Fundamentals of Linear Algebra and Matrix Theory

Vector space
$$+: V \times V \rightarrow V$$
, $\cdot: F \times V \rightarrow V$
 $(V, +, \cdot)$ oven F : Nonempty but V by $+ V, V_2, V_3, \in V$
 $(V, +, \cdot)$ oven F : Nonempty but V by $+ V, V_2, V_3, \in V$
 $(V, +, \cdot)$ oven F : Nonempty but V by V by V
 $(V, + V_2, - V_2, + V_3)$
 $(V, + V_2, - V_2, + V_3)$
 $(V, + V_3) = (V, + V_2) + V_3$
 $(V, + V_3) = (V, + V_2) + V_3$
 $(V, + V_3) = (V, + V_2) + V_3$
 $(V, + V_3) = (V, + V_3)$
 $(V, + V_3) = (V, + V_3)$
 $(V, + V_3) = (V, + V_3)$
 $(V, + V_3) = (V, + V_3)$

You should be able to answer the following:

• What is a subspace of a vector space? Given a subset S of a vector space V, do you need to test whether all 7 properties are satisfied? Is there an easier test?

• How do you define linear combinations of vectors?

• What is a spanning set of a vector space?

• When are vectors said to be linearly independent?

- What is a basis of a vector space? Is it unique?
- What is the dimension of a vector space?
- What are the four fundamental subspaces associated with a matrix?
- What is the rank of a matrix, and what is its nullity?

 How do you compute the rank or nullity of a given matrix? What is the computational complexity of doing so?

• You should know what elementary row operations are, how to convert a matrix into the row reduced echelon form (RREF), and the QR decomposition of a matrix

Is the following a vector space? If yes, what is its dimension?

(13

$$(G) Sut of all polynomials of digra \leq 3 l polynom R. a $t a d t a d$$$

© Set of all continuous functions J-d f: R-JR, f continuous y 0: 8100-20 J-d f: R-JR, f continuous y 0: 8100-20 HAGR

F= Z R (Y 10 ,

52, 53, 55, 57

Vectors and matrices:

If I is printe dimensional V-S, can ruprisent any rector as not matrix

$$N = (X, V_1 + (X_2, V_2 + - - + (X_n, V_n)))$$

whit basis $d v_1, v_2, \cdots, v_n$

* f: Rn -> Rm is Which M

$$f(\alpha - \nu_1 + \beta \nu_2) = \alpha f(\nu_1) + \beta f(\nu_2)$$

* A limen transformation can be represented by an mxn

Ainxn

$$f$$
 is similar to B M J an invariable P st
 $A = PBP^{T}$
 $A = P$

New barries
$$y_{2} = y_{2} y_{3} = y_{2} = y_{3} = y_$$

Determinant

Permutation of $[n] = f_{1,2,3,-}, n_{y}$

$$\begin{aligned} & \sigma : \quad (1, 2, 3, 4) \mapsto (3, 1, 2, 4) \\ & \sigma(1) = 3, \quad \sigma(2) = 1, \quad \sigma(2) = 2, \quad \sigma(4) = 4 \end{aligned}$$

Pairwise exchanges

 $\overline{(1,2,3,4)} \mapsto (2,1,4,3)$

(1, 2, 4, 3) - 1 (1, 2, 3, 4)

 $(21, 4, 3) \rightarrow (1, 2, 4, 3) \rightarrow (1, 4, 2, 3) \rightarrow (1, 4, 3, 2)$

V

(1, 2, 3, 4)

Sign of
$$\sigma$$
: Sgn $(\sigma) = \int H \tilde{M}$ even
 $\int -1 \tilde{M} O d d$

Determinant

 $det(A) = \sum_{\sigma} sgn(\sigma)' \alpha_{1,\sigma(1)} \alpha_{2,\sigma(2)} - \alpha_{n,\sigma(n)}$

 $= \sum_{\sigma} Sgn(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$

 $\begin{array}{c} A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Sgn(1,2) = t1 Sgn(2,1) = t

 $dvt(A) = \sum_{\sigma} Sgn(\sigma) \prod_{i=1}^{n} a_{i,\sigma(i)}$

r (+) a_{11} a_{22} a_{21}

2 A_{i} A_{22} - A_{i2} A_{22}

Another expression for the determinant

= $\sum_{i} \alpha_{ij} \cdot (\alpha_{ij})$ for any j det(A)

 $z = \sum_{ij} \alpha_{ij} \alpha_{ij} (A)$ for any i

Computing the determinant

- Bring A to RRF A -> []

- Let α_1, α_2 - , α_k be the now multipliers

> b

- Let B be # of now erchanges $M(A) > (-1)^{B} - (-1)^{B} - (-1)^{C} - (-$

Similarity

= 2 M signvalue > 2 M signvector AN

 $dwt(A - \lambda I) = 0$ (A- > J)N = Q

Gram-Schmidt orthogonalization

 \mathcal{G}

U, V, an other poind if
$$U^{\dagger}V = 0$$

with point of $U^{\dagger}V = 0$
(2) [2] [2]
iven basis $A_{i}V_{i} - V_{i}N_{j}$
- Take N; $k_{i}U_{i} = V_{i}$
 $W_{i}U_{i} = V_{i}$
 $W_{i} = V_{i} + V_{i}$
 $W_{i} = V_{i}$

A = Q R

J Juli 101 - Mank

hymred Dor AVZZAN -> eizur volue

dut (A-2I) 20

 $\lambda_{i} \lambda_{i} - \lambda_{k}$

distinct. eizn values

Muttipulcity Q; y: has Called algebraic/anithmetic multiplicity of 2;

---)

Algebraic multiplicity and geometric multiplicity, linear independence of eigenspaces

Av= Zivey

2 OLAN, + BAW2 $A(XV_1+BY_2)$ $\sim 0.2.4$, $V_{L} + \beta A_{T} V_{2}$ Xi (XV, +BN2) dim (V;) = Grometnic multiplicity \bigwedge et λ_{i} \mathbb{N}

If we can construct a basile for R" Out of
lignrectors
$$h_{v_1}$$
 - v_n , then A
mp in terms of V is diagonal

A is diagonalizate if

$$O$$
 $\sum_{i=1}^{k} a_i = n$
 O $Gieom multip(\lambda_i) = \alpha_i$ $\forall i$

1 2 Greon Mult & Arrish Mult,

Projection matrices and spectral decomposition

+ ARER $\lambda_1 E_1 + \lambda_2 E_2 + -$ A Th t projection mathia projects prints the eigenspace projects prints the eigenspace correspondents di

EzzEEzE

Symmetric matrices and their eigenvectors

AzA $\lambda_1 \notin \lambda_2$ λ_1, λ_2 (prompto λ_1, λ_2 NAV2 2 A2VIV2 2 AZZZZZZZZZZZZZZZZZ VIATU, Z VIAN, Z A, VIU, Z A, VINZ $\rightarrow N_1^{\dagger}N_2 = 0$ Eigunvertous course to dustinut eigenvalues are gritto ponal

Spectral theorem

A null matrix A is symmetric if Lonly if it
is stroponally diaponalizable
$$A = PDP^{T} = PDP^{T}$$

 $II = PDP^{T}$, then $A^{T} = (PDP^{T})^{T}$
 $= PDP^{T}$

 $f(\alpha, v, + \alpha_z v_z + \alpha_n v_n)$

AVZA (M V V S

Positive Semidefinite (PSD) and Positive Definite (PD) matrices A mal symmetric A is positive semidufinite of all eigenvalues av >0.

$$A \geq B \quad A \geq B \quad A \quad (A-B) \geq 0$$

A is positive diffinite of all eigenvalues
$$>0$$

A > 0
A > 0

O TAN

 $N = Q_1 + f Q_2 + f Q_2 + f Q_n + f$

 $\mathbb{V}\left(X, \lambda, v, + X_2, \lambda_2, v_2, t \sim + (X_n, \lambda_n, v_n)\right)$

A NO PSD

 $\sim \alpha_1^2 \lambda_1 + \alpha_2^2 \lambda_2 + \alpha_3^2 \lambda_3 + + \alpha_n^{\perp} \lambda_n > 0$

 λ_{1} ,0 41

< D MAN, O HYER

Square root of PSD matrix

Singular Value Decomposition (SVD)

ATA ~ (VNVF) ~ UNVF

z VNV^rvNv^r

AATZ VNVT

Goal: Solve minimization problems

1. Unconstrained minimization

- closed form solutions
- numerical methods