Fundamentals of Linear Algebra and Matrix Theory

Vector space $\quad+: V \times V \rightarrow \mathbb{V},: \mathbb{F} \times V \rightarrow \mathbb{V}$
$(V,+$,$) oven \underset{\downarrow}{\mathbb{F}} \underset{\downarrow}{ }$: Nonempty det V At $\forall V_{-1} v_{-2} v_{-2} \in \mathbb{V}$
filld
(1) $\underline{v}_{1}+\underline{v}_{-2}=v_{2}+v_{1}$
(C) $V_{1}+\left(\underline{N}_{2}+\underline{N}_{3}\right)=\left(\underline{V}_{1}+V_{2}\right)+\underline{V}_{3}$
(B) $\exists \underline{O} \in \mathbb{V} \Delta \mathbb{O} \quad \underline{Q} \underline{V}_{-1}=V_{-1}$
(3) For lach $\underline{v}, \in \mathbb{V}, \exists \underline{\underline{v}} \in \mathbb{V}$ ar $\underline{v}+\underline{\bar{v}}=\underline{0}$
(3) $(\alpha \cdot \beta) \cdot v_{-1}=\alpha \cdot\left(\beta \cdot v_{-1}\right)$
(c) $1-v_{1}=v_{1}$
(8)

$$
\begin{aligned}
& (\alpha+\beta) \cdot v_{1}=\alpha \cdot v_{1}+\beta \cdot v_{1} \\
& a\left(v_{1}+v_{2}\right)=\alpha v_{1}+\alpha v_{2}
\end{aligned}
$$

You should be able to answer the following:

- What is a subspace of a vector space? Given a subset S of a vector space V, do you need to test whether all 7 propertiesare satisfied? Is there an easier test?
-How do you define linear combinations of vectors?
-What do you mean by linear independence?

$$
a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{-n}=0 \quad \text { if } \quad a_{i}=0 \quad \forall i
$$

-What do you mean by the span of vectors?
-What is a spanning set of a vector space?

- When are vectors said to be linearly independent?
- What is a basis of a vector space? Is it unique?
- What is the dimension of a vector space?
- What are the four fundamental subspaces associated with a matrix?
-What is the rank of a matrix, and what is its nullity?
- How do you compute the rank or nullity of a given matrix? What is the computational complexity of doing so?
- You should know what elementary row operations are, how to convert a matrix into the row reduced echelon form (RREF), and the QR decomposition of a matrix

Is the following a vector space? If yes, what is its dimension?
(1) \mathbb{F}^{n} over F for any field \mathbb{F}
(2) Sit of all $m \times n$ matrices with elements from \mathbb{R} (over \mathbb{R})

$$
A^{(i, j)}=\left[\begin{array}{lll}
0 & \vdots & \vdots \\
0 & 0
\end{array}\right](4 j) \text { entry }
$$

(3) \mathbb{Q}^{n} - Nor avs

$$
\sqrt{2} v \in \mathbb{Q}^{n} \text { porn any } v \in \mathbb{Q}^{n} \backslash\{0\}
$$

(C) Sut of all polynomials of degra ≤ 3 \& nofficents from R.

$$
\begin{aligned}
& a_{0}+a_{1} x+a_{2} x^{2}+a_{1} x^{3} \\
& \left\{1, x, x^{2}, x^{3}\right\} \quad \text { dim }=4
\end{aligned}
$$

(5) Sut of all polynomials with coefficiont from \mathbb{R}

$$
\text { Yes. } \operatorname{dim}=\infty
$$

(6) Sut of all continuows punctions
$0 \mathbb{R} \quad \mathbb{F}=\mathbb{Q}$
410.

$$
\sqrt{3} \sqrt{3}, \sqrt{5}, \sqrt{7}
$$

Vectors and matrices:
If V ss pinite dimensional V.S, can rupresint any

$$
\begin{aligned}
& \underline{v}=\alpha, v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n} \\
& \underline{v} \\
& \equiv\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{n}
\end{array}\right] \quad \text { w.n.t basis }\left\{v_{-1}, v_{-2}, \cdots, v_{-n}\right\}
\end{aligned}
$$

* $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linian N

$$
f\left(\alpha-v_{1}+\beta v_{2}\right)=\alpha f\left(v_{1}\right)+\beta f\left(\underline{U}_{2}\right)
$$

* A limar transformation can be ruprusented by an mxn

Similarity

$$
\begin{aligned}
& A: n \times n \\
& B: n \times n
\end{aligned}
$$

A is similan to B if g an invertislap st

$$
\begin{aligned}
& A=P B P^{-1} \\
& A x=\underbrace{p} B(\underbrace{-4} x) \\
& \text { nueat lup of } x \text { in terma } \\
& \text { to of call of } P \\
& \text { ald bakn. }
\end{aligned}
$$

$\left\{V_{-1} V_{2} \sim V_{n}\right\} \quad w_{-} \rightarrow$ Standard ard. basis

New ban $\quad w=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n}$
$\alpha=\left[\begin{array}{l}a_{1} \\ a_{2} \\ 1 \\ \alpha\end{array}\right] \rightarrow$ groprsentation of w but in term of new basis

$$
\underline{w}=\overbrace{\left[\begin{array}{llll}
N_{1} & \underline{N}_{2} & \cdots & V_{n}
\end{array}\right] \underline{a} d \underline{p}}^{p}
$$

$$
a=p^{-1} w
$$

Determinant

Pinmutation of $[n]=\{1,2,3, \ldots, n\}$

$$
\begin{aligned}
& \sigma: \quad(1,2,3,4) \mapsto(3,1,2,4) \\
& \sigma(1)=3, \sigma(2)=1, \sigma(3)=2, \sigma(4)=4
\end{aligned}
$$

Pairwise exchanges

$$
\begin{array}{r}
\sigma:(1,2,3,4) \longmapsto(2,1,4,3) \\
\downarrow \\
(1,34,3) \rightarrow(1,2,3,4) \\
(21,4,3) \rightarrow(1,3,4,3) \rightarrow(1,4,2,3) \rightarrow(1,4,3,2) \\
\downarrow \\
\\
\\
(1,2,3,4)
\end{array}
$$

Theorem: \# of pairwise exchanges required to go from $\sigma[n]$ to $[n]$ is always either odd or even

$$
\text { sign of } \sigma: \operatorname{sgn}(\sigma)=\left\{\begin{array}{lll}
+1 & \text { if } & \text { even } \\
-1 & \text { if } & \text { odd }
\end{array}\right.
$$

Deterwinant

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{\sigma} \operatorname{sgn}(\sigma)^{\prime} a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(t)} \\
& =\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{1, \sigma(t)}
\end{aligned}
$$

Examples

$$
\operatorname{sgn}(1,2)=+1
$$

$$
\begin{aligned}
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & \operatorname{sgn}(2,1)=-1 \\
\operatorname{dut}(A) & =\sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} a_{1, \sigma(i)} \\
& =(+1) a_{11} a_{22}+(-1) a_{12} a_{21} \\
& =a_{11} a_{22}-a_{12} a_{21}
\end{aligned}
$$

Another expression for the determinant

$$
\begin{aligned}
\operatorname{det}(A) & =\sum_{i} a_{i j} \operatorname{cop} f_{j}(A) & \text { pr any } j \\
& =\sum_{j} a_{i j} \cos f_{i j}(A) & \text { for any } i
\end{aligned}
$$

Computing the determinant

- Bring A to RRF $A \longmapsto\left[\begin{array}{cc}1 & \\ 0 & 1\end{array}\right] B$
- Let $\alpha_{1}, \alpha_{2} \ldots, \alpha_{k}$ be the now multipliers
- Leer β be \# of now exchanges

$$
\operatorname{dot}(A)=(-1)^{\beta} \frac{1}{\alpha_{1} \alpha_{2}-\alpha_{k}} \operatorname{dut}(B)
$$

Similanity

$$
A \underline{x}=\lambda^{\lambda} \underline{x} \underset{\rightarrow \text { eignagnvedor }}{ }
$$

$$
\begin{aligned}
& \operatorname{dat}(A-\lambda I)=0 \\
& (A-\lambda I) \underline{N}=0
\end{aligned}
$$

Gram-Schmidt orthogonalization
$\underline{U}, \underline{v}$ and orthipond if $U^{\top} V=0$
orthongermal of " $\quad\|\underline{u}\|=\|\underline{V}\|=1$

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Guivm $\operatorname{basis}\left\{v_{1}, \cdots v_{n}\right\}$

- Talee $N_{-i} \& \underline{U}_{1}=\frac{v_{1}}{\left\|N_{1}\right\|}$
$\left\langle N_{1}, N_{2}\right\rangle \frac{N_{1}, V_{1}}{N_{1}} v_{1}$
for $i=2,3,4,-n$
(1) $\underline{U}_{i}=v_{i}-\sum_{j=1}^{0-1}$

$$
N_{2}-\frac{\left(v_{1}, N_{2}\right)}{U v_{1} U} v_{1}
$$

(2) $\underline{u}_{i}=\frac{\tilde{u}_{i}}{\left\|u_{i}\right\|}$
$A=Q R$
\downarrow
fuel wa. nark

Eigenspace

$$
\begin{aligned}
& A \underline{U}=\lambda \underline{N} \rightarrow \text { eipunvector } \\
& \text { eipar volue } \\
& \operatorname{dut}(A-\lambda I)=0 \\
& \lambda_{1} \lambda_{2} \sim \lambda_{k} \rightarrow \text { eigensalues } \\
& \downarrow
\end{aligned}
$$

λ_{i} has Mullopucity α_{i} called algibnaic/asithmotic multiplicity of $\lambda_{\text {: }}$

Algebraic multiplicity and geometric multiplicity, linear independence of eigenspaces

$$
\begin{aligned}
V_{i}=\{\underline{v}: A v & \left.=\lambda_{i} v\right\} \\
A\left(\alpha v_{1}+\beta v_{2}\right) & =a A v_{1}+\beta A v_{2} \\
& =a \lambda_{i} v_{1}+\beta \lambda_{i} v_{2}
\end{aligned}
$$

$\operatorname{dim}\left(V_{i}\right)=G$ Geometric multiplicity $=\lambda_{i}\left(\alpha v_{1}+\beta v_{2}\right)$

$$
\text { of } \lambda_{i}
$$

If we can conortroud a base for \mathbb{R}^{n} out of eignevedos $\left\{V_{1}, \ldots v_{n}\right\}$, then A mp in term of \downarrow is diagond

$$
A=P B P^{-1}
$$

$x \rightarrow$ cas of P and new basio vetory himer tromptron wint P.

$$
A=P D P^{-1} .
$$

A is diaponalizathe is

$$
0 \sum_{i=1}^{n} a_{i}=n
$$

(0) Grom multip $\left(\lambda_{i}\right)=a_{i} \quad \forall_{i}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \begin{array}{l}
\lambda=1 \\
a_{1}=2
\end{array}} \\
& A-\lambda I=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

Grom multiplicity $=\operatorname{dim} N S(A-\lambda I)$

$$
=1 \neq 2
$$

$$
1 \leq \text { Gleom Mult } \leqslant \text { Anith Mult. }
$$

Projection matrices and spectral decomposition

$$
A=\lambda_{1} E_{2}+\lambda_{2} E_{2}+\cdots+\lambda_{k} E_{k}
$$

\downarrow projection motrin propene \mathbb{R}^{n} intro ind eigenspall coop to λ_{i}

$$
f_{2}^{2}=E_{E}=F_{2}
$$

Symmetric matrices and their eigenvectors

$$
\begin{array}{rl}
A^{\top}=A \\
\lambda_{1} & f \lambda_{2} \quad V_{1}, V_{2} \text { warmy to } \lambda_{1} \lambda_{2} \\
N_{1}^{\top} A N_{-2} & =\lambda_{2} V_{-1}^{\top} N_{2} \\
\left(V_{-1}^{\top} A N_{-2}^{\top}\right)^{\top} & =\lambda_{2} V_{2}^{\top} N_{-1}=\lambda_{2} V_{-1}^{\top} V_{-2} \\
N_{2}^{\top} A^{\top} V_{1} & =V_{-2}^{\top} A N_{-1}=\lambda_{1} N_{2}^{\top} V_{1}=\lambda_{1} V_{1}^{\top} N_{2} \\
\Rightarrow & \Rightarrow N_{1}^{\top} N_{2}=0
\end{array}
$$

Eigmaredoos corrosp to disitiner sigenvocues are outto ponal

Spectral theorem
A nal matrix A is aymmetric of Lonly if it is ortropondly diagnalizable

$$
\begin{aligned}
& A=P D P^{-1}=P D P^{\top} \\
& \text { If } A=P D P^{T} \text {, then } A^{T}=\left(P D P^{T}\right)^{T} \\
& =P D^{\top} P^{i} \\
& =P D P^{T}
\end{aligned}
$$

If A is symmetric.
If $n=1$, thivid.
Suppose de Aymmel nie $(n-1) \times(n-1)$ matries ane arthoo ponally di gaonalizabr.

A $\lambda_{1}, v_{1} \rightarrow$ unit norm eigenvector

$$
\begin{aligned}
& \left\{\begin{array}{llll}
& V_{-1} & V_{2}
\end{array}\right\} \rightarrow \text { orthonormal } \\
& A=P\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 \\
\vdots & 1 & \\
0
\end{array}\right] P^{\top}=\bar{P} D \bar{P}^{\top} \\
& \text { B }
\end{aligned}
$$

$$
\begin{array}{r}
A\left(a_{1} v_{1}+a_{2} N_{2}+\cdots+a_{n} v_{n}\right) \\
B\left[\begin{array}{l}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=\lambda\left[\begin{array}{c}
a_{1} \\
\vdots \\
0
\end{array} a_{1} A N_{1}+a_{2} A v_{2}+\cdots+a_{n} A u_{n}\right. \\
A v=A\left[\begin{array}{c}
1 \\
\vdots \\
\vdots
\end{array}\right]
\end{array}
$$

Positive Semidefnite (PSD) and Positive Defnite (PD) matrides
A mal rymmetric A is poitive ramidefinite 1 all egign values an ≥ 0.

$$
A 〕 0 \quad A \geqslant B \quad \text { of }(A \cdot B) \succeq 0
$$

A a positive affinite of all eipandaces >0

$$
A \succ 0 \quad A \succ B \text { \& } \quad(A-B) \succ 0
$$

$$
\begin{gathered}
\underline{\eta}^{\top} A \underline{x}=\alpha_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \\
\underline{\underline{x}^{\top}}\left(\alpha_{1} \lambda_{1} v_{1}+\alpha_{2} \lambda_{2} v_{2}+\cdots+\alpha_{n} \lambda_{n} v_{n}\right) \\
=a_{1}^{2} \lambda_{1}+a_{2}^{2} \lambda_{2}+\alpha_{3}^{2} \lambda_{3}+\cdots+\alpha_{n}^{2} \lambda_{n} \geqslant 0 \\
\lambda_{1} \geqslant 0 \quad \forall 1
\end{gathered}
$$

$$
A \text { is PSD } \Leftrightarrow x^{\top} A x \geqslant 0 \quad \forall x \in R^{n}
$$

Square root of PSD matrix

$$
\begin{aligned}
& A=P D P^{r} \\
& D=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \lambda_{2} & \\
0 & & \lambda_{n}
\end{array}\right] \\
& A^{r_{2}}=P\left[\begin{array}{ccc}
\sqrt{\lambda_{1}} & \sqrt{\lambda}_{2} & 0 \\
0 & & \\
0 & \sqrt{\lambda_{n}}
\end{array}\right] P^{T} \\
& A^{1 / 2} A^{1 / 2}=P n^{1 / 2} P^{\sigma} P \Lambda^{1 / 2} p^{r} \\
& 2 P n^{1 / 2} n^{4} 2 P^{\top} \text { i } P D P^{\top}=A
\end{aligned}
$$

Singular Value Decomposition (SVD)

$$
\begin{array}{ll}
A: & m \times n \\
& u \wedge v^{\top} \\
& \operatorname{mank}(A)=t \\
& v: n \times t \\
A^{\top} A & =v n^{2} v^{\top}
\end{array}
$$

Sapare now of

$$
x^{\top} A^{\top} A x=\|A x\|^{2}>0
$$

Singulah raluer: rignolues of $A^{\top} A$

$$
\begin{aligned}
A^{\top} A= & \left(V \Lambda V^{\top}\right)^{\top} U \cap V^{\top} \\
& =V \cap U^{\top} U \cap V^{\top} \\
& =V n^{2} V^{\top} \\
A A^{\top} & =V n^{2} U^{\top}
\end{aligned}
$$

Goal: Solve minimization problems

1. Unconstrained minimization

- closed form solutions
- numerical methods

