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Agenda

Logistics

Why should you study this course?
Randomness and information
Probability refresher
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Why this course?

» Understand fundamental limits of processing information

» Basic for designing communication systems, compression
algorithms, statistics
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Where is information theory
used?

Data compression and communication

The Bell System Technical Journal

Vol. XXVII July, 1948 No.3

A Mathematical Theory of Communication
By C. E. SHANNON
INTRODUCTION

HE recent development of various methods of modulation such as PCM
nd PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley*
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular lhr effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or rom(-pmal

one point either exactly or approximately
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Where is information theory
used?

Cryptography

Communication Theory of Secrecy Systems*

By C. E. SHANNON

1. INTRODUCTION AND SUMMARY

HE problems of cryptography and secrecy systems furnish an interest-

ing application of communication theory.! In this paper a theory of
secrecy systems is developed. The approach is on a theoretical level and is
intended to complement the treatment found in standard works on cryp-
tography.? There, a detailed study is made of the many standard types of
codes and ciphers, and of the ways of breaking them. We will be more con-
cerned with the general mathematical structure and properties of secrecy
syslems,
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Where is information theory
used?

Machine learning

Deep Learning and the Information Bottleneck Principle

Naftali Tishby'?

Abstract—Deep Neural Networks (DNNs) are analyzed via
the theoretical framework of the information bottleneck (IB)
principle. We first show that any DNN can be quantified by
the mutual information between the layers and the input and
output variables. Using this representation we can calculate
the optimal information theoretic limits of the DNN and
obtain finite sample generalization bounds. The advantage of
getting closer to the theoretical limit is quantifiable both by
the generalization bound and by the network’s simplicity, We
argue that both the optimal architecture, number of layers and
features/connections at each layer, are related to the bifurcation
points of the information bottleneck tradeoff, namely, relevant
compression of the input layer with respect to the output
layer. The hierarchical representations at the layered network
naturally correspond to the structural phase transitions along
the information curve. We believe that this new insight can lead
to new optimality bounds and deep learning algorithms.

Noga Zaslavsky!

output. The information theoretic interpretation of minimal
sufficient statistics (5] suggests a principled way of doing
that: find a maximally compressed mapping of the input
varable that preserves as much as possible the information
on the output variable. This is precisely the goal of the
Information Bottleneck (IB) method [6].

Several interesting issues arise when applying this prin-
ciple to DNNs , the layered structure of the network
generates a successive Markov chain of intermediate repre-
sentations, which together form the (approximate) sufficient
statistics. This is closely related to successive refinement of
information in Rate Distortion Theory (7). Each layer in the
network can now be quantified by the amount of information
it retains on the input variable, on the (desired) output vari-
able, as well as on the predicted output of the network. The




Where is information theory

used?
Physics

Statistical Physics and
Information Theory

Neri Merhav

Department of Electrical Engineering.
Technion — Israel Institute of Technology
Haifa 32000

Israel

merhav@ee.technion.ac.il

noew

the essence of knowledge

Boston — Delft
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Where is information theory
used?

Biology
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Where is information theory
used?

Computer science

Theorem 1 (Brégman [3]) Let G = (A. B, E) be a bipartite graph with |A[,|B| = n.

Then, the number of perfect matchings in G is at most

[T ey,

veA

Theorem 7.1 [Alon-Hoory-Linial [3]). Let G be a graph on n vertices with average degree

d and girth g = 2r +1. Then
el

n > 1+rf2((f7 1)4

i=0

4/25



Compression

Given: English text file of size 1GB.
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Compression

Given: English text file of size 1GB.

Can we compress this down to 1MB?
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Compression

Given: English text file of size 1GB.
Can we compress this down to 1MB?

What is the minimum compression ratio we can achieve for a
given file?
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Compression

Given: English text file of size 1GB.
Can we compress this down to 1MB?

What is the minimum compression ratio we can achieve for a
given file?

Fun experiment: Take any large english text file ( g 1MB. e.g.,
from gutenberg.com) and zip it. Find compression ratio.
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Communication

Given: SNR = 0.1dB, bandwidth = 10 MHz.
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Communication

Given: SNR = 0.1dB, bandwidth = 10 MHz.

Can we design a communication system that can guarantee
reliable communication at 4 Mbps?
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Communication

Given: SNR = 0.1dB, bandwidth = 10 MHz.

Can we design a communication system that can guarantee
reliable communication at 4 Mbps?

What is the maximum rate of reliable communication for a given
SNR?
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Classification/detection

Classifier
Not spam
®
o0 e Spam
° (X . ’
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» Problem: Classify emails as spam/non-spam
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Classification/detection

Classifier
Not spam
®
o0 e Spam
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» Problem: Classify emails as spam/non-spam

» Types of error: (1) S given NS, (2) NS given S
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Classification/detection

Classifier
Not spam
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o® e Spam
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» Problem: Classify emails as spam/non-spam
» Types of error: (1) S given NS, (2) NS given S

» Minimize probability of (2) having fixed probability of (1)
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The beginnings of information
theory

The challenges of long-distance telecommunication:
» Attenuation: inverse square law

> Noise
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The beginnings of information
theory

The challenges of long-distance telecommunication:
» Attenuation: inverse square law

> Noise

Proposed solutions:
» Increase signal power: not cost effective

» Repeaters: amplifies both signal and noise

» Sophisticated signal processing techniques: still limited
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The communication problem

Transmit sequence of k bits, where each bit is corrupted
(flipped) independently with probability p € (0, 1).

0100101011010 . 0110100011100
Noisy
——> communication F—>
channel

> Probability of bit error: Pt = p
» Solution: Coding
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The communication problem

Transmit sequence of k bits, where each bit is corrupted
(flipped) independently with probability p € (0, 1).

0100101011010 . 0110100011100
Noisy
——> communication F—>
channel

> Probability of bit error: Pt = p
» Solution: Coding
> Repetition code: Pt =7
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The communication problem

Transmit sequence of k bits, where each bit is corrupted
(flipped) independently with probability p € (0, 1).

0100101011010 . 0110100011100
Noisy
——> communication F—>
channel

v

Probability of bit error: Pbit = p
Solution: Coding
Repetition code: PRIt =?

v

A4

g def K
n
Want R to be as large as possible

v
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The solution

The Bell System Technical Journal

Vol. XXVII July, 1948 No.3

A ical Theory of C
By C. E. SHANNON

INTRODUCTION

THE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist* and Hartley*
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The problem of c ication is that of ing at
one point either exactly or approximately a message selected at another
point.  Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual

“Consider a LONG message sequence”

K—
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Models

» Source/noise is random

» Asymptotics: k,n — o
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How do we quantify information

Text prediction: What is the next letter in the sequence
» HELL-
» Q-
> A-

Randomness = Uncertainty

Information = reduction in uncertainty
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Randomness and data
compression

More random = not easily compressible

./code/generate_randomsequence.py
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./code/generate_randomsequence.py

What is this course really about?

Three quantities:
» Entropy

» Mutual information

» KL divergence/relative entropy

properties, consequences.
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Refresher

Random variable: discrete, continuous

Probability mass function of a discrete rv

Probability density function of a continuous rv

Common rvs: Bernoulli, binomial, exponential, Gaussian
Variance, standard deviation

Higher order moments, moment generating function
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Union bound

Lemma
If &, and &> are two events, then

51 U(‘:g PI‘ (‘:1 + PI‘[L‘:Q]
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Markov inequality

Lemma
Suppose that X is a nonnegative random variable, and
EX = u > 0. Then, for all a > 0, we have

)

PriX>a] < =.
a
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Chebyshev’s inequality

Lemma
Suppose that X is a random variable with mean 1. and variance
o2. Then, for any a > 0, we have

PI‘[|X—/L| 23] < ?
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Chernoff bound

Lemma
If X is a random variable with mean u, then for every a > 0, we

have (Xt
EetA—#
Pr[X > al < mn——

I‘[ et ] t>0 eta

Ee—t(X-u)

PriIX<pu—al <mn————
1“[ H ] t>0 efa
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Random iid sequences

X" %€ (X, Xo,. ... X,) is said to be ~ iid py if
n

Pr[X" = x"] = [ [px(x)
i=1

Sometimes called a memoryless source.
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Chernoff bound for Bernoulli rvs

Lemma
If X" is an iid random sequence with Bernoulli(p) components,

then

1 e’ P
Pr EZX’ZP(‘I—’_(;) <((1+5)1+5> <e 3

1 & | e~? P 2w
Pr ZX,<,O(1—5) < <(1_5)1_5) <e 3

forany 0 <6 < 1.
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Markov chain

X" is a first-order time-homogeneous Markov chain with
transition probabilities px+|x and initial distribution py if

n
Pr[X" = x"] = px(x1) | [oxx (xilxi—1)
=2

Also called a first-order Markov source.
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Properties of a Markov source

» Conditioned on the present, the future is independent of
the past, i.e.,

given Xj,  Xik AL (Xy,... Xi—4)
for all i, k.

» If P denotes the transition probability matrix, then the
stationary distribution is a pmf 7 such that

TP =
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k-th order Markov source

X" is a k-th order Markov source with initial distribution py« and
transition probabilities py, |x« if

n
pX”(Xn) :pXk(X17"‘7Xk) H pXk+1|Xk(XI'|XI'—17"‘7Xi—k)
i=k+1

No long-range dependencies in the source.
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