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Agenda

§ Logistics
§ Why should you study this course?
§ Randomness and information
§ Probability refresher

2 / 25



Why this course?

§ Understand fundamental limits of processing information

§ Basic for designing communication systems, compression
algorithms, statistics
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Where is information theory
used?

Data compression and communication
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Where is information theory
used?

Cryptography
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Where is information theory
used?

Machine learning
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Where is information theory
used?

Physics

4 / 25



Where is information theory
used?

Biology
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Where is information theory
used?

Computer science
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Compression

Given: English text file of size 1GB.

Can we compress this down to 1MB?

What is the minimum compression ratio we can achieve for a
given file?

Fun experiment: Take any large english text file ( Ç 1MB. e.g.,
from gutenberg.com) and zip it. Find compression ratio.
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Communication

Given: SNR = 0.1dB, bandwidth = 10 MHz.

Can we design a communication system that can guarantee
reliable communication at 4 Mbps?

What is the maximum rate of reliable communication for a given
SNR?
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Classification/detection
Not spam

Spam

Classifier

§ Problem: Classify emails as spam/non-spam

§ Types of error: (1) S given NS, (2) NS given S

§ Minimize probability of (2) having fixed probability of (1)
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The beginnings of information
theory

The challenges of long-distance telecommunication:
§ Attenuation: inverse square law

§ Noise

Proposed solutions:
§ Increase signal power: not cost effective

§ Repeaters: amplifies both signal and noise

§ Sophisticated signal processing techniques: still limited
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The communication problem
Transmit sequence of k bits, where each bit is corrupted
(flipped) independently with probability p P p0,1q.

Noisy
communication

channel

0100101011010 0110100011100

§ Probability of bit error: Pbit
e “ p

§ Solution: Coding

§ Repetition code: Pbit
e “?

§

R def
“

k
n

§ Want R to be as large as possible
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The solution

“Consider a LONG message sequence”

k Ñ8
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Models

§ Source/noise is random

§ Asymptotics: k,n Ñ8
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How do we quantify information

Text prediction: What is the next letter in the sequence
§ HELL-
§ Q-
§ A-

Randomness = Uncertainty

Information = reduction in uncertainty
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Randomness and data
compression

More random ùñ not easily compressible

./code/generate_randomsequence.py
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What is this course really about?

Three quantities:
§ Entropy

§ Mutual information

§ KL divergence/relative entropy

properties, consequences.
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Probability
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Refresher

§ Random variable: discrete, continuous

§ Probability mass function of a discrete rv

§ Probability density function of a continuous rv

§ Common rvs: Bernoulli, binomial, exponential, Gaussian

§ Variance, standard deviation

§ Higher order moments, moment generating function
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Union bound

Lemma
If E1 and E2 are two events, then

PrrE1
ď

E2s ď PrrE1s ` PrrE2s.
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Markov inequality

Lemma
Suppose that X is a nonnegative random variable, and
EX “ µ ą 0. Then, for all a ą 0, we have

PrrX ě as ď µ

a .
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Chebyshev’s inequality

Lemma
Suppose that X is a random variable with mean µ and variance
σ2. Then, for any a ą 0, we have

Prr|X ´ µ| ě as ď σ2

a2
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Chernoff bound

Lemma
If X is a random variable with mean µ, then for every a ą 0, we
have

PrrX ě µ` as ď min
tą0

EetpX´µq

eta

PrrX ď µ´ as ď min
tą0

Ee´tpX´µq

e´ta
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Random iid sequences

Xn def
“ pX1,X2, . . . ,Xnq is said to be „ iid pX if

PrrXn “ xns “
n
ź

i“1
pX pxiq

Sometimes called a memoryless source.
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Chernoff bound for Bernoulli rvs

Lemma
If Xn is an iid random sequence with Bernoulli(p) components,
then

Pr
«

1
n

n
ÿ

i“1
Xi ě pp1` δq

ff

ď

ˆ

eδ

p1` δq1`δ

˙np
ď e´

δ2np
3

Pr
«

1
n

n
ÿ

i“1
Xi ď pp1´ δq

ff

ď

ˆ

e´δ

p1´ δq1´δ

˙np
ď e´

δ2np
3

for any 0 ď δ ď 1.
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Markov chain

Xn is a first-order time-homogeneous Markov chain with
transition probabilities pX 1|X and initial distribution pX if

PrrXn “ xns “ pX px1q
n
ź

i“2
pX 1|X pxi |xi´1q

Also called a first-order Markov source.
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Properties of a Markov source

§ Conditioned on the present, the future is independent of
the past, i.e.,

given Xi , Xi`k KK pX1, . . .Xi´1q

for all i, k.

§ If P denotes the transition probability matrix, then the
stationary distribution is a pmf π such that

πP “ π
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k-th order Markov source

Xn is a k-th order Markov source with initial distribution pXk and
transition probabilities pXk`1|Xk if

pXnpxnq “ pXk px1, . . . , xkq
n
ź

i“k`1
pXk`1|Xk pxi |xi´1, . . . , xi´kq

No long-range dependencies in the source.
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