Source coding

Shashank Vatedka

- Three problems
 - Data compression
 - Reliable communication error correction
 - Classification
- Concept of information as measure of randomness links with compression
- Probability recap

Compression: Goals

- Purpose of data compression: save space.
- Convert a source file having n bytes to a compressed file having k < n bytes.</p>

Compression: Goals

- Purpose of data compression: save space.
- Convert a source file having n bytes to a compressed file having k < n bytes.</p>
- Model for source file Xⁿ: randomly generated according to known source distribution Xⁿ ~ p_{Xⁿ}.

Compression: Goals

- Purpose of data compression: save space.
- Convert a source file having n bytes to a compressed file having k < n bytes.</p>
- Model for source file Xⁿ: randomly generated according to known source distribution Xⁿ ~ p_{Xⁿ}.
- This course: X^n is iid $\sim p_X$.
- More realistic model: Markov source. But ideas similar for this case as well.

Model

Memoryless source: $X^n \sim iid(p_X)$. p_X known

Fixed vs variable length compression

- Fixed-length: *k* fixed beforehand.
 - Nonzero probability of error
- Variable-length: k different for different x^n .
 - Zero probability of error
 - Additional requirements: usually prefix-free

Encoding and decoding rules

- What is an encoder?
- What is a decoder?
- Computational complexity?

Fixed length compression

- At most 2^k message sequences can be reconstructed with zero error.
- Set of recoverable sequences: S

Fixed length compression

- At most 2^k message sequences can be reconstructed with zero error.
- Set of recoverable sequences: S
- Error occurs whenever $X^n \notin S$.

 $P_e = \Pr[X^n \notin S].$

Reformulation of problem

- ▶ Goal: Find optimal *S* which minimizes *P*_e
- Question: What is this optimal S?
- Expression for optimal P_e?

Source coding theorem

Theorem (Shannon, 1948)

For iid source $\sim p_X$, there exist fixed length source codes for which $\lim_{n\to\infty} P_e = 0$ and

$$\lim_{n \to \infty} \frac{k}{n} = -\sum_{x \in \mathcal{X}} p_X(x) \log_2 p_X(x)$$

$$\uparrow_{H(p_X)}$$

General sources

Theorem

For any stationary and ergodic source, there exist fixed length source codes for which $\lim_{n\to\infty} P_e = 0$ and

$$\lim_{n \to \infty} \frac{k}{n} = -\lim_{n \to \infty} \frac{H(X^n)}{n}$$

$$\uparrow$$
entropy rate

Entropy rate

For iid sources,

$$\frac{H(X^n)}{n} = H(X)$$

Entropy rate

For iid sources,

$$\frac{H(X^n)}{n} = H(X)$$

For first-order Markov sources (with stationary initial distribution),

$$\lim_{n \to \infty} \frac{H(X^n)}{n} = -\sum_{x_1, x_2 \in \mathcal{X}} \pi(x_1) p_{X_2 | X_1}(x_2 | x_1) \log_2 p_{X_2 | X_1}(x_2 | x_1).$$

Comments

- ► *H*(*X*): abuse of notation
- ▶ We actually "redefine" $x \log_2(x)$ such that $x \log_2 x = 0$ for x = 0. Indeed, $\lim_{x\to 0} x \log x = 0$.
- H(X) captures the amount of randomness of a source. The data compression problem can be thought of as one of formulating a sequence of yes/no questions to arrive at Xⁿ.

Proof for Bernoulli sources

Use a suboptimal S.