
\end{array}\right] \notin\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Not all parso of cuments ane comparabla. Componntwist inquality
 st $x^{\prime} \geqslant x$
lomponentuise inequality
Does af have a minimum?

$$
\begin{aligned}
x^{*}=\min A \quad \text { \& } \quad & x^{*} \leq x \forall x \in A \\
& x^{*} \in A
\end{aligned}
$$

Observation: $\underline{x}^{*}=\min A$ af $\left(x^{*}+\mathcal{K}\right) \supseteq d$
$\& x^{2} \in A$
(0)

Minimal points We say that $x \in d$ is a minimal pt of A of $y \leq x \& y \in A \Rightarrow y=x$

Similanly $N \in A$ is a marimal if of A of

$$
y \geq x+y \in d \Rightarrow y=x
$$

Spanating hyporplanes
Griven A, B. Wh lay that $\left\{\underline{a}^{\top} x=5\right\}$
is a sponating hyporpiane for A, B \&

$$
\begin{array}{ll}
a^{1} x \geqslant b & \forall x \in A \\
a^{\top} x \leqslant b & \forall x \in B
\end{array}
$$

The hypaplane striotly expenctes A, B of

$$
a^{\top} x \rightarrow b \quad \forall x \in A
$$

$$
\begin{array}{ll}
a^{\top} x>b & \forall x \in A \\
a^{\top} x<6 & \forall x \in B .
\end{array}
$$

Therm If of, B convex $\alpha A \cap B=\phi$, thou is a hyperplane $\bar{n} m$ that separates of \& 3 .

$$
\begin{aligned}
& A=\left\{x: a^{\top} x \geqslant b\right\} \\
& B=\left\{x: a^{\top} x \leqslant b\right\}
\end{aligned}
$$

* Connors not truce in general
* Convene true with additional constr Mans
- Strider apanation, en
- Que of a, 8 is open

Supporting hyperplane

$$
\underline{U}_{0} \in \operatorname{bd}(A)=\text { boundary } a(A) \backslash \operatorname{int}(A)
$$

We any that $\left\{\underline{1}: \underline{a}^{\top} x=\underline{a}^{\top} x_{0}\right\}$ is a supporting hyperplow for A of all of A lies on ene aider

$$
a^{\top} x \geqslant a^{\top} \underline{x}_{0} \quad \forall x 0 d
$$

Ulaim: Eving pt on thi boundary of a convex eot has a supporiing hupersplane

$$
\begin{aligned}
& \text { Take }\left\{\underline{x}_{0}\right\}=A \\
& B=\operatorname{int}(C) \quad A \cap B=\varnothing \\
& \forall \quad A, B \text { convex } \\
& \gamma \quad \in^{n}, b \in \mathbb{R} \text { ar } \quad a^{\top} x \geqslant b \quad \forall x \in B \\
& a^{\top} x \leq b \quad \forall x \in A
\end{aligned}
$$

M. is on the spatating

$$
\begin{aligned}
\Rightarrow a^{\top} x & >b \\
& \forall x \in C
\end{aligned}
$$

\therefore This is a supponting hyporplans.

Every dosed canvas ADO is the intersection of hal/ spars defined by the supporting Syperplons

Extreme point: $x \in \&$ is an
extreme pt is supporting
hyperplane has only ont pi from a

$$
(x \text { itself })
$$

Property. A dosed convex mr is the convenors hull of its extreme points

Dual cone If K is a cone. The dual cone

$$
\mathcal{K}^{*}=\left\{\underline{x} \in \mathbb{R}^{n}: \quad x^{\top} y \geqslant 0 \quad \forall y \in K\right\}
$$

(1) Nonnugative orthont

$$
x^{*}=K
$$

(2) $k=\{\alpha x ; \alpha \geqslant 0\}$
$\mathcal{K}^{\infty}=$ halfspan dufined by hyporplame

$$
=\left\{y: \underline{x}^{\top} y \geqslant 0\right\}
$$

(B) $I K=$ any k-dim subspau of \mathbb{R}^{n}

$$
x \in K \quad y \in K^{x}
$$

Suppose $x^{\top} y>0 \quad(-x)^{\top} y<0$

$$
\Rightarrow x^{\top} y=0 \quad \forall y \in \mathcal{K}^{\infty}
$$

$K^{*}=K^{\perp}$, the dual span of K
(4) $K=S_{+}^{n}\langle A, \beta\rangle=\sum_{i, j} a_{i j} b_{i j}=\operatorname{tn}\left(A^{\top} B\right)$

Claim: $K^{*}=\mathcal{K}^{*}$
$\left.\begin{array}{lll}\text { Tain: } & A \in \mathcal{K}^{*} & \left(\underline{x}^{\top} A x \geqslant 0\right.\end{array}\right)$

$$
\begin{gathered}
y^{\top}\left(x x^{\top}\right) y=\left(y^{\top} x\right)\left(x^{\top} y\right)=\left(x^{\top} y\right)^{2} \geqslant 0 \\
\Rightarrow \quad x x^{\top} \text { isPSD }
\end{gathered}
$$

$$
A \in K^{*} \Rightarrow \underline{x}^{\top} A x=\operatorname{tn}\left(\underline{x} \underline{x}^{\top} A\right) \geqslant 0
$$

$\sin u \quad A \in K^{*} \& x x^{\top} \in x$

Considar any PSD matrix A, B

$$
\begin{aligned}
& A=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{\sigma} \\
& \operatorname{tn}\left(A^{\top} B\right)=\operatorname{tn}\left(\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T} B\right)=\sum_{i=1}^{n} \operatorname{tn}\left(\lambda_{i} q_{i} q_{i}^{T} B\right) \\
& =\sum_{i n}^{n} \lambda_{i}+n\left(q_{i} q_{i}^{\top} B\right) \\
& =\sum_{i=1}^{n} \lambda_{i}\left(\begin{array}{c}
\left.q_{i}^{\top} b q\right) \\
0
\end{array} \mathbb{V}_{0}\right. \\
& \Rightarrow A \in K^{*} \\
& \Rightarrow k^{*}=j k
\end{aligned}
$$

Properties of dual cons
(1) K^{*} is closed α convex

$$
\begin{aligned}
x_{1} x_{2} \in K^{*}, \quad & x_{1}^{\top} y \geqslant 0 \quad \forall y \in K \\
& x_{2}^{\top} y \geqslant 0 \quad \forall y \in K \\
& \left(\alpha x_{1}+(1-\alpha) x_{2}\right)^{+} y \geqslant 0 \quad \forall y \in \mathcal{K} \\
\Rightarrow & \alpha x_{1}+(1-\alpha) x_{2} \in K^{*}
\end{aligned}
$$

(2) $K_{1} \in K_{2} \Rightarrow K_{1}^{*} \supseteq K_{2}^{*}$

Take any $\underline{x} \in \mathcal{K}_{2}^{*}$

$$
\begin{aligned}
& x^{\top} y \geqslant 0 \\
\Rightarrow & x^{\top} z \geqslant 0 \\
\Rightarrow & x \in K_{1}^{x}
\end{aligned}
$$

O If K has nonempty interior, then K^{x} is pointed.
Proof: Suppose K^{β} is not pointed.

$$
\text { g nonzero } x \in K^{*} \text { or }-x \in K^{*}
$$

Take any $y \in K \quad y^{*} x=0$

$$
\operatorname{dim}(K) \leq n-1
$$

$\Rightarrow K$ day not have a nonempty interuon
(0) If K, is pointed, K^{*} has nonempty interior

Prod. Suppose K^{*} day not have a nonempty interior

$$
\begin{aligned}
& \Leftrightarrow \operatorname{dim}\left(K^{*}\right) \leq n-1 \\
& \Rightarrow J y \in \mathbb{R}^{n} \Delta r \quad y^{\top} x=0 \quad \forall x \in K^{*} \\
& \Rightarrow \quad y \in K \& \frac{K^{*} \text { is nor pointed. }}{K^{* *} \text { is not pointed }}
\end{aligned}
$$

But $K^{* *}$ is nor pointed $\Rightarrow d(K)$ is nor pointed
(I) close of K is pointed, thin the convex hill of the closure of canned be pointed)
However, $x_{2}\{\underline{0}\} \cup\left\{\left(x_{1}, x_{2}\right): x_{1} \in \mathbb{R}, x_{2}>0\right\}$ is a pointed con but closure is not pointed. The closure is $\left\{\left(x_{1}, x_{2}\right): x_{1} \in R, x_{2} \geqslant 0\right\}$ \& $(-1,0) \&(1,0)$ lie in thin set.
The dual of k is $\left\{\left(0, x_{2}\right): x \geqslant 0\right\}$. This has empty interior.

Property: If K is a proper cone, then \mathcal{K}^{*} is a proper cone

$$
\begin{aligned}
& \underline{x} \leqslant k y \quad N \quad y-x \in K \\
& y \geqslant k 0 \Rightarrow y \in K
\end{aligned}
$$

PROP: $\quad x \leqslant x_{k} y \quad \&\left(\underline{\lambda} G K^{*} \Rightarrow \geq \sum_{k^{\infty}} Q\right)$

$$
\begin{aligned}
& \Rightarrow \lambda^{\top} x \leq \lambda^{\top} y \\
& y-x \in K \Rightarrow \lambda^{\top}(y-x) \\
& \Rightarrow 0 \\
& \lambda^{\top} y \geqslant \lambda^{\top} x
\end{aligned}
$$

Consider $A \in \mathbb{R}^{n} \quad K$ a proper cone

$$
\underline{x}^{*}=\min (A)
$$

Claim: $\underline{x}^{*}=\operatorname{argmin} \operatorname{\lambda }_{x \rightarrow}^{\top} \underline{x}$
for every

Pray: $\quad x^{*} \leqslant x^{x} \quad \forall x \in A$

$$
\Rightarrow \quad \lambda^{\top} x^{\nabla} \varepsilon \lambda^{\top} x \quad \forall x \in A
$$

Claim: If $\quad \lambda>*^{*} 0$ L

$$
x^{*}=\underset{x a t}{\operatorname{arymin}} \lambda^{\top} x \text {, them } x^{*}
$$

 is minimal
Proof: If not, ∂ I G of $x^{*} \geqslant \pi^{x} \Rightarrow \quad \lambda^{\top} x^{*} \geqslant \lambda^{\top} x$

Consider the componentwise imquality
I $\in A$ is a rupurne vector

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1}^{*} \\
x_{2}^{*} \\
x_{z}^{\infty}
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1}^{*} \\
x_{2} \\
x_{3}^{\infty}
\end{array}\right] \in A
$$

A minimal point is called a Panto optimal point
 Pareto optimal

Proble m: $\left\{x: a_{i}^{\top} x=b_{1}\right\}=1_{1}$

$$
\left\{x: a_{2}^{\top} x=b_{2}\right\}=\mathcal{H}_{2}
$$

When ane thes parable?
η_{1}, n_{2}

$$
\begin{aligned}
& 6 N_{1} \\
& a_{1}^{+}\left(x_{2}-x_{2}\right)=0
\end{aligned}
$$

vector that

$$
\text { is "alang" } H_{1}
$$

a_{1} is normel to 1,
$H_{1} \& \lambda_{2}$ ane pandles if $a_{1}=\alpha a_{2}$ fon domi nonzuo a

Supose $H_{1} \| H_{2}$. What is |ne distana b/w $H_{1} 4 H_{2}$?

$$
\begin{aligned}
& y_{1} \in \operatorname{ray}(a) \\
& y_{1}=\alpha_{1} a
\end{aligned}
$$

$$
\begin{aligned}
\alpha y_{1} \in j_{1} & \Rightarrow \underline{a}^{\top} y_{1}=b_{1} \\
& \Rightarrow \alpha_{1}=\frac{b_{1}}{\|a\|^{2}} \\
y_{1} & =\frac{b_{1}}{\|a\|^{2}} \quad y_{2}=\frac{b_{2} a}{\|a\|^{2}} \\
\left\|y_{2}-y_{1}\right\| & =\frac{\left|b_{2}-b_{1}\right|}{\|a\|^{2}}\|a\|=\frac{\left|b_{2}-b_{1}\right|}{\|a\|}
\end{aligned}
$$

Given $l \in \mathbb{R}^{n}$, finite

$$
\begin{aligned}
& x \in c \rightarrow \text { tramsmitted } \\
& y=x+e \rightarrow \text { maived. }
\end{aligned}
$$

Decision sule: Griven $y \in \mathbb{R}^{n}$,

$$
V_{i}=h y \in \mathbb{R}^{n}: \begin{gathered}
\text { hoose } \hat{\imath}=\operatorname{angmin}_{\| \in C}\|y-x\| \\
\left\|y-x_{i}\right\| \leq\left\|y-x_{j}\right\| \text { ngion } \\
\forall j \neq i y
\end{gathered}
$$

Voronoi region is a polyindron
Let is be the sill of all pts in \mathbb{R}^{n} which are closer to x_{i} than y_{y}

Show that the is a hayspou.

$$
\begin{aligned}
& \text { II } x \in-N,\left\|\underline{x}-x_{i}\right\|^{2} \leq\left\|x-x_{j}\right\|^{2} \\
& \left(\underline{x}-x_{i}\right)^{\top}\left(x-x_{i}\right) \leq\left(\underline{x}-x_{j}\right)^{\top}\left(\underline{x}-x_{j}\right) \\
& \underline{x}^{\top}\left\|-2 x_{i}^{\top} x+\right\| x_{i}\left\|^{2} \leq x^{\top}\right\|-2 x_{j}^{\top} x \\
& \quad\left(x_{i}-x_{j}\right)^{\top} x \geqslant \frac{\left\|x_{j}\right\|^{2}-\left\|x_{j}\right\|^{2}}{2}
\end{aligned}
$$

Lat $N_{i j}$ is the hallspau of points in \mathbb{R}^{n} that are closer to x_{i} than y_{j}

$$
\begin{aligned}
& H_{i j}=\left\{\underline{x} \in \mathbb{R}^{n}: \quad\left\|\geq-x_{i}\right\| \in\left\|x-x_{j}\right\|\right\} \\
& V_{i}=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{i}\right\| \leq\left\|x-x_{j}\right\|\right. \\
& \left.\forall j f^{i}\right\} \\
& =\int_{j y_{i}} A \mathcal{i}_{i j} \\
& \therefore r_{i} \text { is a polyhudion }
\end{aligned}
$$

(3) $\rho \mathrm{MF}$ on $[n]=\{1,2,3 \ldots n\}$
$P_{n}=$ st of all PmFs on $[n]$

$$
\mathbb{P}_{2}=\left\{f \in \mathbb{R}^{2}\right.
$$

$$
\begin{aligned}
& p_{1}+p_{2}=1 \\
& \left.0 \leqslant p_{i} \leqslant 1 \quad i=1,2\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{H}_{i}=\left\{f \in \mathbb{R}^{n}: \quad p_{i} \leq 1\right\} \quad n \rightarrow \text { Halspan } \\
&\left\{\underline{e}_{i}^{\top} f \leq 1\right. \\
&\left\{f: \in \mathbb{R}^{n}: \quad p_{i} \geq 0\right\} \quad n \rightarrow \text { Hallspou } \\
&\left\{f \in \mathbb{R}^{n}: \quad \sum_{i=1}^{n} p_{i}=1\right\} 2
\end{aligned}
$$

P_{n} is a polytope.

$$
\begin{aligned}
Q=\left\{f \in \mathbb{P}_{n}:\right. & \left.\frac{\mathbb{E} X^{2} \leq a}{11}, x \sim f\right\} \\
& \sum_{i=1}^{n} i^{2} p_{i} \leq \alpha \\
& {\left[\begin{array}{llll}
1 & 2^{2} & 3^{2} \ldots n^{2}
\end{array}\right] f \leqslant \alpha }
\end{aligned}
$$

\Rightarrow A is a polytope.

$$
\begin{aligned}
A=\left\{f \in \mathbb{P}_{n}: H(p)\right. & \geqslant \alpha\} \\
\| & H(\rho)
\end{aligned} \begin{aligned}
& \| \sum_{i=1}^{n} p_{i} \log \frac{1}{p_{i}} \\
&\{x: f(x)\geqslant \alpha\} \text { is a conves } \\
& \text { at }
\end{aligned}
$$

$\{x, f(x) \leq a\}$ is a conver set if f is conven

(1) Consider the ser of all copositive matrica $C=\left\{A \in S^{n} \quad x^{+} A x \geqslant 0\right.$ for all $\underline{n} \geqslant 0\}$

Q1: Is this a cone?
if $A \in C$, loom $\alpha A \in C$ for $\alpha \geqslant 0$
Q2: Id this convex?
Q3: Id C closed?
The intersection of any number of cased A is

Fix an $x \geqslant 0$. $H_{2}=\left\{A: \quad x^{\top} A x \geqslant 0\right\}$ \downarrow linath in A

$$
\operatorname{tn}\left(x x^{\top} A\right) \geqslant 0
$$

Ifx is a halfsocu for any ?

Q4

Q4: Doss .C haul nonempty interior?

$$
C \supseteq S_{+}^{n} \& S_{+}^{n} \text { had a }
$$

nonempty interior

Q5: Is C pointed?

$$
A \in C^{Y s} \Rightarrow-A \notin C \quad(i f A \neq 0)
$$

(is a piopor cons.
HW: find the dual cone of C.

