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Recap

§ Memoryless sources

§ Data compression: rate, probability of error

§ Source coding theorem

§ Entropy:
HpXq “ ´

ÿ

xPX
pX pxq log2 pX pxq.
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Channel coding
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Discrete memoryless channel

Channel
Encoder Decoder

§ Mk „ iid Unif(t0,1uk)
§ Memoryless channel:

pY n|Xnpyn|xnq “
n
ź

i“1
pY |X pyi |xiq
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Common channels

Binary symmetric channel: BSC(p)

X “ Y “ t0,1u, and

pY |X py|xq “
#

1´ p if x “ y
p if x ‰ y.
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Common channels

Binary erasure channel: BEC(p)

X “ t0,1u, Y “ t0,1,eu

pY |X py|xq “

$

’

&

’

%

p if y “ e
1´ p if x “ y
0 otherwise.

6 / 20



Common channels

Additive white Gaussian noise (AWGN) channel

X “ Y “ R
Yi “ xi ` Zi , i “ 1,2, . . . ,n

where pZ1, . . . ,Znq are iid with N p0, σ2q components.
Power constraint:

}xn}2
def
“

n
ÿ

i“1
x2

i ď nP
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Common channels

Complex slow/quasi-static fading channel

X “ Y “ C
Yi “ hXi ` Zi ,
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Common channels

Fast fading channel

Yi “ hiXi ` Zi ,
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Common channels

Multiple antenna/multi-input multi-output (MIMO) channels

X “ Rts , Y “ Rtr .

Y i “ HiX i ` Z i , i “ 1, . . . ,n
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Common channels

A simple channel with memory

Yi “ a0Xi ` a1Xi´1 ` . . .` akXi´k ` Zi
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Common channels
Insertion/deletion channels

2  2  1   1  0  1   0   2  2   1

2 2  1  1   1  0  1 0  2  2  1

insertion

Tx
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Channel codes

Channel
Encoder Decoder

§ Encoder: f : t0,1uk Ñ X n

§ Decoder: g : Yn Ñ t0,1uk
§ Rate:

R “ k
n

§ Probability of error:

Pe “ Prr pMk ‰ Mks
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Mutual information

IpX ; Y q def
“

ÿ

xPX ,yPY
pXY px, yq log2

pXY px, yq
pX pxqpY pyq

,

§ Mutual information is symmetric

§ Measures the information that X gives about Y , or Y gives
about X .

§ What happens if X and Y are independent?
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Channel capacity

Maximum rate R for which limnÑ8 Pe “ 0.

Theorem (Shannon)

C “ max
pX

IpX ; Y q.
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Capacity of BSC

C “ 1´ H2ppq

§ Hamming distance: dHpxn, ynq

§ Chernoff bound: dHpXn,Y nq ď npp1` εq with high
probability

§ Channel coding as a packing problem
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Relation between entropy and
mutual information

IpX ; Y q “ HpXq ´ HpX |Y q “ HpY q ´ HpY |Xq
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Classification
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Back to classifying spam
Model:

Input email X1, . . . ,Xn iid „ pX

pX “

#

ps if spam
pg not spam (good)

Want
Prrdeclare not spam|spams

to be as small as possible subject to

Prrdeclare spam|not spams ď ε
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Optimal test

Output
#

spam if log2
pspxnq
pgpxnq ą α

not spam if log2
pspxnq
pgpxnq ď α

α chosen to satisfy

Pr
„

log2
pspXnq

pgpXnq
ą α

ˇ

ˇ

ˇ
not spam



“ ε
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Performance of optimal test

lim
nÑ8

1
nPrrdeclare not spam|email is spams “ ´Dpps}pgq,

where
Dpps}pgq

def
“

ÿ

xPX
pspxq log2

pspxq
pgpxq

Kullback-Liebler (KL) divergence (or the relative entropy)

15 / 20



KL divergence

§ "distance" between distributions

§ Not symmetric:
Dpp}qq ‰ Dpq}pq

§

IpX ; Y q “ DppXY }pX pY q.
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Continuous random variables
Differential entropy

hpXq def
“ ´

ż 8

´8

fX pxq log2 fX pxqdx.

Conditional differential entropy

hpX |Y q def
“ ´

ż

x,y
fXY px, yq log2 fX |Y px|yqdxdy.

Mutual information

IpX ; Y q “ hpXq ´ hpX |Y q “ hpY q ´ hpY |Xq

“

ż

x,y
fXY px, yq log2

fXY px, yq
fX pxqfY pyq

dxdy

17 / 20



Caution

Differential entropy is not a measure of the information content
of a system

§ Differential entropy can be negative

§ Differential entropy is not invariant to invertible
transformations
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Mutual information for continuous
rvs

However, mutual information is more well behaved

§ For a continuous channel fY |X , the capacity is

C “ max
fX

IpX ; Y q

§ Even for continuous rvs, IpX ; Y q ě 0.
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Gaussian random variables

§ The differential entropy of N pµ, σ2q random variable is

hpXq “ 1
2 log2p2πeσ2q

§ The capacity of an AWGN channel is

C “ 1
2 log2

ˆ

1` P
σ2

˙

.
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