Efron-Stein and McDiarmid Inequalities

SO FAR,

- Markov, Chebysher \& Chernafí
- Subgaussion 1 Subexponential
- (Exponential) tall bounds on $x \& \sum_{i=1}^{n} \alpha_{i} x_{i}$

Want: Tail bounds on functions of $\left(X_{1} \cdots X_{n}\right)$ iid
(1) Langest eigenvalue of a random matrix
(c) Max dignu of a Mandom gnaph

Suppose

$$
\begin{aligned}
& x_{1} \cdots x_{n} \\
& z=g\left(x_{1}-x_{n}\right) \\
& z_{i}=\mathbb{E}\left[z \mid x_{1} \cdots x_{i}\right] \\
&\left.=\int g\left(x_{1}-x_{i}, x_{i+1} \cdots x_{n}\right) f_{x_{i+1}}-x_{n} \mid x_{i}-x_{i}-x_{n}\right) \\
& d x_{i+1} \cdots d x_{n}
\end{aligned}
$$

$$
\begin{aligned}
z_{0} & =\mathbb{E} g\left(x_{1}-x_{n}\right)=\mathbb{E} Z \\
z_{n} & =2=g\left(x_{1}-x_{n}\right) \\
\operatorname{Var}\left(g\left(x_{1}-x_{n}\right)\right) & =\mathbb{E}\left[\left(z_{n}-z_{0}\right)^{2}\right]
\end{aligned}
$$

$$
\begin{align*}
z_{n}-z_{0} & =\sum_{i=1}^{n} z_{i}-z_{i-1} \\
\operatorname{Van}(z) & =\mathbb{E}[(\sum_{i=1}^{n} \underbrace{z_{i}-z_{i-1}}_{\Delta_{i}}))^{2}] \\
& =\mathbb{E}\left[\left(\sum_{i=1}^{n} \Delta_{i}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{i=1}^{n} \Delta_{i}^{2}+2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \Delta_{i} \Delta_{j}\right] . \tag{1}\\
\Delta_{i} & =z_{i}-z_{i-1} \\
z_{i} & =\mathbb{E}\left[z \mid x_{1} \cdots x_{i}\right]=\mathbb{E}_{x_{i-1}-x_{n}}[z] \\
z_{i n} & =\mathbb{E}\left[z \mid x_{1} \cdots x_{i-1}\right]=\mathbb{E}_{x_{i}-x_{n}}[z]
\end{align*}
$$

$$
\begin{aligned}
& z_{i-1}=\mathbb{E}_{x_{i}-x_{n}}[z]=\mathbb{E}_{x_{i}} \mathbb{E}_{x_{i+1}-x_{n}}[z] \\
&=\mathbb{E}_{x_{i}} z_{i} \\
& \Delta_{i}=z_{i}-\mathbb{E}_{x_{i}} z_{i}=\mathbb{E}_{x_{i n}^{n}} f\left(x^{n}\right)-\mathbb{E}_{x_{i}^{n}} f\left(x^{n}\right) \\
& \mathbb{E}_{x^{n}} \Delta_{i}=0
\end{aligned}
$$

Considur $j>i \quad \mathbb{E}_{x^{n}}\left(\Delta_{i} \Delta_{j}\right)$

$$
\begin{aligned}
& \mathbb{E}_{x^{n}}\left[\left(\mathbb{E}_{x_{i+1}^{n}} z-\mathbb{E}_{x_{i}^{n}} z\right) \times\left(\mathbb{E}_{x_{j+1}^{n}} z-\mathbb{E}_{x_{j}^{n}} z\right)\right] \\
& x_{i+1}^{n}=\left(x_{i+1} \cdots x_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbb{E}_{x_{i+1}^{n}} 2-\mathbb{E}_{x_{i}} 2\right) \underbrace{\mathbb{E}_{x_{j}}\left(\mathbb{E}_{x_{j+1}^{n}} 2-\mathbb{E}_{x_{j}} 2\right)}_{\mathbb{E}_{x_{j}} \Delta_{j}} \\
& \Rightarrow E_{x^{n}} \Delta_{i} \Delta_{j}=0 \text { for } j>i
\end{aligned}
$$

from (1),

$$
\begin{aligned}
& \operatorname{Van}(2)=\mathbb{E}\left[\sum_{i=1}^{n} \Delta_{i}^{2}\right] \\
&=\sum_{i=1}^{n} \operatorname{Van}\left(\Delta_{i}\right) \rightarrow \text { true even } \\
& \text { for non iid } x_{i}-x_{n}
\end{aligned}
$$

$$
z_{1} \cdots z_{n} \quad\left(x_{1} \cdots x_{n}\right)
$$

If $\mathbb{E}\left[z_{i+1} \mid x_{1} \cdots x_{i}\right]=z_{i} \quad \forall i$, we say thot $z_{i} \cdots z_{n}$ is a mantingole wint

$$
x_{1} \cdots x_{n}
$$

Theorum (Egron-Stein ingquality)
If $x_{1} \cdots x_{n}$ indpandent \& hove bod vombena

$$
\begin{aligned}
& g: Z^{n} \rightarrow \mathbb{R} \\
& z=g\left(x_{1} \cdots x_{n}\right) \\
& \operatorname{Var}(z) \leqslant \sum_{i=1}^{n} \mathbb{E}(\underbrace{}_{y_{i}=z-\mathbb{E}_{x_{i}} z})^{2}=\sum_{i=1}^{n} \mathbb{E}_{x^{n}}\left(f\left(x^{n}\right)-\mathbb{E}_{x_{i}} z f\left(x^{n}\right)^{n}\right. \\
&=\sum_{i=1}^{n} \operatorname{rar}\left(y_{i}\right)
\end{aligned}
$$

Dufine $z_{i}^{\prime}=g\left(x_{1} \cdots x_{i-1}, x_{i}^{\prime}, x_{i+1}-x_{n}\right)$
mplau X_{i} with an lid copy

$$
\begin{aligned}
& \operatorname{Var}(z) \leq \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left(z-z_{i}^{\prime}\right)^{2} \\
& \left.\varepsilon \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left(\left[z-z_{i}^{1}\right]_{+}\right)^{2} \right\rvert\, \begin{array}{l}
{[\alpha]_{+}=} \\
\max \{\alpha, 0\}
\end{array} \\
& \left.=\frac{1}{2} \sum_{i=1}^{n} \mathbb{E}\left(\left[z-z_{i}\right]_{-}\right)^{2} \right\rvert\, \begin{array}{c}
{[\alpha]_{-}=} \\
-[-\alpha]_{+}
\end{array} \\
& \varepsilon \sum_{i=1}^{n} \inf _{u_{i}=h\left(x_{1}-x_{i-1}, x_{i+1}-x_{n}\right)} \mathbb{E}\left[\left(2-v_{i}\right)^{2}\right] \\
& \operatorname{Van}\left(v_{i}\right)<\infty
\end{aligned}
$$

Suprose

$$
\begin{aligned}
& \quad\left|g\left(x_{1}-x_{n}\right)-g\left(x_{1} \cdots x_{i-1}, x_{i}^{1}, x_{i+1}-x_{n}\right)\right| \leq c_{i} \\
& \operatorname{Van}(2)=\operatorname{Var}\left(g\left(x^{n}\right)\right) \leqslant \frac{1}{2} \sum_{i=1}^{n} c_{i}^{2}
\end{aligned}
$$

Proof of Efron-Stein imequality

$$
\begin{aligned}
& \operatorname{Van}(z)=\sum_{i=1}^{n} E_{1} \Delta_{i}^{2} \leqslant \sum_{i=1}^{n} \mathbb{E}_{x^{n}}\left(g\left(x^{n}\right)-E_{x_{i}}\left(x^{2}\right)^{2}\right. \\
& \Delta_{i}=\mathbb{E}_{x_{i+1}^{n}} g\left(x^{n}\right)-\mathbb{E}_{x_{i}^{n}} g\left(x^{n}\right) \\
& =\mathbb{E}_{x_{i+1}^{n}}\left[g\left(x^{n}\right)-\mathbb{E}_{x_{i}} g\left(x^{n}\right)\right] \\
& \Delta_{i}^{2}=\left[E_{x_{i+1}^{n}}\left(g\left(x^{n}\right)-E_{x_{i}} g\left(x^{n}\right)\right)\right]^{2} \\
& \begin{array}{ll|l}
\varepsilon \mathbb{E}_{x_{i+n}^{n}}[\underbrace{\left(g\left(x^{n}\right)-E_{x_{i}} g\left(x^{n}\right)\right)^{2}}_{y_{i}}]
\end{array} \left\lvert\,\right.
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(g\left(x^{n}\right)\right) & \sum \sum_{i=1}^{n} \mathbb{F}_{x^{n}} \underbrace{\left(g\left(x^{n}\right)-\tilde{E}_{x_{i}} g\left(x^{n}\right)\right)^{2}} \\
z_{i}^{\prime} & =g\left(x_{1} \cdots x_{i-1}, x_{i}^{\prime}, x_{i+1} \cdots x_{n}\right)
\end{aligned}
$$

C1: Conditiond on $, z, z_{i}^{\prime}$ are iid

$$
\begin{aligned}
x_{i} \cdots x_{i-1}, x_{i+1} & \cdots x_{n} \\
& \mathbb{E}_{x_{i} x_{i}^{\prime}}\left(z_{i}-z_{i}^{\prime}\right)^{2}=2 \mathbb{E}_{x_{i}}\left(z_{i}-\left(\mathbb{E}_{x_{i}^{2}}^{2}\right)\right)^{2}
\end{aligned}
$$

Uaim: $x+y$ iid

$$
\operatorname{Var}(x)=\frac{1}{2} \mathbb{E}(x-4)^{2}
$$

If c_{1} is true,

$$
\operatorname{Var}(z) \leqslant \frac{1}{2} \sum_{i=1}^{n} \mathbb{E}_{x^{n}, x_{i}}\left(z-z_{i}^{\prime}\right)^{2}
$$

Phoof of daim: $\frac{1}{2} E(x-y)^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \mathbb{E}[(X-\mathbb{E} X)-(Y-\mathbb{E} Y)]^{2} \\
& =\frac{1}{2}\left[\begin{array}{c}
\mathbb{E}(X-\mathbb{E} X)^{2}+\mathbb{E}(Y-\mathbb{E} Y)^{2} \\
-2 \\
=\underbrace{\mathbb{E}\left((X-\mathbb{E} X)\left(Y-\mathbb{E}_{E} y\right)\right.}_{0}]
\end{array}\right. \\
& =\operatorname{Var}(X)
\end{aligned}
$$

HW: Show that if $X L_{4}$ are lid,

$$
\begin{aligned}
\frac{1}{2} \mathbb{E}(x-y)^{2} & =\mathbb{E}\left((x-y)_{+}\right)^{2} \\
& =\mathbb{E}((x-y)-)^{2} \\
(x-y)_{+} & =\max \{(x-y), 0\} \\
(x-y)_{-} & =\min \{(x-y), 0\}
\end{aligned}
$$

Encamper: Bin packing problem

$$
0.4,0.3,0.6,0.5
$$

$x_{1} \ldots x_{n}$ id $x_{i} \in[0,1]$
Goal: pack $x_{1} \cdots x_{n}$ into min \#bins.
(each bin has ale $=1$)
$g\left(x_{1}-x_{n}\right)=\min \#$ bins required
Ganging x_{i} can change $g\left(x_{1}-x_{n}\right)$ by at mort,

$$
\operatorname{Var}\left(g\left(x_{1}-x_{n}\right)\right) \leq \frac{n}{4}
$$

Enample 2: Longar common subsequeny

$$
\begin{aligned}
& x^{n}=\mu \underline{e} \underline{e} n \pm \\
& y^{n}=\underline{e} x \text { cellent } \\
& q\left(x^{n}, y^{n}\right)=\text { lungth of longat common } \\
& \text { subsepuenu }
\end{aligned}
$$

x^{r}, y^{n} iid
$\frac{\mathbb{E} g\left(x^{n}, y^{n}\right)}{n}$ is conjectured $\frac{2}{1+\sqrt{2}}$ for $\operatorname{Bar}\left(\frac{1}{2}\right)$

$$
\operatorname{Var}\left(g\left(x^{n}, 4^{n}\right)\right) \leqslant \frac{n}{2}
$$

$$
\begin{aligned}
& P_{n}\left[\left|g\left(x^{n}, y^{n}\right)-\mathbb{E} g\left(x^{n}, y^{n}\right)\right|>\delta \mathbb{E} g\left(x^{n}, y^{n}\right)\right] \\
& \varepsilon \frac{\operatorname{Valg})}{\delta^{2}\left(\mathbb{F}_{g}\right)^{2}}<\frac{\frac{n}{2}}{\delta^{2}\left((n)^{2}\right.} \\
&=\frac{1}{\left(\delta^{2}\right.} \frac{1}{n}
\end{aligned}
$$

McDiarmid's inquality If $x_{1} \ldots x_{n}$ are indponduar

$$
\begin{aligned}
& \begin{array}{l}
\lg \left(x_{1} \cdots x_{n}\right)-g\left(x_{1}-x_{i-1}, x_{i}\left(x_{i+1}-x_{n}\right) \mid \leq c_{i}\right. \\
\\
\forall x^{n}, x_{i}
\end{array} \\
& \text { then, } \\
& P_{n}\left[\left|g\left(x^{n}\right)-\mathbb{E}\left(x^{n}\right)\right|>t\right] \leq e^{-2 t^{2} / \sum_{i=1}^{n} c_{i}^{2}}
\end{aligned}
$$

In fact suppose

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(z-z_{i}^{\prime}\right)^{2} \varepsilon v^{2} \quad \text { with prob } 1, \\
& \operatorname{Pn}\left[\left|g\left(x^{n}\right)-\mathbb{E} g\left(x^{n}\right)\right|>t\right] \leqslant e^{-t^{2} / v^{2}}
\end{aligned}
$$

kend density eximation

$$
\begin{aligned}
& x_{1} \ldots x_{n} \sim \text { iid } \underbrace{}_{x} f_{x} \text { unknown } \\
& k: \mathbb{R} \rightarrow \mathbb{R} \text { smooth (Kernel) } \quad \int_{-\infty}^{\infty} k(x) d x=1 \\
& \phi_{n}(x)=\frac{1}{n h_{n}} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h_{n}}\right) \\
& k(x) \geqslant 0 \\
& \neq x \\
& \underbrace{\operatorname{man} x_{i}}_{x_{i}} \operatorname{var}=h_{n}^{2} \\
& \text { ferron }=\int_{-\infty}^{\infty}\left|f_{x}(x)-\phi_{n}(x)\right| d x
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{n}\left[E_{n-\infty}>F_{E}(\text { erna })+\delta\right] \\
& g\left(x_{1}-x_{n}\right)= \int_{-\infty}^{\infty}\left|f_{x}(x)-\phi_{n}(x)\right| d x \\
&\left|g\left(x_{1}-x_{n}\right)-g\left(x_{1}-x_{i-1}, x_{1}^{\prime}, x_{i+1}-x_{n}\right)\right| \\
&=\left|\int_{-\infty}^{\infty}\right| f_{x}(x)-\phi_{n}(x)\left|-\left|f_{x}(x)-\phi_{n}^{\prime}(x)\right| d x\right| \\
& \leqslant \int_{-\infty}^{\infty}\left|f_{x}(x)-\phi_{n}(x)-\left(f_{x}(x)-\phi_{n}^{\prime}(x)\right)\right| d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty}\left|\phi_{n}^{\prime}(x)-\phi_{n}(x)\right| d x \\
& =\int_{-\infty}^{\infty}\left|\frac{1}{n h_{n}}\left(k\left(\frac{x-x_{i}}{h_{n}}\right)-k\left(\frac{x-x_{i}^{\prime}}{h_{n}}\right)\right)\right| d x \\
& \varepsilon \int_{-\infty}^{\infty} \frac{1}{n h_{n}}\left(k\left(\frac{x-x_{i}}{h_{n}}\right)+k\left(\frac{x-x_{i}^{\prime}}{h_{n}}\right)\right) d x \\
& \varepsilon \int_{-\infty}^{\infty} \frac{1}{n}\left(k(y)+\frac{x-x_{i}}{h_{n}}+k\left(y^{\prime}\right)\right) d y=\frac{d x}{h_{n}}
\end{aligned}
$$

$$
\begin{aligned}
& E_{-r n e}=\int_{-\infty}^{\infty}\left|f_{x}(x)-\phi_{n}(x)\right| d x \leqslant \int_{-\infty}^{\infty}\left(f_{x}(x)+\phi_{r}(x)\right) d x \\
& \varepsilon 2 \\
& \text { Eever } \leq 2 \\
& \operatorname{Van}(\text { uron }) \leq \frac{1}{4} \times \sum_{i=1}^{n} c_{1}^{2} \varepsilon \frac{1}{n} \\
& \text { Pr [Erion } \geqslant E \operatorname{Earar}(1+\delta)] \leqslant \frac{1}{\delta^{2} n} \\
& e^{-\delta^{2} n}
\end{aligned}
$$

Empinical Risk Minimization
Clasification

$$
\begin{aligned}
& \sum_{\text {image }}^{x}{ }^{\downarrow} \text { is object phisent } \\
& x \in \mathcal{X} \quad y \in\{1,-1\}
\end{aligned}
$$

$$
(x, y) \sim p_{x y}
$$

Gool: Design $g: \nexists \rightarrow\{1,-1\}$
classifier

$$
R_{g}=\operatorname{Pr}[g(x) \neq 4] \rightarrow \text { nisk for } \text { classit }
$$ Clasisitien g

$$
\begin{aligned}
& h_{g}=E l(g(x), y) \\
& \mathbb{E}(x, x y)=\mathbb{E} \mathcal{1}_{\{g(x) \neq 4\}}
\end{aligned}
$$

Suppose that we knew $p_{x y}$. What of minimizes Ry?

But we do nat have $p_{x y}$
Dotask: $\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right) \cdots\left(x_{n}, y_{n}\right) \sim$ rid $\left(p_{x y}\right)$

$$
\underset{\substack{v \\ \text { empiriced } \\ \text { nive }}}{R_{n}(g)}=\underbrace{\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{q\left(x_{i}\right) \neq y_{i}\right\}}^{n}}_{\substack{\text { raction of time } \\ \text { prudiction is wrong }}} \rightarrow \text { Empirid }
$$

Empinical nisle minimization

$$
g_{n}=\underset{g \in y}{\operatorname{angmin}} R_{n}(g)
$$

Whor $\left|R(g)-R_{n}(q)\right|=\left\lvert\, E 1_{i g(x) \in y\}}-\frac{1}{n} \sum_{i=1}^{n} 1_{f q(x) r}\right.$.
con we soy dowr

$$
\mathbb{E} R_{n}(g)=R(g)
$$

$$
\begin{aligned}
R_{n}(g) & =\frac{1}{n} \sum_{i=n}^{n} 1_{\left\{g\left(x_{i}\right) \neq y_{i}\right\}} \\
R(g) & =\mathbb{E}_{x y} 1_{\{q(x) \neq 4\}}=\operatorname{Pr}[g(x) \neq 4] \\
\operatorname{Pr}\left[\mid R_{n}(q)\right. & -R(q) \mid \geqslant \varepsilon R((y)] \varepsilon 2 e^{-\left(\varepsilon^{2} n R(p)\right.}
\end{aligned}
$$

Want :

$$
\begin{aligned}
& R_{n}\left(g_{n}\right)-\underset{\text { optimum }}{R\left(g^{x}\right)} \\
& \left.\operatorname{angmin}_{g \in f=1} \sum_{n}^{n} 1_{i=1}^{n}\left(x_{i}\right)+y_{i}\right\} \\
& \operatorname{argmin} Z\left(g, x^{n}, y^{n}\right)
\end{aligned}
$$

Toy exampl: $\left(x, y_{n}\right) \cdots\left(x_{n} y_{n}\right)$

$$
\begin{aligned}
& y=\left\{g_{1}, g_{-1}\right\} \\
& g_{1}(x)=1 \quad \forall x \\
& g_{-1}(x)=-1 \quad \forall x \\
& P(y=1)=\alpha \quad P(y=-1)=1-\alpha \\
& \sum_{i=1}^{n} 1_{\{g(x) \neq y,\}}<\begin{array}{ll}
\operatorname{Bin}(n, 1-\alpha) & \text { if } g=g_{1} \\
\operatorname{Bin}(n, \alpha) & \text { if } g=g_{-1}
\end{array} \\
& \min _{g \in g, 8 \rightarrow \pi} \sum_{i=1}^{n} 1_{\left\{g\left(x_{i}\right) \neq y_{i}\right\}}=\min \left\{\# \notin \mid i_{\#(-1),}\right\}
\end{aligned}
$$

$\operatorname{lig}^{\ln (y)} R(g)$

$$
\begin{aligned}
& R_{n}(q)=\frac{1}{n} \sum_{i=1}^{n} 1_{\left\{g\left(x_{i} \neq y_{i}\right)\right.} \\
& g_{n}=\operatorname{aog}_{g=y} \operatorname{gin}_{n} R_{n}(g) \\
& g^{*}=\underset{g^{*} g \mathrm{~g}}{\operatorname{angmin}} \operatorname{prn}_{n}[g(x)+y]=\begin{array}{l}
R\left(g^{*}\right) \\
R_{n}\left(g^{y}\right)
\end{array} \\
& R^{*}=\underset{8}{\operatorname{aymin}} \operatorname{Pn}[g(x) \neq 4]
\end{aligned}
$$

Obsuroblu: $x^{n}, y^{n} \quad g_{n} \quad R_{n}\left(g_{n}\right)$

Performance of g_{n} on a (new) test sample:

$$
\begin{aligned}
& \quad P_{n}\left[g_{n}(x) \neq 4\right]=R\left(g_{n}\right) \\
& \left|R_{n}\left(g_{n}\right)-R\left(g_{n}\right)\right| \\
& R\left(g_{n}\right)-R\left(g^{*}\right) \quad \text { (test) }
\end{aligned}
$$

\min (Test) risk
for g from firm all classifies in y

Good: ST $R\left(g_{n}\right)-R\left(g^{*}\right)$ is small OR . What is min n of $R\left(g_{n}\right) \approx R\left(g^{2 \cdot}\right)$ whip

We know: for a givengty

$$
P_{n}[|R(g)-R(g)|>\varepsilon R(g)]=e^{-\operatorname{en} \varepsilon^{2}}
$$

for any g, $R(g)=R_{n}(g)+R(g)-R_{n}(g)$

$$
\leq R_{n}(g)+\sup _{g \in g}\left(R(g)-R_{n}(g)\right)
$$

Want:

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{sug}_{g \in y}\left(R(g)-R_{n}(g)\right)>\varepsilon\right] \\
& \varepsilon \sum_{g \in g} \operatorname{Pr}\left[R(g)-R_{n}(g)>\varepsilon\right] \varepsilon|g| e^{-n<\varepsilon^{2}}
\end{aligned}
$$

Theoum: if y is pinite.

$$
P n\left[R(q) \geq R_{n}(\varphi)+2 \sqrt{\frac{\lg |y|+\log ^{2} / \sigma}{2 n}}\right] \leq \sigma
$$

$$
\operatorname{Pr}\left[R_{n}(q) \geqslant R\left(g^{x}\right)+2 \sqrt{\frac{\log (g)+\log q^{2}}{2} \delta}\right] \leq \delta
$$

What if y is infinite

$$
\begin{aligned}
& \eta_{g}\left(x_{i}, y_{i}\right)=1_{\left\{g\left(x_{i}\right) \neq y_{i}\right\}} \\
& 7_{x_{i}, m^{n}}=\left\{\left(\eta_{g}\left(x_{1}, y_{i}\right) \cdots \eta_{g}\left(x_{n} y_{n}\right)\right): g(-y\}\right. \\
& \left|F_{x^{n}, y^{n}}\right|=2^{n}
\end{aligned}
$$

For given of
Growth function. $S_{y}=\sup _{(x, y)} \mathcal{F}_{n, y n} \rightarrow$ Measure how diverse g is

Theorum (Vaprik -Cherronenkis)

$$
\left.\begin{array}{c}
P_{r}\left[R(g)>R_{n}(g)+2 \sqrt{\frac{2 \log S_{g}(2 n)+\log \frac{2}{\delta}}{n}}\right. \\
\varepsilon_{\Sigma \delta}
\end{array} \text { pr any } g \in y\right]
$$

- Dntroduction to Statistical Learning Theory Vappik, SLT

