EE5350 Error Correcting Codes

Course webpage:

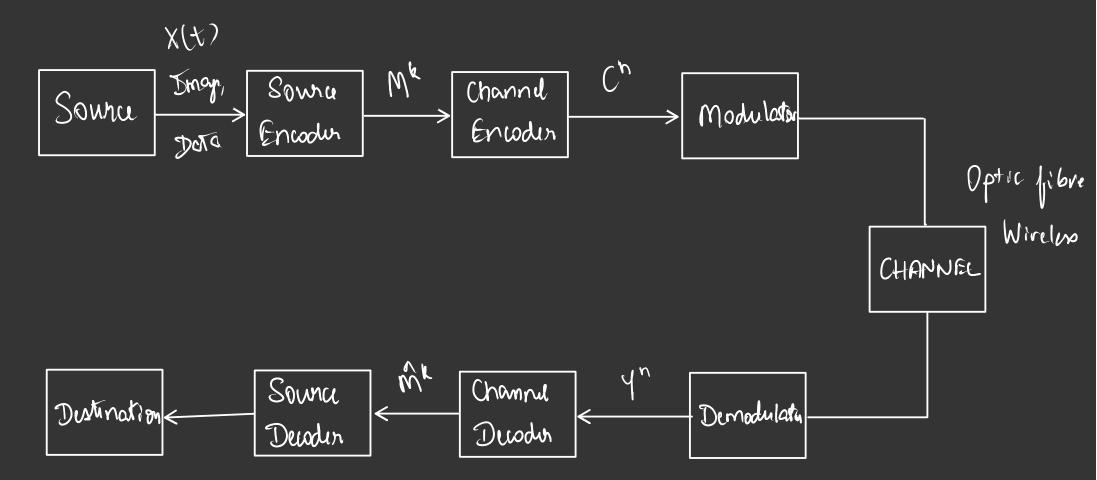
https://people.iith.ac.in/shashankvatedka/html/courses/2022/EE5350/course_details.html

Homework submissions/announcements: Google classroom

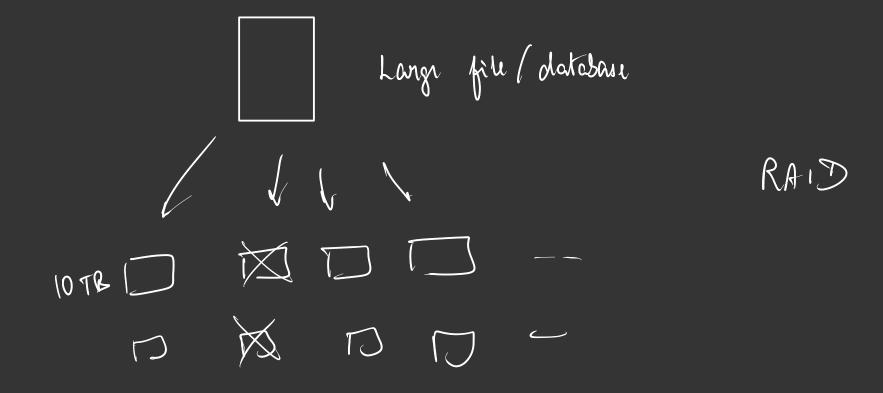
You should take this course if:

- 1. You like math & programming
- 2. You are interested in storage/communication systems, or
- 3. You are interested in theoretical computer science/cryptography

Example 1: Digital communication system

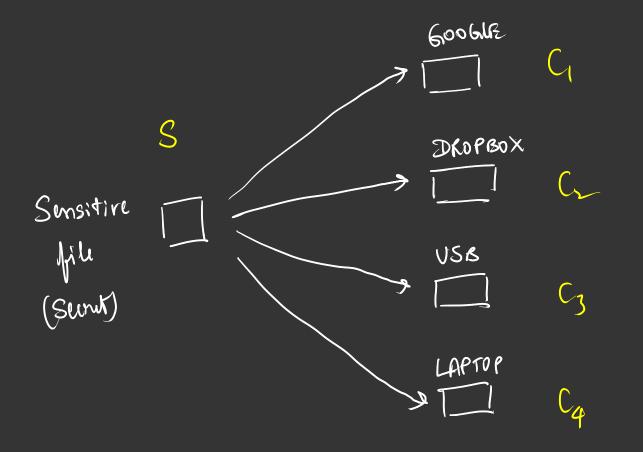


Example 2: Distributed storage systems



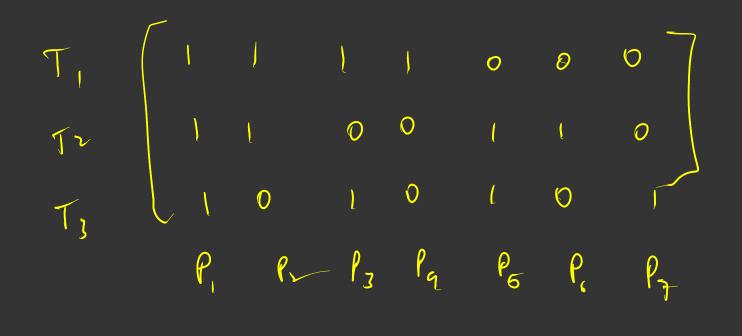
Example 3: Bar codes/QR codes/CDs/DVDs/blue-ray discs

Example 4: Secret sharing



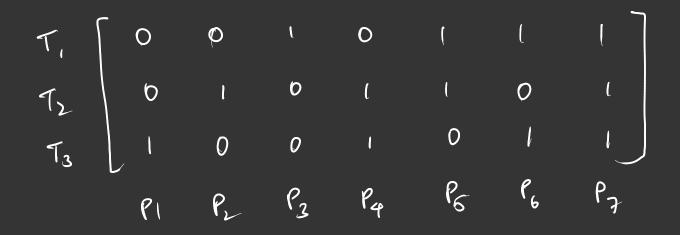
Example 5: Group testing

975 < 1 injected o X 0)/ P7 Only 3 tuting kits. P۱ Pv - $(P_1P_2P_3P_4)$ J1 1 $\left(\begin{array}{c} \rho_{6} \\ \rho_{6} \end{array} \right)$ $\left(\begin{array}{c} \mathbf{P}_{1} & \mathbf{P}_{2} \end{array} \right)$ 4 P, +/ ` 4 4 NO $(\mathbf{r}_{\mathbf{z}})$ P P₅



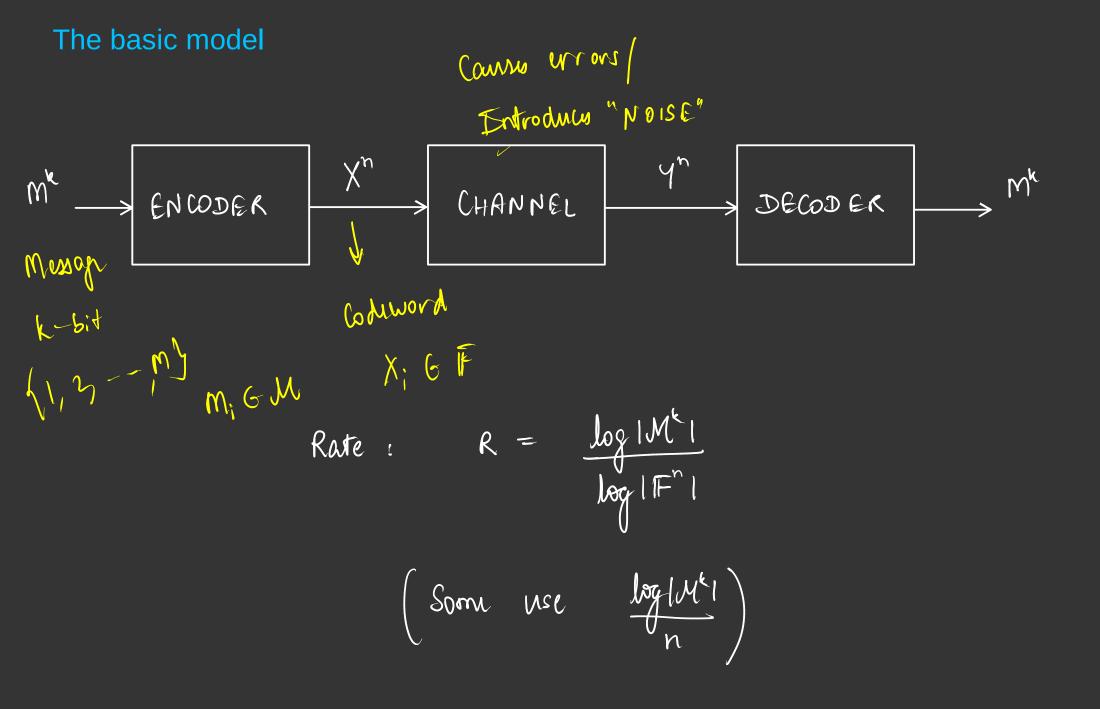
(7,9,3) Hamming Code

•

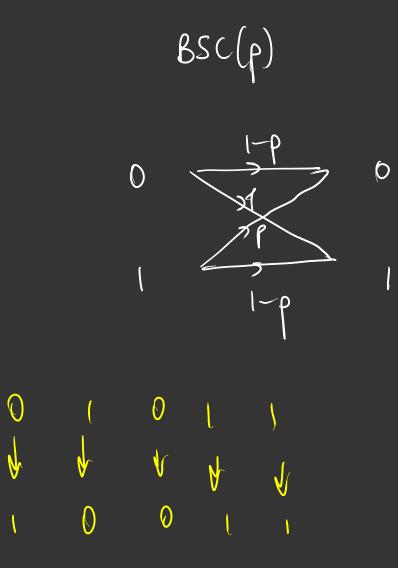


Example 6: Cryptography

... and many others (hashing, compressed sensing, etc.)

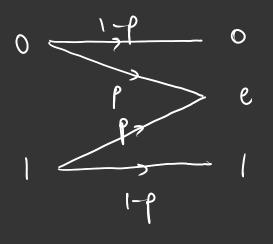


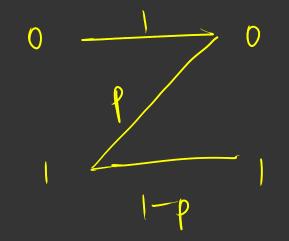
Example channel 1: Binary symmetric channel



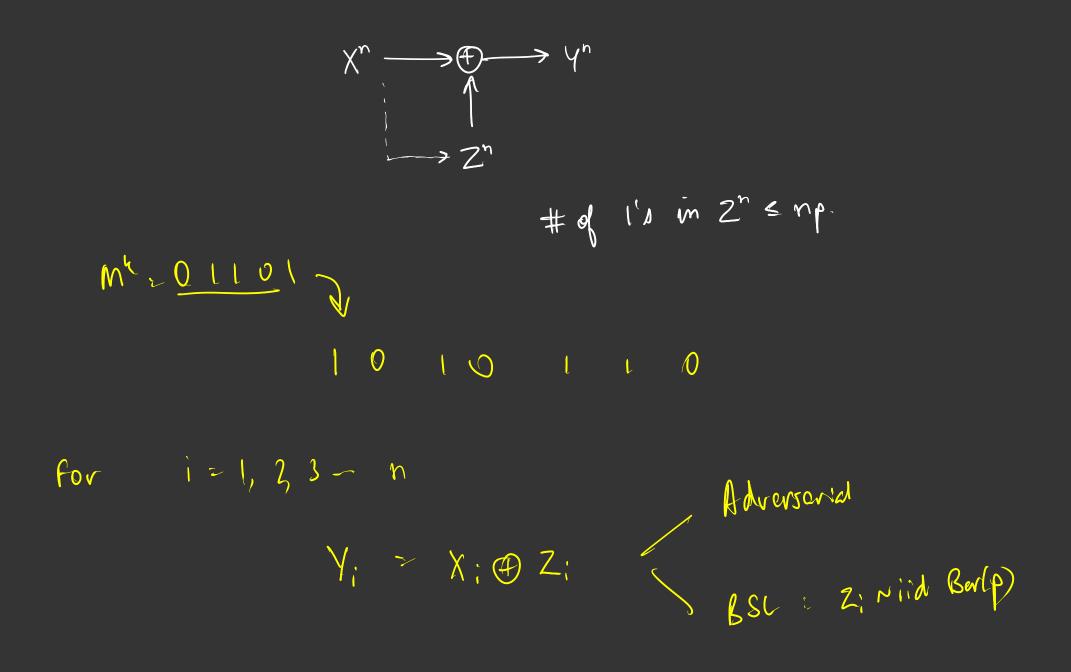
Example channel 2: Binary Erasure Channel

BEC(p)





Example channel 3: Adversarial bit-flip channel



Example channel 4: Adversarial erasure channel

$$\chi^n \rightarrow \overline{[ER]} \rightarrow \gamma^n$$

 \uparrow
 $2^n = \#g$ locations eraud $\leq np$

(n, M) block code

(Collbook) Dufinition: An (n, m) block code or on Y is a set $C \in Y^n$ st |C| = M. Each $C^n \in C$ is called a codeword $n \rightarrow Code length / blocklength$ <u>M $\rightarrow Code lingth / blocklength</u>$ </u> Encoder

Griven an
$$(n, m)$$
 code C over $\frac{y}{2}$ an encoder is a mopping from
 $f_{1,2,-}, m_{2}^{\gamma}$ to C.
ENC: $f_{1,2,-}, m_{2}^{\gamma} \rightarrow C$

$$(3, 4)$$

 $\left(\right)$

Linian encodus «

Then for which
$$C^{n} = AM^{k}$$
 for some motivity A .
(Not all codes have linear incoders)
 C_{1} C_{2}
 M_{1} 00 H 000 O 00 O
 M_{2} 01 H 110 100 $C_{2}+C_{3}=C_{4}$
 M_{1} 10 H 110 C_{2}
 M_{1} 10 H 110 $C_{2}+C_{3}=C_{4}$
 M_{1} 10 H 110 C_{1} O 01
 M_{1} $AM_{2}+Am_{3}^{2}-AM_{4}$
 M_{1} 11 H 100 101 $Am_{1}+Am_{3}^{2}-AM_{4}$
 M_{1} M_{2} M_{2}

Decoder

for an
$$(n, m)$$
 code over \exists is a channel with input alphabet \exists is
output alphabet η , a decoder is a map from η' to C.

 $D \in C$: $\eta' \rightarrow C$
 C $(3,2)$ to de η'
 $0 \rightarrow 000$
 $0 \rightarrow 000$
 $1 \rightarrow 111$
 $1 \rightarrow 1$
 $1 \rightarrow 1$
 $1 \rightarrow 1$

 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \sim A \begin{bmatrix} 0 \end{bmatrix} \qquad \begin{bmatrix} i \\ i \end{bmatrix} \sim A \begin{bmatrix} i \\ i \end{bmatrix}$ A-2 (Generator matrix of C A.

Maximum likelihood decoder and MAP decoder

SC (p):

$$000$$

 111
Given yr, $N_{mi}^{\times} = chpmox p(yn(n))$
 $v \in koos nig
 $z - p(yn(000) - p^{k}(1-p)^{n-k} - A - yn haa - k 1/a$
General N^{n}, y^{n}
 $p(yn(n)) = -$$

B

$$y^{n} = 0 + 0 + 1 + k = 3$$

$$y^{n} = 1 + 0 + 0 + 0 + 0$$

$$p(y^{n} + x) = p^{k}(1-p)^{n-k}$$

$$T_{q} = \frac{1}{q} = \frac{1}{q} + \frac{1}{q$$

 $p(q^{n}|o-o) > p(q^{n}|i-i)$ $p^{k}(i-p) > p^{n-k}(i-\mu)^{k}$ Dulan (0-0) $i \{$ $\left(\begin{array}{c} f\\ f\end{array}\right)^{k}$ $\left(\begin{array}{c} f\\ f\end{array}\right)^{n-k}$ $\sum_{n=1}^{\infty} p < \frac{1}{2}$ # e 0 0 > # e 1 0 <u>a</u> α^k > α^{n-k} n-k > k Ø $\gamma^{2} \frac{1}{2} \left(\frac{f}{f} \frac{2}{2} \right)$ k 7 m/ \bigcirc

MAP

dicoder 1

plarlynj angmax MAY V n C p(y | y) p(y)anemax N° E C 2 p(yr) p(y|w)p(w)Angmay No CC N all n° E C am Agniprobable. N * J.

 $\left(\begin{array}{c} p(y^{n}(w(i))) \\ p(w(i)) \end{array} \right)$

 $p(y^{-1}x^{-1}z))p(x^{-1}z)$

Error detection and correction capability

M ~ LO, 1, 2)

0000

Dyn: A code C has an everal ditection capability of k (c can ditect k amon) of any arguena of <k substitution everal do not pusult in a valid codeword.

The Hamming distance

$$wt_{H}(w) = d_{H}(o, w)$$
 is called the Hamming weight of w

Subst: twison every:

$$W$$
 0 1 0 1 1 p
 $y^n 0 0 0 0 0 1 1$
 $y^n = W O W$
 $W = 0 1 0 1 0 1$
 $w^n = 0 1 0 1 0 1$
 $h^n = 0 1 0 1 0 1$
 $h^n = 0 1 0 1 0 1$

we can write
$$y^n = W \oplus W^n$$

 $(w^n = W \oplus y^n)$
Moreon, $w t_W (w^n) = d_W (W, y^n)$

$$\mathcal{N} \longrightarrow \mathcal{P} \longrightarrow \mathcal{Y}$$

 $\mathcal{N} \longrightarrow \mathcal{P} \longrightarrow \mathcal{Y}$
 $\mathcal{N} \longrightarrow \mathcal{P} \longrightarrow \mathcal{Y}$
 $\mathcal{N} \longrightarrow \mathcal{Y}$

* A tode (is
$$l$$
-when convectable if \mathcal{F} a decoder that
can recover it from you as long as $wf_{ij}(w) \leq l$
or $d_{kl}(w, y) \leq l$, \mathcal{F} give (

$$X = A \mod C$$
 is $l - when ditectable if $W \oplus W \notin C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus M \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus C \cap W$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus U$
 $A = M \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus W \oplus U$
 $A = M \oplus W \oplus W \oplus W \oplus W \oplus W$
 $A = M \oplus W \oplus W \oplus W \oplus W$
 $A = M \oplus W \oplus W \oplus W \oplus W$
 $A = M \oplus W \oplus W \oplus W \oplus W \oplus W$
 $A = M \oplus W \oplus W \oplus W \oplus$$

Ø

Suppor C can dited L under.

$$l < d_{min}(C)$$

 $c_1 \oplus [0 | 0 | 1] = c_2$
 $c_1 \oplus [0 | 0 | 1] = c_3$
 $c_4 \oplus [0 | 0 | 0] = [0 | 0 | 0]$
 $c_5 \oplus [0 | 0 | 0] = [0 | 0 | 0]$

$$3 \leq d_{H}(c^{r}, w^{r}) \notin d_{H}(w^{r}, y^{r}), \# d_{H}(y^{r}, c^{r})$$

 $d_{H}(y^{r}, c^{r}) \approx 3 - d_{H}(w^{r}, y^{r})$
 $2 = 3 - 1 \geq 2$

l > dmin/2 (I 7 w, c st dular, c) - dmin $wt_H(c^2) = dm_{in}$ er - N @ Cr durly", n?) ~ l y - er + v $d_{H}(\gamma, C)$ con coveres < donin/2 errors that c **4** 8

V

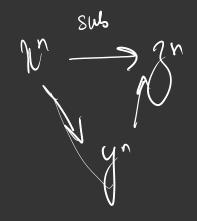
The Hamming distance is a metric

d: FxF -> R is a metric in Metric 1 0 d(x,y) 20 4 v,y 67 L d(n, y) =0 if v=y d(v,yr) = dlyr, vr) Ø + N, y7, J $d(x^{r}, y^{r}) \leq d(x^{r}, z^{r}) + d(z^{r}, y^{r})$ (3)

The Hamming distance is a metric

Prop.
$$1 \ h 2$$
 on easy
Prop. $1 \ h 2$ on easy
Prop. $3 \ h 2$ on every $\mathcal{W}, \mathcal{Y}^n, \mathcal{Z}^n,$
 $d_{\mu}(\mathcal{W}, \mathcal{Z}^n) \in d_{\mu}(\mathcal{W}, \mathcal{Y}^n) + d_{\mu}(\mathcal{Y}^n, \mathcal{Z}^n)$

du(n, zn): Min # substitutions my to go from no to zn



The parity code

Message
$$(n, M) = (k+1, 2^k)$$

 $(m, m_2, --, m_k) \rightarrow (m_1, m_2, --, m_k, m_1 \oplus m_2 \oplus -- \oplus m_k)$

Q: O What is drain for the parity code? What is the even detection/courds on capobility. The repetition code

code $n - \# n_{prtstions}$ $m_1 \rightarrow m_1 m_2 - m_3$ (n, 2) Q: O What is drain? What is the trion detection/counding capobility.

Take any
$$C_1, C_2^*$$

 $d_{14}(C_1^*, C_2^*) \neq d$
 $f = \frac{1}{2} \int C_1^* C_2^*$ are obtained by enancy 1 locations
 $d_{14}(C_1^*, C_2^*) \neq d-1$
 $d_{14}(C_1^*, C_2^*) \neq d-1$
Any enance pottern of $l \in d-1$ enances can be
concerted

In given d, Suppose
$$d-1$$
 loc an mand,
 $L \exists C_1, C_2$ which match in all
interand locations
 $M-(d-1) = M-d+1$
 $\exists d_H(C_1, C_2) \leq d-1$

The Hamming code

$$(m_1, m_2, m_3, m_4) \longrightarrow (m_1, m_2, m_3, m_{\varphi}, m_2 \mathcal{P} m_3 \mathcal{P} m_{\varphi}, m_1 \mathcal{P} m_3 \mathcal{P} m_{\varphi}, m_1 \mathcal{P} m_2 \mathcal{P} m_{\varphi})$$

What is a field?	$(\mathbb{F}, \Theta, \cdot)$	O: FXF-1F	
Addition & multiplication:	ta, 6 EF		
1. Closure 🕅 🚱	bEF Labe	F	
2. Commutativity 🛛 🔒	56-boak	a.b = b.a	
3. Associativity)(5@c) ~ (Q@b)(Dc L a. (b.c) - (Q - 6) - C
4. Existence of identity	30,1 EFst		
5. Existence of inverse		Q.1 = Q + (
Others	aer, Jaer st	00ā20 6.	$4a \in F(x_0), Ja^{-1}$ $a \cdot a^{-1} = 1$
Distributivity			

Which of the following are fields?

$$O(R, +, -) \qquad M \qquad field$$

$$O(R, +, -) \qquad No \qquad field$$

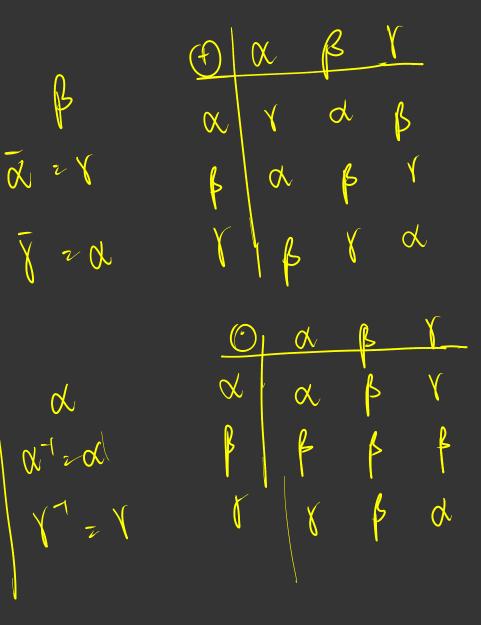
$$O(Z, +, -) \qquad No \qquad (3 does not have a multiplicative inverse)$$

$$O(R, R, +, -) \qquad Not closed under .$$

$$O(C, +, -) \qquad Yu$$

(a)
$$(Z_q, \Theta_q, \Theta_q)$$
 $q\in Z$ Solid diverges
 $Z_q = h0, 1, 2, -, q-1$ modulo- q
 $a \Theta_q b = (a+b] \mod q$
 $a \Theta_q b = (a+b] \mod q$
 $a \Theta_q b = (ab) \mod q$
 Z_2 $\chi_{OF} = \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{i} \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{I} \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{I} \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{O} \bigoplus_{i=1}^{I} \bigoplus_{i=1}^{O} \bigoplus_{i=1}$

Additire invoues Zq Por any a Elfy R ⊕_q â ≈ 0 Happens if (a+a) mod q = 0 Q+Q = 9m pr mcz 0 2 0 + 0 2 2 (9 - 1) $\ge \overline{a} = q - a$



Multiplicative inverse Q Q Q - 1 = 1 [Q Q] mod y = 1 aar ~ mg +1 Suppose that G=4 $2.a^{-1} = m \times 4 + 1$ - Za is not a field

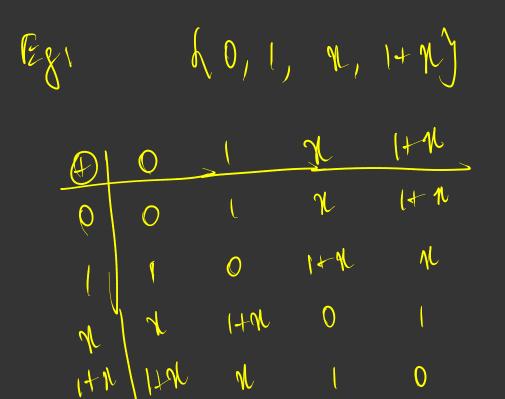
q = 16a = 3 $3a^{-1} = m \times 16 \pm 1$

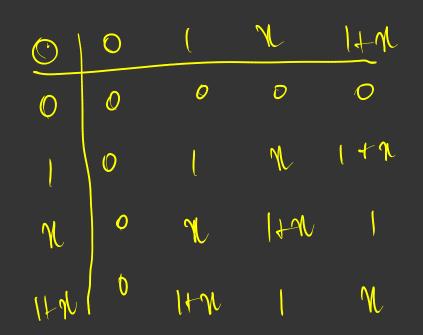
Suppose
$$q$$
 is composite
then $q = \alpha \beta$ for $\alpha, \beta \in f(0, 1, -q_{-1})$
 $\alpha \alpha^{-1} = mq_{+1}$
 $= m\alpha\beta_{+1}$
 $\Rightarrow \alpha$ does not have an inverse.
 $\Rightarrow (Z_{q_1} \otimes_{q_1} \otimes_{q_2} \otimes_{q_2})$ is Not α field
 M_1 Prove that Z_{q_1} is a field for prime q_1 .

~

Set of all polynomials (coold from R)

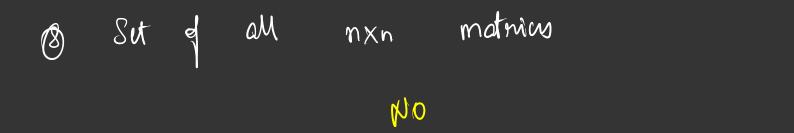
$$\int \chi(\alpha_{0} + \alpha_{1} n + \alpha_{2} n^{2} + -) \neq 1$$
NOT a field





20, 1, (+N, N) mod (1+N+N2)

mod (1+12)



Closuri Idurity Cool Col

Snum

Commutativity

 $\begin{pmatrix} n_1 & -y_1 \\ y_1 & n_2 \end{pmatrix} \begin{pmatrix} n_2 & -y_2 \\ y_1 & n_2 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 & -y_1 \\ n_1 & -y_2 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_2 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_2 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & -y_1 & -y_1 \\ n_1 & -y_1 & -y_1 \end{pmatrix} = \begin{pmatrix} n_1 & \lambda - \frac{g}{m^2 + y} \sim \frac{1}{m^2 + y} \left(\frac{m}{y} \right)$

 $(\lambda, y) O (\lambda, y) \mapsto$ (n+n, y+y) $(\chi, g) \otimes (\chi, g) \mapsto$ (NN-Jy, Nytynz)

 $\begin{pmatrix} \chi_{1} & -g_{1} \\ \chi_{2} & \chi_{1} \end{pmatrix} \longrightarrow (\chi_{1}, \chi_{2})$

 $\left(\begin{array}{c} \chi_{1} + i q \end{array}\right)\left(\chi_{2} + i q_{2}\right)$

(b)
$$\int \chi_{+} y \sqrt{2} \cdot \chi_{+} y \in \mathbb{Q}^{2}$$

Homework

Vector space
$$(V, +, 0)$$
 over (F, Φ, \cdot)
() Commutativity $V_1 + V_1 = V_2 + V_1$, $V_1 + V_2 = V_2 + V_1$, $V_1 + V_2 = V_2 + V_1$
() Associativity $V_1 + (V_2 + V_3) = (V_1 + V_2) + V_3$
() Environ of inverses $V_1 = V_1 = V_1$
() Environ of inverses $V_2 \in V_1$, $V_1 = V_2 = V_2$
() Environ of inverses $V_2 \in V_1$, $V_1 = V_2 = V_2$
() Compatibility of multiplications
 $U_2 \in V_1$ = $(U_2 - V_1) = (U_2 - V_1) = U_2$
() Compatibility of multiplications
 $U_2 (-V_1) = (U_2 - V_1) = U_2 (-V_2) = U_2$
() Multiplicative identity $1 - V_1 = V_1$ $0 \cdot V_1 = 0$
 $0 \cdot V + a V = (0 + a) \cdot V_1 = a \cdot (5 - V_1)$

() Distributivity (i) (a+b) v z av + 5v

 $\begin{pmatrix} i \\ j \end{pmatrix} = \begin{pmatrix} v \\ - v \end{pmatrix} + \begin{pmatrix} v \\ - v \end{pmatrix} + \begin{pmatrix} v \\ - v \end{pmatrix}$

Examples of vector spaces