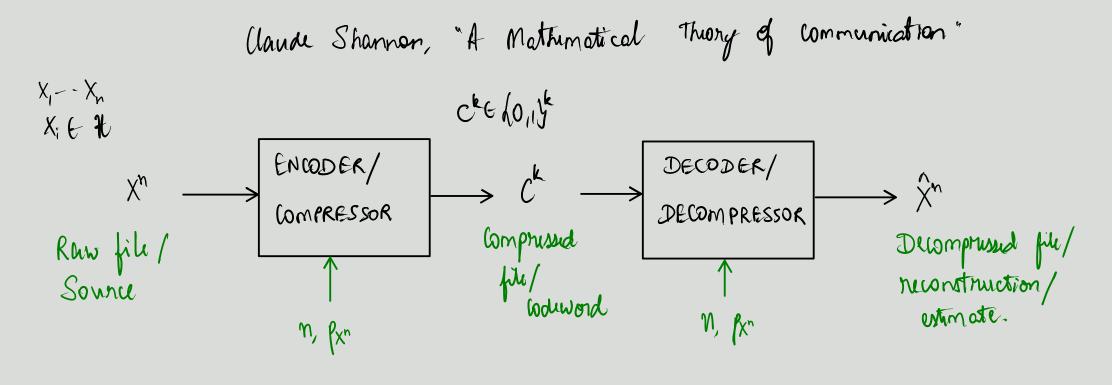
Source Coding/Data Compression



 p_{xn} : Sown distribution Universal Memoryless: $X^n \sim iid(p_x)$

Rate: $R = \frac{k}{n}$

Assumptions

- ① Xⁿ is random
- @ Xn ~ iid (px) ×

1xn

3 px no known to Enc DEC X

Fixed-length compression:

Having Poter I I MB
$$\frac{100 \, \text{kB}}{100 \, \text{kB}}$$
 $R = \frac{k}{n}$

Expected light =
$$\mathbb{E} k(X^n)$$

 k com vory wenif n, p_{X^n} find

$$\frac{1}{X_{\mu} = X_{\nu}}$$

2. Lossy Compression:

$$X^n \neq X^n$$

$$\mathbb{E} \ q(x, x, x) < 2$$

MSD =
$$\mathbb{E}[\hat{X}^n - X^n]^n$$
 = $\mathbb{E}[\hat{X}^n - \hat{X}_i]^n$

Ray =
$$\frac{\mathbb{E}_k(X^n)}{n}$$

Optimal variable-length compression

Assumptions: (n, pxn) is known Computational power - fru. Want Eklx") to be as small as possible. $p_{X^n}(N^n) \qquad \Rightarrow \qquad k(X^n) \downarrow$ $X^n \in \mathcal{H}^n \qquad \text{for } \{0,1,2-a\}$ $x^{n}(y^{n}(x))$ $\mathcal{K}(\iota)$ (xr (W(2)) 10(Q+1)")

V ^(1)	ΙO	0	ø		
V) (2)	0 1	1	O	Ek(XT)	
W^(3)	0 0	00	(2 (Cr1) ⁿ	k(wli))
NC(4)	1 1	01	0 0	ĺη	Rn(NOlis)
N()	('	10	0 (IXACIO (13)
(1-1	(()		
1		0 0 0	(\		
		001	000		
		010			
		;			
		(11			
		0000			
		(

(i) (y

$$k(p(1))$$
 = 0
 $k(p(2))$ = 1
 $k(p(3))$ = 1
 4 = 2
 5 = 2
 7 = 2
 8 = 2
 8 = 2
 15 = 2
 16 = 4
 16 = 4

$$k(x(i)) = \lfloor \log_i \rfloor$$

$$k(N(i)) = \lfloor log_i \rfloor$$

$$px(N(i)) = \lfloor log_i \rfloor$$

$$px(N(i)) = log_i$$

(laim:
$$P_{Xn}(w(9)) \leq \frac{1}{i}$$

$$P_{Xn}(1) \leq 1 \qquad P_{Xn}(2) \leq \frac{1}{2}$$

$$P_{Xn}(3) \leq \frac{1}{3}$$

EXPECTED LENGTH

$$Ek(X^n) = \sum_{i \neq j} k(x^n(i)) p_{X^n}(x^n(i))$$
 $= \sum_{i \neq j} p_{X^n}(x^n(i)) p_{X^n}(x^n(i))$
 $= \sum_$

In general in
$$||f_{xn}(i)|| > \frac{1}{i}$$
 for some i
 $||f_{xn}(i)|| > ||f_{xn}(i)|| > \frac{1}{i}$
 $||f_{xn}(i)|| = ||f_{xn}(i)|| + ||f_{xn}(i)|| + - + ||f_{xn}(i)|| + ||f_{xn}($

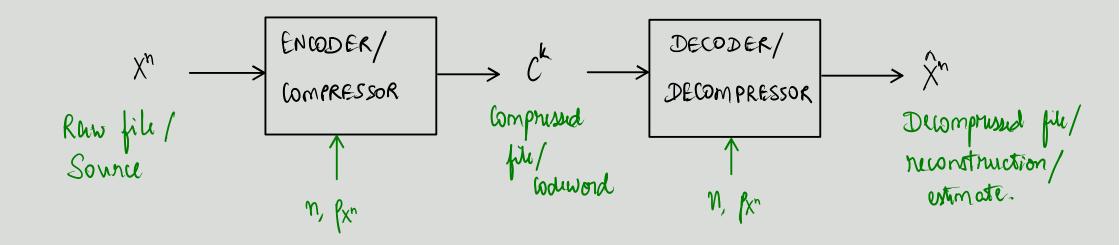
$$p_{xn}(i) \leq \frac{1}{i} \Rightarrow i \leq \frac{1}{p_{xn}(i)} \geq \frac{1}{p_{xn}(x_0(i))}$$

Rong =
$$\lim_{n\to\infty} \frac{\mathbb{E} k(x^n)}{n} = \lim_{n\to\infty} \frac{\mathbb{H}(x^n)}{n} \to \frac{\mathbb{E} r + Ro ry}{RATE}$$

Can construct compressor for which $Rong = Entroly$ RATE.

For fid X7,

 $\lim_{n\to\infty}\frac{H(X^n)}{n} = H(X) = \sum_{n\in\mathbb{A}} p_x(n) \lim_{n\to\infty} \frac{1}{p_x(n)}$



Lossless source coding theorem:

for every $\varepsilon>0$, (fixed length compressor)

Adviserability: We can construct (ENC, DEC) of $R = H(X) + \varepsilon$ for every $(\varepsilon>0)$ as $n \to \infty$ Converse: for every $(\varepsilon>0)$ with R < H(X) $R \to 1$ as $n \to \infty$

$$H(X^{n}) = H(X^{n}) = nH(X) \Rightarrow \frac{H(X^{n})}{n} = H(X)$$

$$H(X^{n}) = \sum_{n} p(n) \frac{1}{n} p(n)$$

$$= \sum_{n} \frac{1}{n} p(n) \frac{1}{n} p(n)$$

$$= \sum_{n} \frac{1}{n} p(n) \frac{1}{n} p(n)$$

$$= \sum_{n} \frac{1}{n} p(n) \frac{1}{n} p(n)$$

$$= \sum_{n} p(n) \frac{1}{n} p(n) \frac{1}{n} p(n)$$

Entropy is non-negative

X~PX H(X) = I k(n) log - L

 \Rightarrow $1 \leq \frac{1}{k(w)}$

 $H(X) > \frac{1}{N} R(N) \log \frac{1}{R(N)} > 0$

Entropy 1

H(px) -> Better notation for entropy H(x)actually a function of px to not x.

(x) (y) = 0

him phy. + = 0

Entropy is invortigat to rubbelling

Entropy is a function only of the probability multiser
$$\{1, \frac{1}{4}, \frac{1}{4}\}$$

$$f_{X}(X) \geq \frac{1}{m}$$
 426 %

$$\int X(n) = \left(\frac{1}{2}\right)^n$$

Geometric rv:
$$p_X(x) = \left(\frac{1}{2}\right)^x$$
 $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^x = 1$

$$H(x) = \sum_{N=1}^{\infty} \frac{1}{2^{N}} \log \frac{1}{2^{N}} = \sum_{N=1}^{\infty} \frac{N}{2^{N}} = 2 \text{ bits.}$$

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = 2 \text{ bits}$$

$$\sum_{N=1}^{\infty} \frac{1}{2^{n}}$$

$$\sum_{N=1}^{\infty} np^{n} = p \sum_{N=1}^{\infty} np^{n} = p \frac{d}{dp} \left(\sum_{N=1}^{\infty} p^{n}\right)$$

$$= p \frac{d}{dp} \left(\frac{1}{1-p}\right) = p \left(\frac{1}{1-p} + \frac{1}{1-p} + \frac{1}{1-p}\right)$$

$$= p \times \frac{1-1+p}{(1-p)^{2}}$$

$$= p \times \frac{1-1+p}{(1-p)$$

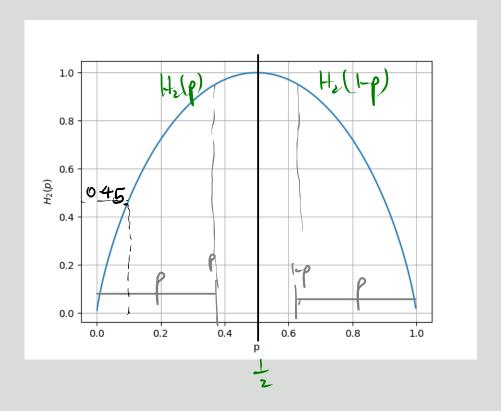
[log m]

Fixed-length compression

k-1 fr of n, fx X1--Xn cke house $X_i \in \mathcal{H}$ ENCODER/ DECODER/ χ_{μ} COMPRESSOR DECOMPRESSOR Compressed Row file/ Decompressed file/ file/ bodeword neconstruction/ Sounce extracte. M, Pxn n, Pxn le = Pn[x + x] k-find depends Kn ~ iid (Px) X; ~ Px small. Pe - 0 small lim k = R N>> 1 V -> P h -> 00

Compressing Bernoulli(p) sequences

$$p_{X}(1) = p$$
, $p_{X}(0) = 1-p$.



GOALI Construct ENC, DEC st $0 \xrightarrow{k} \to H(x) \qquad \text{as} \quad n \to \infty$ Structure of ANY fined-lingth comprisson X" ~ iid Bor(0-1) +(0.1) ~ 0.45 n -> 0.45n $\chi^n \longrightarrow \ell^{0.45n}$ $\chi^{1000} \rightarrow C^{450} \rightarrow \chi^{100}$ Pn[2000 \$ X600) < 10-2 k 20 EXTREME 1 pz0 n kzo

Assumptions:
$$(n, p)$$
 known

Comprised file:

 (n, p) known

(an be ignored if $n > 21$.

$$a \rightarrow 0$$
 $b \rightarrow 10$
 $c \rightarrow 110$
 $d \rightarrow 1100$
 2^{8}
 $c \rightarrow 1110$

$$X^n \rightarrow iid \ Bur(p)$$
 $\# 1'o \approx np$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 $\ln [\# 1'o m \times -np] > n \in J \rightarrow 0$
 \ln

N(181)

~ nH(x) z n Hzp