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Chapter 1

Introduction

Every problem where there is a notion of a “best” solution can be posed formally as an optimiza-

tion problem. Essentially, if the problem has multiple solutions, and there is a way to quantify

how good the solution is, then this can be formulated as a mathematical optimization problem.

Almost every engineering problem can be cast as an optimization problem.

• In processor design, we want to pack the maximum number of transistors (get as much

compute power as possible), while ensuring the power consumption is as low as possible.

• In wireless communication, we want to design a system such that we can transmit infor-

mation at as high a rate as possible, using as minimum resources (power, bandwidth) as

possible, while maintaining certain quality-of-service constraints.

• In signal denoising, we want to obtain as faithful a representation as possible to the original

signal from a noisy version of the signal.

• In an object detection problem (image processing/computer vision), we want to detect

objects (cats/cars/buildings/humans) as reliably as possible.

• In portfolio optimization (finance), we want to invest capital in a set of assets so as to get

the highest returns.

• In an industrial control problem, we want to control the input so that the system behavior

is as close to the desired performance as possible.

The applications are endless.

1.0.1 The general form of an optimization problem

In any optimization problem, there are three objects:

• The optimization variable(s), or the parameter(s) that we can vary

• An objective function, which measures how good a particular solution is

• A set of constraints, which model the physical/logistical limitations under which we can

vary the optimization variable

1



2 CHAPTER 1. INTRODUCTION

For the examples given above, try to identify what might be the optimization variables, the

objective function, and the set of constraints.

Definition 1.0.1: Constrained optimization problem

Given functions f : Rn Ñ R, and g : Rn Ñ Rm, find

x˚ “ arg min
gpxqě0

fpxq.

Here, x is the vector of optimization variables, f is called the objective function, and g is

the constraint.

The first step in solving any engineering problem is to obtain a mathematical formulation

of the problem. In many cases, this is more of an art, and once we have a well-formulated

optimization problem, the job is half-done.

Problem 1.0.1: General form

Can we formulate

x˚ “ arg max
gpxqě0

fpxq

in the above form? What if some of the constraints are of the form gipxq ě ai, and some

of the form gipxq ď bi? What if we have constraints of the form gipxq ą ai?

Unfortunately, many mathematical problems of interest may have optimal solutions, but

finding this optimal solution may be computationally hard. We then try to find algorithms that

approximately solve our optimization problem. However, as we will see later in this course, there

are certain classes of problems for which we can find the optimal solution efficiently.

1.1 Examples of constrained optimization problems

1.1.1 Least squares solution for a system of linear equations

Suppose that we have a system of linear equations

Ax “ b,

where x P Rn, b P Rk, and A is a k ˆ n full-rank matrix. If k ą n, then clearly the system either

has a unique solution, or no solution at all. It therefore makes sense to look for a vector x that

best approximates the system, i.e., finding

x˚ “ arg min
xPRn

}Ax ´ b}22.

This is what we call the least-squares solution. This is an example of an unconstrained op-

timization problem (as we will see later, it is also convex). Here, the objective function is

fpxq “ }Ax ´ b}22.

In your linear algebra class, you would have seen that the least squares solution is

x˚ “ pATAq´1AT b.
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1.1.2 Constrained least squares

In the previous problem, we could impose additional constraints on the optimization vector

(maybe we know something about this, the physical characteristics for example). Suppose that

the vector x lies within a ball of radius r (This could be a power constraint, for instance). Then,

x˚ “ arg min
}x}ďr

}Ax ´ b}2.

1.1.3 Power allocation in Gaussian channels

A classical problem in information theory/wireless communication is to allocate power across

multiple subchannels so as to maximize the achievable rate of communication. Suppose that

we have a total power constraint of P , and this can be split across k subchannels, with the ith

subchannel having an effective noise variance of σ2
i . Then, the achievable rate is given by

RpP q “

k
ÿ

i“1

1

2
log2

ˆ

1 `
Pi

σ2
i

˙

.

The power allocation problem can therefore be posed as the following optimization problem:

P˚
“ arg max

P :
ř

i PiďP
RpP q

1.1.4 Empirical risk minimization in machine learning

A common problem in machine learning is that of prediction. A lot of work on machine learning

(deep neural networks, for example) can be abstractly thought of as curve fitting. Suppose that

you want to solve a classification problem or a regression problem. In this case, we have the

ground truth (for example, detecting whether a given image has a cat). We can think of this as

an abstract function g : I Ñ t0, 1u, where I is the set of all images, and g is a function whose

value is 1 if the input image is a cat, and zero otherwise. Note that we do not know what this

function is, or even a good model/approximation for this. However, this conceptually makes

sense.

Neural networks can be thought of as a parametric class of functions, where the parameters

are the “weights” (see wikipedia if you have not seen a neural network before). Every choice of

the weights w defines a particular function N pwq : I Ñ t0, 1u. The learning problem is therefore

one of finding that choice of weights that best approximates the true function g.

Unfortunately, we do not know what the true function is. However, we are given a train-

ing set, i.e., a collection of pairs pI1, t1q, pI2, t2q, . . . , pIk, tkq, where ti “ gpIiq is the true value

(whether there is a cat present in the image or not). To measure how well a given neural network

approximates g on the training set, we use the following metric, called the empirical risk:

Rpwq “
1

k

k
ÿ

i“1

Lpti, N
pwqpIiqq,

where L is a loss function. The problem of “training” a neural network is one of trying to solve

the following empirical risk minimization problem:

w˚ “ argmin
w

Rpwq.
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Unlike the problems mentioned previously, this problem is in general nonconvex. However, many

techniques developed for solving convex optimization algorithms are used to design application-

specific algorithms for training neural networks. See [1] to know more about empirical risk

minimization.

1.1.5 Approximating maxcut in graphs and networks

Consider an undirected graph pV, Eq, where V denotes the set of vertices and E is the set of edges.

If we take any subset of vertices A Ă V, and look at the edges going from A to Ac, then this set

of edges is called a cut. The max cut of the graph is the size of the maximum cut. Formally,

the max cut problem can be stated as follows. Let A denote the adjacency matrix of the graph.

Without loss of generality, let us assume that V “ t1, 2, . . . , nu. Then, aij “ 1 iff there is an edge

between vertices i and j.

MAXCUT “ max
AĂV

ÿ

iPV

ÿ

jPVc

aij

This is also equal to:

MAXCUT “ max
xPt˘1un

xTLx

where L “ D´A is called the graph Laplacian, and D is a diagonal matrix with the ith diagonal

entry being equal to the degree of vertex i. Verify that the two optimization problems have the

same solution.

In the above problem, the optimization variables take values in a finite set. This is an example

of a combinatorial optimization problem. At first glance, it would therefore seem as though this

should be an easier problem to solve than the the ones discussed previously. However, the

problem is scaling this up. When n is large, the problem is computationally hard (in fact, this is

an NP-hard problem).

One can therefore try to obtain approximate solutions. One approach is by considering a

relaxation: we relax the constraints and/or the objective function to obtain a continuous-variable

optimization that is easier to solve. One such relaxation is the so-called LP (linear programming)

relaxation defined as follows:

LP ´ MAXCUT “ max
XPX

ÿ

i,j

LijXij

where X is the set of all n ˆ n matrices satisfying

´1 ď Xij ď 1, @i, j

Xii “ 1, @i

Xij ` Xjk ` Xik ě ´1, @i, j, k

Xij ´ Xjk ´ Xik ď 1, @i, j, k

This is an example of a continuous-variable optimization problem where the objective function

and all the constraints are linear. Such a problem is called a linear programming (LP) problem.

Except for specific types of graphs, the above approximation does not work well. The following

semidefinite programming (SDP) relaxation is known to perform much better

SDP ´ MAXCUT “ max
XPXSDP

ÿ

i,j

LijXij



1.2. CONVEX OPTIMIZATION IN R 5

where XSDP is the set of all positive semidefinite matrices satisfying Xii “ 1 for all i. This is an

example of what is called a semidefinite program. Both relaxations above are specific subclasses

of convex optimization problems.

See [2, Chapter 1] if you are interested to know more about this.

1.2 Convex optimization in R

Let us quickly recap single variable convex optimization problems. This will give us the intution

required to build the theory and analysis for multivariable problems.

1.2.1 Unconstrained optimization

Definition 1.2.1: Convex function of a single variable

A function f : R Ñ R is said to be convex if for every x1, x2 P R and every 0 ď α ď 1, we

have

fpαx1 ` p1 ´ αqx2q ď αfpx1q ` p1 ´ αqfpx2q.

The function is said to be strictly convex if equality in the above holds only if α “ 0 or

α “ 1.

A function f is (strictly) concave if ´f is (strictly) convex.

The geometric interpretation is the following: If you take any two points on the curve y “

fpxq, then the right hand side is a point on the straight line joining px1, fpx1qq and px2, fpx2qq.

However, the left hand side is a point on the curve evaluated for some x1 ď x ď x2 (assuming

that x1 ă x2). The above statement says that f is convex iff the straight line joining two points

on the curve always lies above the curve. See Fig. 1.1.

A very useful property is the following:

Lemma 1.2.1: Second derivative test

A function f for which f2pxq exists everywhere is convex if and only if f2pxq ě 0 for all

x P R. It is strictly convex if f2pxq ą 0 for all x P R.

To minimize a smooth convex function, we only need to compute the stationary point, i.e.,

the point at which f 1pxq “ 0.

Exercise: Prove that the stationary point is indeed the point of minimum.

1.2.2 Proof of Lemma 1.2.1

There are two statements to prove:

• If part : If f2 exists and is nonnegative everywhere, then f is convex

• Only if part : If f is convex, and f2 exists everywhere, then f”pxq ě 0 for all x.

Let us first prove the if part. We are given that f2pxq ě 0 for all x. We will use the mean value

theorem which says that if f is a continuous differentiable function, then for every x1 ă x2, there
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Figure 1.1: Plots of a convex function, a concave function, and a function that is neither convex

nor concave.
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exists a x1 ă β ă x2 such that

f 1pβq “
fpx2q ´ fpx1q

x2 ´ x1
.

Consider any x1 ă x2, and let x “ αx1 ` p1 ´ αx2q. We have,

αfpx1q ` p1 ´ αqfpx2q ´ fpxq “ αpfpx1q ´ fpxqq ` p1 ´ αqpfpx2q ´ fpxqq

Let us now use the mean value theorem for each of the two terms. There exist β1, β2 with

x1 ă β1 ă x ă β2 ă x2 such that

αfpx1q ` p1 ´ αqfpx2q ´ fpxq “ αpx ´ x1qf 1pβ1q ` p1 ´ αqpx2 ´ xqf 1pβ2q.

Substitute for x in the above.

αfpx1q ` p1 ´ αqfpx2q ´ fpxq “ αp1 ´ αqpx2 ´ x1qp´f 1pβ1qq ` αp1 ´ αqpx2 ´ x1qf 1pβ2q.

Since f2pxq ě 0, we have f 1pβ2q ě f 1pβ1q for β2 ą β1, and hence the right hand side is always

nonnegative.

Let us now prove the only if part. Recall that

f2pxq “ lim
tÓ0

fpx ` tq ` fpx ´ tq ´ 2fpxq

t2
.

It is enough to show that fpx ` tq ` fpx ´ tq ´ 2fpxq ě 0 for all t ą 0.

Since f is convex,

fpxq “ f

ˆ

x ` t

2
`

x ´ t

2

˙

ď
1

2
fpx ` tq `

1

2
fpx ´ tq.

which implies that fpx ` tq ` fpx ´ tq ě 2fpxq, thus completing the proof.

You can redo the argument for strictly convex/concave functions.
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Chapter 2

Basics of Topology

This is a very brief introduction to basic concepts in topology. See [3, 4] or any other good book

on real analysis/topology for more details.

2.1 Sets

2.1.1 Supremum, infimum, maximum and minimum

Given a nonempty set of real numbers S Ă R,

• A real u P R is said to be an upper bound for S if r ě x for all x P S.

• A real l P R is said to be a lower bound for S if l ď x for all x P S.

• u˚ is said to be the supremum (also called the least upper bound) for S if u˚ is an upper

bound for S and if u is any other upper bound for S, then u ě u˚.

• l˚ is said to be the infimum (also called the greatest lower bound) for S if l˚ is a lower

bound for S and if l is any other lower bound for S, then l ď l˚.

• If u˚ is the supremum of S and u˚ P S, then we say that u˚ is the maximum of S.

• If l˚ is the infimum of S and l˚ P S, then we say that l˚ is the minimum of S.

2.1.2 Functions

Consider any two sets A,B, and let f : A Ñ B be a function. Then, we call A the domain and

B the co-domain of f . The set fpAq – ty P B : y “ fpxq for some x P Au is called the range of

f . Note that the range could be a proper subset of B.

For an arbitrary S Ă A, we call

fpSq – ty P B : y “ fpxq for some x P Su

the image of S under f . Similarly for E Ă B, we say that

f´1pEq – tx P A : fpxq P Eu

9
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is the inverse image of E under f .

A function f is said to be injective (or one-to-one) if the inverse image f´1ptyuq contains

either zero or one element for every y P E . It is surjective (or onto) if the range is equal to the

codomain. It is bijective if it is both injective and surjective.

2.1.3 How big is your set?

A set A is said to be finite if there exists a bijective map from A to t1, . . . , nu for some integer

n. We call n, the cardinality of A. If there exists no such map, then we say that A is infinite.

The set A is countable if there exists a injective map from A to the set of integers Z. It is

countably infinite if it is both countable and infinite. If A is infinite and there does not exists an

injective map from A to Z, then we say that A is uncountable (or uncountably infinite).

The following sets are countably infinite: Z,Zn,Zě0,Q,Qn. The following sets are uncount-

able: p0, 1q,R,C,Rn.

2.1.4 Metric and norm

Let X be an arbitrary set and d : X ˆ X Ñ R be a function. Then, d is said to be a distance

measure or a metric if it satisfies the following properties:

• dpx1, x2q ě 0 for all x1, x2 P X , and dpx1, x2q “ 0 if and only if x1 “ x2,

• dpx1, x2q “ dpx2, x1q for all x1, x2 P X ,

• dpx1, x2q ` dpx2, x3q ě dpx1, x3q for all x1, x2, x3 P X .

The pair pX , dq is called a metric space.

Let X be a vector space. A function f : X Ñ R is said to be a norm if

• fpx ` yq ď fpxq ` fpyq for all x, y P X

• fpaxq “ |a|fpxq for all x P X and all a P R

• fpxq “ 0 if and only if x “ 0.

Let f be a norm on a vector space. Is f : X ˆ X Ñ R defined by fpx ´ yq a valid metric?

2.1.5 Neighborhood, closed and open sets

Neighborhood: Let X , d be a metric space. For any r ą 0 and x P X , the set

Nrpxq – ty P X : dpx, yq ă ru

is called a neighborhood (sometimes called open neighborhood) of x of radius r.

In R, every neighborhood is of the form px´r, x`rq. If we take the metric to be the standard

euclidean distance, then the open neighborhood is simply an open ball of radius r.

Interior point: A point x P A is an interior point of A if we can find an open neighborhood

around x that is contained within A. In other words, Dϵ ą 0 such that Nϵpxq Ă A.
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Open set: A set A is said to be an open set if for every x P A, we can find an open

neighborhood of x that is contained within A. In other words, for every x P A, there exists an

ϵ ą 0 such that Nϵpxq Ă A. Therefore, every point of A is an interior point. The interior of a

set A, denoted intpAq is the set of all interior points of A.

Prove that pa, bq is open for every pair of real numbers a ă b. Similarly, show that ra, bs is

not, by proving that you cannot find open neighborhoods at a, b.

Limit point: A point x P A is a limit point of A if every open neighborhood of x contains

at least one The set of all limit points of A is called the closure of A, and is denoted clpAq.

The boundary of A is

bdpAq – clpAqzintpAq.

Examples: For example, take A “ ra, bs. In this case, every point in A is a limit point

because if you take any neighborhood px ´ ϵ, x ` ϵq, then this has a nonempty intersection with

Aztxu.

Similarly, if A “ p0, 1q, then every point of A is a limit point of A. However, if we take the

point a (or b), then this is also a limit point of A that lies outside a.

A more nontrivial example is the following: take X “ t1, 2, 3, 4, 5u. In this case, none of the

points is a limit point. If we take the neighborhood p0.5, 1.5q (neighborhood of radius 0.5 around

1), then this point only includes 1, and therefore N0.5p1q X pX zt1uq is empty. In fact, no point

of R is a limit point of X . To see why, take any x P R. If x R X , then there is some real number

r ą 0 such that minyPX |x ´ y| ě r. Then, px ´ r{2, x ` r{2q X X is empty and therefore there

exists a neighborhood of x that does not contain X .

Take the set t0.5n : n “ 1, 2, . . .u. This set has one limit point at 0 (prove this).

Closed set: A set X is said to be closed if every limit point of X is a point of X . In other

words, the complement X c should not contain any limit points of X .

Examples: Take X “ ra, bs. This is closed because every point that is not in ra, bs cannot

be a limit point of X .

Take X “ pa, bq. In this case, a, b are also limit points of X (as discussed previously). But

these do not belong to X . Hence, X is not closed.

Take X “ t1, 2, 3, 4, 5u. For this set, no point in R is a limit point. Therefore, this set is

closed.

Note

These definitions are rather formal, but several results in analysis crucially depend on them.

For any finite real numbers a ă b, the set pa, bq is open, ra, bs is closed, and ra, bq is neither

closed nor open. The set R is both open and closed!

One can also prove that the set X is closed if and only if the complement is open. Similarly,

X is open if and only if X c is closed.
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2.1.6 Compactness

Compact set: A set A is compact if for every collection of open sets1 tEα : α P Iu such that

A Ă
Ť

αPI Eα, we can find a finite subset of those, say, E1, E2, . . . , En such that A Ă
Ťn

i“1 Ei.
Crucially for us, every closed and bounded set in Rn is compact.

Compactness is a very useful property: In general, compact subsets of metric spaces are

closed, and closed subsets of compact sets are also compact.

2.1.7 Sequences and limits

A sequence in X is a countably infinite collection of elements from X . Formally, a sequence can

be thought of as a map from t1, 2, . . .u to X . We will denote the sequence a1, a2, . . . by panq.

For example, 0.5, 0.52, 0.53, . . . is a sequence in Q (also R).

Let panq be a sequence in a metric space. We say that a is a limit of the sequence if for every

ϵ ą 0, we can find N P Zą0 such that

dpan, aq ď ϵ, for all n ě N.

For example panq with an “ 0.5n has a limit (equal to 0). However, an “ 2n does not have a

real limit. The sequence p1` 1{nqn has a limit in R, but not in Q. The sequence p´1qn does not

have a limit at all.

2.1.8 Functions and limits

Let X ,Y be metric spaces and f : X Ñ Y. Then, we say that

lim
xÑp

fpxq “ q

if for every ϵ ą 0, we can find δ ą 0 such that

dYpfpxq, qq ă ϵ

for all x such that

dX px, pq ă δ.

A function f : X Ñ Y is continuous if for every p P X , we have

lim
xÑp

fpxq “ fppq.

It is not too hard to show that if f : X Ñ Y is continuous, and g : Y Ñ Z is continuous, then

h : X Ñ Z defined by hpxq “ gpfpxqq is also continuous.

Lemma 2.1.1: Continuity and compactness

Let f be a continuous function from a compact set X to Rn. Then, fpX q is a closed and

bounded set, and hence compact.

Moreover, if f : X Ñ R where X is compact, then fpX q has a maximum and a minimum.

1Such a collection of sets is called a cover for A.
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Note that the points of maximum/minimum need not be unique.

We can easily construct examples where violation of one of the properties can lead to the

non-existence of a maximum/minimum. For example, if X “ p0, 1q (noncompact), and fpxq “ x,

then this does not have a maximum or a minimum. Similarly, if f is not continuous, then this

can lead to a problem. Take X “ r0, 1s, and let

fpxq “

$

&

%

x if x ą 0

1 if x “ 0

is not continuous and does not have a minimum. The infimum is equal to zero, but this is never

attained.

The above statements do not imply that continuity and compactness are necessary for the

function to have a maximum and/or minimum. There are non-continuous functions defined over

noncompact sets that have maxima and minima. These conditions are merely sufficient for the

existence of maxima and minima.

2.1.9 Derivatives and gradients

Let f : ra, bs Ñ R. The derivative of f at x P ra, bs is

f 1pxq “ lim
tÑ0

fpx ` tq ´ fpxq

t
,

provided that the limit exists.

How do we generalize this to higher dimensions?

Definition 2.1.1: Gradient

Suppose that we have a function f : Rn Ñ Rm. Then, we say that f is differentiable at

x P Rn if:

lim
zÑx

›

›pfpxq ´ fpzqq ´ Dfpxqpx ´ zq
›

›

}x ´ z}
“ 0

for some m ˆ n matrix Dfpxq. This is to indicate that the matrix depends on f and x.

Here, } ¨ } denotes the ℓ2 norm.

The matrix Dfpxq is called the derivative (more commonly called the Jacobian) of f at x.

Functions of one variable

For f : R Ñ R, the definition reduces to

lim
zÑx

|fpxq ´ fpzq ´ f 1pxqpx ´ zq|

|z ´ x|
“ 0.

If z ą x and we take the limit z Ó x, then,

lim
zÓx

ˇ

ˇ

ˇ

ˇ

fpxq ´ fpzq

z ´ x
´ f 1pxq

ˇ

ˇ

ˇ

ˇ

“ 0,

which gives us the standard notion of derivative.
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Real functions in Rn

We want to show that for real-valued functions with vector arguments, the derivative in Defi-

nition 2.1.1 is equal to the transpose of the gradient that you have seen in your vector calculus

course.

Let us suppose that f : Rn Ñ R. The gradient is some DT “ u (which is an n ˆ 1) vector

that satisfies

lim
zÑx

}pfpzq ´ fpxqq ´ p∇fpxqqT pz ´ xq}

}z ´ x}

assuming that this exists and is unique.

Pick an arbitrary unit vector v, and take z “ fpx ` tvq and let t Ó 0. Then, we want

lim
tÓ0

}pfpx ` tvq ´ fpxqq ´
řn

i“1 uipδviq}

δ}v}

and this should hold for every unit vector v. In other words

lim
tÓ0

ˇ

ˇ

ˇ

ˇ

ˇ

fpx ` tvq ´ fpxq

t
´

n
ÿ

i“1

uivi

ˇ

ˇ

ˇ

ˇ

ˇ

,

for every unit vector v. Using the chain rule,

lim
tÓ0

fpx ` tvq ´ fpxq

t
“

df

dt
“

n
ÿ

i“1

Bf

Bxi

Bxi

Bt
“

n
ÿ

i“1

Bfpxq

Bxi
vi

Therefore,

u “ ∇fpxq “

„

Bf

Bx1
pxq, . . . ,

Bf

Bxn
pxq

ȷT

.

Note: It is important to note that ∇f is a function from Rn Ñ Rn, which can be evaluated at

some x. A more appropriate notation would be p∇fqpxq, but this is more cumbersome to write.

For a general f : Rn Ñ Rm, a similar approach can be used to show that

pDfpxqqi,j “
Bfi
Bxj

pxq.

Examples

Consider

fpxq “ xTAx ` bTx ` c,

where A is an n ˆ n matrix, b P Rn, and c P R. Show that

∇fpxq “ pA ` AT qx ` b

If A is symmetric, then the gradient is 2Ax ` b.

At times, we will be interested in more complicated functions. Let f : Sn`` Ñ R, where Sn``

is the set of all n ˆ n symmetric positive definite matrices, defined as

fpXq “ log detX.

Basic calculus will not be enough to find the gradient in such problems. As we will see later,

every symmetric positive definite matrix has a square root: an invertible matrix X1{2 satisfying
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X “ X1{2X1{2. Let us denote the inverse of X1{2 by X´1. We will also make use of the property

that if we can write

fpZq “ fpXq ` xU,Z ´ Xy ` gpZ ´ Xq,

where gpZ ´ Xq Ñ 0 as Z Ñ X, then U is the gradient of f .

Using this, let us take Z “ X ` ∆X, so that

log detZ “ log detpX ` δXq “ log detpX1{2pI ` X´1{2∆XX´1{2qX1{2q

which is

log detZ “ log detX ` log detpI ` X´1{2∆XX´1{2q.

If λ1, . . . , λn are the eigenvalues of X´1{2∆XX1{2, then

log detZ “ log detX `

n
ÿ

i“1

logp1 ` λiq « log detX `

n
ÿ

i“1

λi

since logp1 ` λiq « λi when λi « 0 (which is the case since ∆X « 0). But the last term is

simply the trace of X´1{2∆X´1{2, or the trace of X´1∆X — the inner product between X´1

and pZ ´ Xq. Therefore,

∇fpXq “ X´1.

Exercise: Show that the standard inner product between two matrices defined as xA,By –
ř

i,j aijbij is equal to the trace trpATBq.2

2.1.10 Chain rule for gradients

Let f : Rn Ñ Rm and g : Rm Ñ Rl. Define h : Rn Ñ Rl as hpxq “ gpfpxqq. If both f and g are

differentiable, then so is h, and

Dhpxq “ DgpfpxqqDfpxq.

In the special case where f : Rn Ñ R and g : R Ñ R, we get

∇hpxq “ g1pfpxqq∇fpxq.

Example

If gpxq “ fpAx ` bq, then

∇gpxq “ AT p∇fqpAx ` bq.

Similarly, find the gradients for:

• f : Rn Ñ R

fpxq “ log

˜

m
ÿ

i“1

ea
T
i x`bi

¸

• Fix symmetric positive definite F1, . . . , Fn, and let domain of x be X “ tx P Rn :
ř

i xiFi is symmetric PDu.

fpxq “ log detp
n

ÿ

i“1

xiFiq

2Note that in Rn, xx, yy – xTAy for any positive definite A is a valid inner product. Prove this. Similarly,

more general inner products for matrices can be defined.
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2.2 Second derivative

Recall that the second derivative of f : R Ñ R is defined as the limit

f2pxq “ lim
tÑ0

f 1px ` tq ´ f 1pxq

t
“ lim

tÑ0

fpx ` tq ` fpx ´ tq ´ 2fpxq

t2

assuming that the limit above, and the first derivative exist.

We can define a similar quantity for vector-valued functions. The second derivative is essen-

tially the gradient of the gradient.

Definition 2.2.1: Hessian

For f : Rn Ñ R, the Hessian matrix is an n ˆ n matrix ∇2f , whose pi, jq’th entry is

p∇2fpxqqi,j “
B2f

BxiBxj
pxq,

provided that all the above partial derivatives exist.

For any z close to x,

fpzq “ fpxq ` p∇fpxqqT pz ´ xq `
1

2
pz ´ xqT p∇2fpxqqpz ´ xq ` epz, xq,

where epz, xq is a function that satisfies

lim
zÑx

epz, xq

}z ´ x}2
“ 0.

Examples

Consider fpxq “ xTAx ` bTx. Compute the Hessian.

2.2.1 Chain rule for second derivative

If hpxq “ gpfpxqq for some g : R Ñ R and f : Rn Ñ R, and both functions have first and second

derivatives, then

∇2hpxq “ g2pfpxqq∇fpxqp∇fpxqqT ` g1pfpxqq∇2fpxq.



Chapter 3

Matrix Theory Fundamentals

This is a brief recap of concepts from matrix theory that we will require for this course. You are

expected to have already gone through a course on linear algebra/matrices. See [5, 6] for a good

introduction. Once you are comfortable with the basics (up to eigenvalues and eigenvectors),

Horn and Johnson [7] is a good reference for more advanced topics.

3.1 Prerequisites

You should be familiar with the following general definition of a vector space.

Definition 3.1.1: Vector space

A vector space over R is a nonempty set V equipped with two operations: ` (vec-

tor addition) and ¨ (scalar multiplication) that satisfies the following properties: for all

v1, v2, v3 P V and all a, b P R

• Commutativity of addition: v1 ` v2 “ v2 ` v1

• Associativity of addition: v1 ` pv2 ` v3q “ pv1 ` v2q ` v3

• Existence of zero vector (additive identity): there exists 0 P V such that v1 `0 “ v1.

• Existence of additive inverses: For every v1 P V, there exists vm P V such that

v1 ` vm “ vm ` v1 “ 0

• Associativity of multiplication: pa ¨ bqv1 “ apbv1q

• Unity preserves scaling: 1 ¨ v1 “ v1

• Distributivity: apv1 ` v2q “ av1 ` av2

We will mostly focus on finite-dimensional vector spaces over R. However, vector spaces can

be defined over more general fields (e.g., C,Q, finite fields, etc.).

17
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3.1.1 Questions

You should also be be able to answer the following:

• What is a subspace of a vector space? Given a subset S of a vector space V, do you need

to test whether all 7 properties in Definition 3.1.1 are satisfied? Is there an easier test?

• How do you define linear combinations of vectors?

• What do you mean by linear independence?

• What do you mean by the span of vectors tv1, v2, . . . , vnu?

• What is a spanning set of a vector space?

• When are vectors said to be linearly independent?

• What is a basis of a vector space? Is it unique?

• What is the dimension of a vector space?

• What are the four fundamental subspaces associated with a matrix?

• What is the rank of a matrix, and what is its nullity?

• How do you compute the rank or nullity of a given matrix? What is the computational

complexity of doing so?

• What is the determinant of a matrix? How do you compute it, and what is the computa-

tional complexity of doing so?

• You should know what elementary row operations are, how to convert a matrix into the

row reduced echelon form (RREF), and the QR decomposition of a matrix.

• Compute the rank, nullity, column space, and right null space of the following matrices

«

1 3

2 6

ff

,

»

—

–

1 3 2

1 1 1

2 4 3

fi

ffi

fl

,

»

—

–

1 3 2

3 1 1

2 1 3

fi

ffi

fl

3.1.2 Notation

We will typically use underlined lowercase letters to denote vectors, i.e., u, v, w, etc. Unless

otherwise mentioned, all vectors are column vectors. Uppercase letters will typically denote ma-

trices (such as A,B,C). Boldface letters will be used to denote random variables, and underlined

boldface letters will be used to denote random vectors (such as x,y, z).

3.2 Matrices and linear transformations

It is easy to see that every m ˆ n matrix is a linear transformation from Rn to Rm. A very

important fact is that every linear transformation from Rn to Rm can be represented by an

m ˆ n matrix.
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3.2.1 Determinants

Let rns denote the set t1, 2, . . . , nu. A bijective map σ from rns to rns is called a permutation.

For example, 4, 2, 3, 1 is a permutation of r4s, i.e., σp1q “ 4, σp2q “ 2, σp3q “ 3, σp4q “ 1.

What is the total number of possible permutations on rns? A: n!.

Given any permutation σ of rns, we can convert σ to rns by a sequence of pairwise exchanges

of elements.

For example, 4, 2, 3, 1 can be converted to 1, 2, 3, 4 by a single pairwise exchange: exchange 1

and 4.

The permutation 4, 3, 2, 1 can be converted to 1, 2, 3, 4 using 2 pairwise exchanges:

p4, 3, 2, 1q Ñ p1, 3, 2, 4q Ñ p1, 2, 3, 4q.

We could also do this using

p4, 3, 2, 1q Ñ p4, 3, 1, 2q Ñ p1, 3, 4, 2q Ñ p1, 2, 4, 3q Ñ p1, 2, 3, 4q.

The number of pairwise exchanges to bring a permutation to rns is not unique. However, for a

given σ, this is always odd or even. For example, if σ is 4, 3, 2, 1, then the number of pairwise

exchanges required to convert it to 1, 2, 3, 4 is always even.

The sign of a permutation σ is defined to be `1 if the number of pairwise exchanges required

to convert it to rns is even, and equal to ´1 otherwise. This is denoted sgnpσq.

Let Pn denote the set of all permutations over rns.

Definition 3.2.1: Determinant

The determinant of an n ˆ n matrix A is defined as

detpAq “
ÿ

σPPn

p´1qsgnpσqa1,σp1qa2,σp2q ¨ ¨ ¨ an,σpnq.

Consider n “ 2. There are two permutations of r2s, the identity permutation p1, 2q and p2, 1q.

The sign of p1, 2q is `1 and that of p2, 1q is ´1. The determinant of a 2ˆ 2 matrix A is therefore

equal to

detpAq “ a11a22 ´ a12a21.

You can similarly compute the expression for the determinant of a 3 ˆ 3 matrix, and verify

that this indeed is the same as what you have seen in high school.

The minor of an element aij in a matrix A is the determinant of the submatrix obtained by

deleting the ith row and jth column from A. The cofactor of aij is p´1qi`j times the minor of

aij . Let us denote the cofactor as cofijpAq. We then have the following recursive definition of

the determinant of a matrix (stated without proof):

detpAq “

n
ÿ

i“1

aijcofijpAq “

n
ÿ

i“1

ajicofjipAq

for any j P rns.

Neither of the above definitions enable us to compute the determinant efficiently. The follow-

ing is more useful:
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• Any elementary row operation of type 1, i.e., multiplication all elements of a single row by

a constant c, scales the determinant by c

detpBq “ cdetpAq

where B is obtained by multiplying all elements of (any) single row of A by c.

• Any elementary row operation of type 2, i.e., subtracting a row from any other row, does

not change the determinant.

detpBq “ detpAq

where the ith row of B is obtained by subtracting the jth row of A from the ith row of A

(here i ‰ j), and the remaining rows are unchanged.

• Any elementary row operation of type 3, i.e., exchanging two rows of A, scales the deter-

minant by p´1q.

detpBq “ ´detpAq

where B is obtained by exchanging two different rows of A.

Algorithm for computing the determinant

• Perform a sequence of row operations to reduce A to the row echelon form.

• Keep track of the constants c1, c2, . . . , cl that are row multipliers in all the type-1 operations

required.

• Count of number of type-3 operations required. Call this t3.

• The determinant of the reduced matrix is 1. Therefore, 1 “ p´1qt3p
śl

j“1 cjqdetpAq, or

detpAq “
p´1qt3

śl
j“1 cj

.

The determinant of an nˆn matrix can therefore be obtained using Opn3q arithmetic operations.

3.2.2 Change of basis, similarity

Every n ˆ n invertible matrix corresponds to a change of basis. If we want to represent a vector

v (which is currently in the standard ordered basis) with respect to a new basis b1, . . . , bn, then

this is equivalent to finding the vector of coefficients α such that

v “ α1b1 ` ¨ ¨ ¨ ` αnbn

or

v “ Pα

where P “ rb1, . . . , bns.

Therefore, the vector v when represented in the new basis is

α “ P´1v
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If A,B are n ˆ n matrices (not necessarily invertible), then we say that A is similar to B if

there exists a change of basis matrix P such that

B “ P´1AP

Similar matrices can be viewed as the same linear transformation represented using a different

basis. Effectively B is the same linear transformation as A, but instead with respect to the basis

defined by the column vectors of P .

3.2.3 Gram-Schmidt orthogonalization

Recall that v1, v2 are orthonormal if both have unit norm and vT1 v2 “ 0. A real matrix A is

orthogonal if A´1 “ AT .

Given any vector space, we can construct an orthonormal basis using Gram-Schmidt orthog-

onalization. Start with any basis v1, . . . , vn.

• Let u1 “ v1{}v1}.

• For i “ 2, 3, . . . , n:

– Let

ũi “ vi ´

i´1
ÿ

j“1

xuj , viy

– Set

ui “
ũi

}ũi}
.

Using the Gram-Schmidt process on the column vectors of any full rank matrix yields the QR

decomposition of the matrix.

3.2.4 Eigenvalues and eigenvectors

Definition 3.2.2: Eigenvalues and Eigenvectors

Given an n ˆ n real-valued matrix A, we say that λ P R is an eigenvalue if there exists a

nonzero x P Rn such that

Ax “ λx.

The vector x is said to be an eigenvector corresponding to the eigenvalue λ.

The set of all eigenvalues of A is called the spectrum of A.

As you have seen in your linear algebra course, λ is an eigenvalue iff pA ´ λIqx “ 0 has a

nontrivial solution, implying that A´λI must be rank-deficient. This happens iff detpA´λIq “ 0.
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Lemma 3.2.1

The spectrum of A is the set of all solutions to the polynomial equation

detpA ´ λIq “ 0.

The set of all eigenvectors of a given eigenvalue λ is the right nullspace of A ´ λI. This

is called the eigenspace corresponding to λ.

3.2.5 Exercises

Find the eigenvalues and corresponding eigenvectors for each of the following matrices:

• The all-ones matrix (i.e., the n ˆ n matrix whose entries are all equal to 1)

• A general n ˆ n diagonal matrix

• The all-zeros matrix

• The matrix

A “

»

—

–

1 2 3

2 3 4

1 3 4

fi

ffi

fl

• The matrix

A “

»

—

–

1 3 1

3 2 1

1 1 1

fi

ffi

fl

Does every n ˆ n matrix always have n real eigenvalues? Why or why not?

3.2.6 Diagonalizability

Definition 3.2.3: Diagonalizable matrix

An n ˆ n real matrix A is said to be diagonalizable if it is similar to a diagonal matrix,

i.e., there exists an n ˆ n diagonal matrix D and an invertible matrix P such that

A “ PDP´1.

If λ is an eigenvalue of A, and ka is the multiplicity of λ as a root of the characteristic

polynomial detpA´λIq, then we say that ka is the algebraic multiplicity of λ. The dimension of

the right nullspace of A ´ λI is called the geometric multiplicity of λ.

Is the geometric multiplicity of an eigenvalue always equal to its algebraic multiplicity?

If the geometric multiplicity of every eigenvalue is equal to the algebraic multiplicity, then

the matrix is diagonalizable. Note that the geometric multiplicity of every eigenvalue is at least

1 (why?). This implies that a matrix is (real) diagonalizable if all the eigenvalues are real and

distinct.
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It is easy to see that the set of all eigenvectors corresponding to an eigenvalue form a subspace.

The dimension of this subspace (called the eigenspace) is equal to the geometric multiplicity.

The eigenvectors corresponding to distinct eigenvalues are linearly independent. Prove this.

These properties imply that a matrix is diagonalizable if the geometric multiplicity is equal to

the algebraic multiplicity.

A projection matrix P is an n ˆ n matrix satisfying P 2 “ P . If A is diagonalizable, then

there exist projection matrices P1, . . . , Pk (where k is the number of distinct eigenvalues of A)

such that

A “ λ1P1 ` λ2P2 ` ¨ ¨ ¨ ` λkPk

and

I “ P1 ` P2 ` ¨ ¨ ¨ ` Pk.

3.2.7 Symmetric and Positive Semidefinite Matrices

Suppose that A is symmetric. If λ1, λ2 are distinct eigenvalues and v1, v2 are corresponding

eigenvectors, then

vT1 Av2 “ λ2v
T
1 v2

However,

λ2v
T
1 v2 “ pλ2v

T
1 v2qT “ pvT1 Av2qT “ vT2 A

T v1 “ vT2 Av1 “ λ1v
T
1 v2.

Since λ2 ‰ λ1, the only possibility is that vT1 v2 “ 0. Therefore, eigenvectors corresponding to

distinct eigenvalues of a symmetric matrix are orthogonal. Since we can obtain an orthogonal

basis for any subspace, the above statement implies that if a symmetric matrix is diagonalizable,

then it is also orthogonally diagonalizable: There exists an orthogonal matrix P (with columns

equal to eigenvectors) such that A “ PDPT .

Theorem 3.2.1: Spectral theorem

A real matrix A is symmetric if and only if it is orthogonally diagonalizable.

It is easy to show that if A is orthogonally diagonalizable, then it must be symmetric. If

A “ PDPT for orthogonal P and diagonal D. then AT “ PDTPT “ PDPT “ A.

Here is a proof sketch to show that every symmetric matrix is orthogonally diagonalizable.

Use induction. Any 1ˆ1 matrix is orthogonally diagonalizable. Now, assume that the statement

is true for all pn ´ 1q ˆ pn ´ 1q matrices. For A, let λ1 be an eigenvalue and v1 be a unit-norm

eigenvector. We can extend this eigenvector to an orthonormal basis for Rn. Let U be the matrix

with these vectors as columns. Then,

A “ P

«

λ1 0T

0 A1

ff

PT

for some matrix A1. Argue that this is true, and show that A1 must also be symmetric. Now use

the induction step to show that A1 can be orthogonally diagonalized.
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Definition 3.2.4: Positive Semidefinite matrices

A real symmetric matrix A is positive semidefinite (or nonnegative definite) if all its

eigenvalues are nonnegative. We use the notation A ľ 0 to denote that A is positive

semidefinite (PSD), and A ľ B to denote that A ´ B is PSD.

It is called positive definite (PD) if all the eigenvalues are positive. We say A ą B to

indicate that A ´ B is positive definite.

The set of all PSD matrices is denoted by S`, and the set of all PD matrices is denoted

by S``.

For a positive semidefinite matrix, xTAx ě 0 for all x P Rn. In fact, one can show that a

matrix is positive semidefinite iff xTAx ě 0 for all x P Rn.

The largest eigenvalue is equal to

λmax “ sup
x‰0

xTAx

}x}2

and the smallest eigenvalue is equal to

λmin “ inf
x‰0

xTAx

}x}2

To prove this, use the property that A is orthogonally diagonalizable, and express x in terms

of the orthonormal basis. Then observe that xTAx is actually a convex combination of the

eigenvalues and prove the above statements.

Square root: If A is positive semidefinite, then all the eigenvalues have square roots. If we

define

A1{2 “ P

»

—

—

—

—

–

?
λ1 0 ¨ ¨ ¨ 0

0
?
λ2

...
. . .

0
?
λn

fi

ffi

ffi

ffi

ffi

fl

PT

then this matrix is also positive semidefinite and

A “ A1{2A1{2.

The matrix A1{2 is called the square root of A.

3.2.8 Singular Value Decomposition (SVD)

Any m ˆ m matrix A with rank t can be written as

A “ UDV T

where U is a m ˆ t matrix with orthonormal columns (called the left singular vectors), V is

an n ˆ t matrix with orthonormal columns (called the right singular vectors), and D is a t ˆ t

invertible diagonal matrix. The diagonal entries of D are called the singular values.

This can be obtained from the spectral theorem. The right singular vectors are essentially

the (orthonormal) eigenvectors corresponding to nonzero eigenvalues of ATA, the left singular
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vectors are the orthonormal eigenvectors corresponding tot he nonzero eigenvalues of AAT , and

the singular values are the square root of the nonzero eigenvalues of AAT (or ATA).

One can show that the largest singular value is

σmax “ sup
x,y‰0

xTAy

}x}}y}
“ sup

x‰0

}Ax}

}x}
.

The smallest singular value is defined to be zero if the matrix is not full-rank.

The condition number of an invertible n ˆ n matrix A is

condpAq “ }A}2}A´1}2 “
σmax

σmin
.

It is said to be infinite if A is not invertible.
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