Channel Coding

Channel

Channed is spacified by $\left(x, y, p_{y^{n}\left(x^{n}\right)}\right)$
Asumptions:
(1) Time slotted/discrute

(2) $P_{y^{n} \|} x^{\wedge}$ known

Discrute Memoryless Channd (DMC)

$$
P_{y^{n} \mid x^{n}}\left(y^{n} \mid n^{n}\right)=\prod_{i n}^{n} f_{y \mid x}\left(y_{i} \mid x_{i}\right)
$$

x_{1}	x_{2}	x_{3}	\cdots	x_{n}
\downarrow	\downarrow	\downarrow		\downarrow
y_{1}	y_{2}	y_{3}		y_{n}

$x^{n} \rightarrow \overline{\text { CHANNEG }} \rightarrow Y^{n}$

$$
\begin{aligned}
p_{y^{n} \mid x^{n}}\left(y^{n} \mid x^{n}\right) & =p_{y \mid x}\left(y_{1} \mid x_{1}\right) p_{y \mid x}\left(y_{2} \mid x_{2}\right) \cdots p_{y \mid x}\left(y_{n} \mid x_{n}\right) \\
& =\prod_{i=1}^{n} p_{4 \mid x}\left(y_{i} \mid x_{i}\right]
\end{aligned}
$$

$P_{y 1 x} \rightarrow$ Channed law of The DMC Transition probcoblitices
(1) Binany Symmatric Channd with chosover prosability p

$$
\begin{array}{lllllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{6} & x_{6} & x_{7} \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
\downarrow & \downarrow & \downarrow & \downarrow & & \downarrow & 0
\end{array}
$$

$$
\left.\begin{array}{lllllllllll}
x^{n} & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right] \begin{array}{llllllll}
y^{n} & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}
$$

$\begin{aligned} & \text { Hamming } \\ & \text { distiona }\end{aligned} d_{H}\left(x^{n}, y^{n}\right)=\#$ of location in which x^{n}, y^{n}

$$
\begin{aligned}
d_{H}(01010,11011) & =2 \\
d_{H}(011011,100100) & =6 \\
\operatorname{pr}^{m}\left(x^{2}|101| 011\right) & =p^{2}(1-p) \\
\left.f_{p 11} \times 101010 \mid 11011\right) & =p^{2}(1-p)^{3}
\end{aligned}
$$

$$
p_{y^{n} \mid x^{n}}\left(y^{n} \mid x^{n}\right)=p^{d_{n}\left(x^{n}, y\right)}(1-p)^{n-d_{n}\left(x^{n}, y^{n}\right)}
$$

(9) Binany Enaswre Channd with eraswre prosobility of

$$
\begin{array}{llllllll}
0 & 1 & 0 & 1 & 3 & 0 & 1 & 0 \\
0 & e & 0 & 1 & e & 0 & 1 & 0
\end{array}
$$

bi ary ex sue

$$
\begin{aligned}
f=\{0,1\} \quad y=\{0,1, e\} & p_{y \mid x}(0 \mid 0) \\
& =1-p=p_{y \mid x}(1 \mid 1) \\
& f_{y \mid x}(e \mid 0)=\rho=f_{y \mid x}(e \mid 1) \\
& f_{y \mid x}(1 \mid 0)=0=f_{y \mid x}(0 \mid 1)
\end{aligned}
$$

$$
\operatorname{P}_{y^{n}} x^{n}(\operatorname{eo} 10 \mid 0110)=0
$$

0	1	1	
\downarrow	\downarrow	\downarrow	\downarrow

$$
e \quad 0 \quad 10
$$

dropped.

\square	\square	\square
\downarrow		
\square		

$$
\begin{aligned}
& \text { ensure } \Xi \text { packet drop } \\
& p_{y n \mid x^{n}}(\text { ole } 10110)=p^{2}(1-p)^{2} \\
& 01110 \\
& \begin{array}{llll}
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & e & 1 & l
\end{array} \\
& \int y^{n}\left|x^{n}\right| y^{n}\left|x^{n}\right|= \begin{cases}f^{\eta}(1-p)^{n-\eta}, & \left(x^{n}, y^{n}\right) \\
0, & \text { eve. }\end{cases} \\
& \eta\left(y^{n}, x^{n}\right)=\# \text { of erasures }
\end{aligned}
$$

(3) Additive White Graussian Noise (AWGN) chanme

$$
y^{n}=x^{n}+z^{n}
$$

$z_{i} \sim W\left(0, \sigma^{2}\right)$

$$
\begin{aligned}
& \text { Aw Gry } \\
& Y_{i}=X_{i}+z_{i}, \quad z_{i} \sim \operatorname{iid} N\left(0, \sigma^{2}\right) \\
& \text { whanal } \\
& \text { Qusk/PAm/ } \quad x_{i} \in \text { Consrecuction } \\
& \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \varepsilon p \\
& \text { Qam/ } \\
& \left\{\begin{array}{ll}
1+\sqrt{2} j & 1-\sqrt{2} j \\
-1+\sqrt{2} j & 1-1-\sqrt{2} j
\end{array}\right\} \\
& y_{i}=x_{i}+z_{i} \quad z_{i} \sim \operatorname{\sim id} \operatorname{CN}\left(0, \sigma^{\nu}\right) \\
& =z_{i}^{\text {nol }}+j z_{i}^{\text {im }} \\
& Z_{i}^{\prime}, z_{i}^{\text {im }} \text { iid } W\left(0, \sigma^{2} / 2\right)
\end{aligned}
$$

Power-consinained AWGW channls

$$
\begin{gathered}
X^{n} \in \mathbb{R}^{n} \\
\frac{1}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \varepsilon \rho} \\
y_{i}=X_{i}+z_{i} \quad z_{i} \text { iid } W\left(0, \sigma^{2}\right) \\
t=\mathbb{R}, y=\mathbb{R}, \quad f_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(y}
\end{gathered}
$$

Fading Channd

$$
\begin{aligned}
& y_{i}=h_{i} x_{i}+z_{i} \\
& y_{i}=H_{i} X_{i}+z_{i}
\end{aligned}
$$

0 fast fading channe:

$$
\begin{aligned}
& \text { (1) } Y_{i}=h_{i} X_{i}+z_{i} \\
& \left.z_{i} \sim \omega\left(0, \sigma^{2}\right)\right\} \text { fid } \quad k, y=\mathbb{R} \\
& h_{i} r \operatorname{iid} f_{1+} \\
& \text { (2) } y_{i}=h_{i} x_{i}+z_{i} \\
& z_{i}+\text { iid } \operatorname{CW}\left(10, \sigma^{2}\right) \\
& h_{i} \sim \text { iid } f_{H} \\
& y^{n} \in \mathbb{C}^{n} \quad f_{y^{n}} x^{n} \rightarrow D M C \\
& \equiv \tilde{Y}^{2 n} \in \mathbb{R}^{2 n} \quad P \tilde{y}^{2 n} / \tilde{x}^{2 n} \rightarrow \text { NOT a DMC } \\
& \text { Complex } x, y=c
\end{aligned}
$$

Frequency sclutive fading,

$$
y_{i}=h_{0} x_{i}+h_{1} x_{i-1}+h_{2} x_{i-2}+z_{i}
$$

NOT a DME
Has MEMORY
wod round recieved
decodud mas/ stimate

CODNG
SCHEME ENC: $\{0,1\}^{k} \rightarrow \chi^{n}$

$$
D E C: y^{n} \rightarrow\{0,1\}^{k}
$$

(1) Rate: $\frac{k}{n} \rightarrow$ \#o infobils sent per channul use
(2) Probability of evion: $P_{e}=P_{n}\left[\hat{m}^{k} \neq m^{k}\right]$

$$
=\sum_{m^{k} \in\{0,1\}^{n}} \operatorname{Pr}\left[\hat{M}^{k} \neq M^{k} \mid M^{k}=m^{k}\right] \frac{1}{2^{k}}
$$

$$
\begin{aligned}
& P\left(\hat{m}^{2}+m k \mid m^{2}=00\right) p\left(m^{2}=00\right) \\
&+ p\left(-1+\mid m^{k}=01\right) p\left(m^{k}=01\right) \\
&+ P\left(-\cdots \mid m^{2}=10\right) \ldots \\
& \vdots \\
& P_{e}^{\text {max }}=\max _{m^{k}} \operatorname{Pr}\left[\hat{m}^{k}+m^{2} / m^{k}=m^{k}\right]
\end{aligned} \quad p\left(m^{k}=m^{k}\right)=\frac{1}{2^{k}}
$$

Q: if we want $p_{c} \rightarrow 0$ a $n \rightarrow \infty$,
What is $\operatorname{mon} \frac{k}{n} \rightarrow$? $\max _{\substack{\rightarrow \rightarrow 0}} \lim _{n \rightarrow \infty} R$

Encoden

Visualigation:

$$
\begin{aligned}
\underline{000 \cdot 0} \longrightarrow & +\underline{\sqrt{\rho}}-\underline{m^{\rho}}+\underline{x^{n}}+\sqrt{\rho}+\sqrt{\rho} \\
\rho & =4 \\
& (2,-2,2,-2,2) \rightarrow X^{n}
\end{aligned}
$$

$y(t)$

$$
\begin{aligned}
& \begin{array}{l}
\text { Inpur to } \\
\text { encodar }
\end{array} \rightarrow \begin{array}{l}
\mathrm{O} / \mathrm{p} \text { of } \mathrm{ENC} \\
\mathrm{i} / \mathrm{p} \text { to } \mathrm{CH} \mathrm{gmL} \\
\mathrm{I} / \mathrm{p} \text { to } \mathrm{DEC} \mathrm{CH} \rightarrow
\end{array} \begin{array}{c}
\mathrm{o} / \mathrm{p} \text { of } \\
\text { DEC }
\end{array} \\
& \left.x(1), x_{2}\right) \sim x(n) \quad y(1) \cdots y(n)
\end{aligned}
$$

$y(t)$ dupends ong on $u(t)$

$$
00101 \longmapsto+\sqrt{p}, \sqrt{p},-\sqrt{p},
$$

$m^{k} \quad x^{n}$ are sincy, linar code.

Channel coding theorem
(1) for any DMC $p_{4} \mid x$ an (x, y), is is possible to construct (ENC, DEC) AT

$$
P_{e}=\operatorname{Pr}\left[\hat{m}^{k} \neq m^{k}\right] \rightarrow 0 \quad m \quad n \rightarrow \infty
$$

as long as $R<C$

1948

CAPACITY OF CHANNEL $P_{Y I X}$

Mutual : $I(x ; y)=\sum_{x, y} p_{x y}(x, y) \log _{2} \operatorname{prformation~}^{\rho_{x y}(x, y)}$
$p_{x}(x) p_{y}(y)$
(0) If $R>C$, Then NO $\left(E N C, D F_{C} C\right) \quad \begin{gathered}\text { can achive } \\ P_{e} \rightarrow 0\end{gathered}$

$$
X^{n}=\underset{n \times k}{G} M^{k} \quad \text { Lirian code }
$$

How do we "code"? Start with a simple approach...

$$
X_{i} \sim \operatorname{Bor}\left(y_{2}\right) \longrightarrow \operatorname{BSC}(p) \rightarrow u_{i}
$$

NO CoDing: $P_{e}=\operatorname{Pr}\left[y_{i} \neq x_{i}\right]=p=0.1$

$$
\text { No coding: } \begin{gathered}
X^{n} \sim \text { iid } \operatorname{Ber}(1 / 2) \\
010 \cdots 0
\end{gathered} \rightarrow \overline{\operatorname{BSL}(p)} \rightarrow y^{n}=\hat{X}^{n}
$$

$P_{e}=\operatorname{Pr}\left[Y^{n} \neq X^{n}\right]=\operatorname{Pr}[$ any of the bis is flipped $]$
Repetition wades

DEC: Mogority, $y^{\alpha} \quad$ if $\# 1$ is $\geqslant \alpha / 2,0 / p 1$

$$
\begin{aligned}
& M_{i} \rightarrow X_{i}(1) \cdots X_{i}(\alpha) \longrightarrow Y_{i}(1) \cdots Y_{i}(\alpha) \\
& \left(m_{i} M_{i} \cdots m_{i}\right) \\
& 0 \rightarrow 0000 \rightarrow 0100 \text { DFCLARE } 0 \\
& 0111 \text { DEU } 1 \\
& \operatorname{Pr}[\# \text { of fips }=j]
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow 0 \text { as } \alpha \rightarrow \infty
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}\left[\# \text { bitplph } \left[\begin{array}{l}
\\
\operatorname{E} d_{H}\left(x^{n}, y^{n}\right)
\end{array}\right.\right. & = \\
\operatorname{Pr}\left[d_{H}\left(x^{n}, y^{n}\right)>n p(1+\varepsilon)\right] & \rightarrow 0
\end{aligned}
$$

DEC: Bounded Hamming dustance decodor
If there is unique ofw iv ar

$$
d\left(x^{n}, y^{n}\right) \leqslant n p(1+\varepsilon) \text {, outpur } x^{n}
$$

Ele coren

Intrutions

$$
2^{k} \approx \frac{\operatorname{rd}\left(X^{n}\right)}{\operatorname{rd}(\text { Ball })}
$$

