EE2340/EE5847: Information Sciences/Information Theory 2020

Handout 5: Properties of Information Measures 2
Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
Please email the course instructor in case of any errors.

5.1 Convexity properties of information measures

The log-sum inequality that we studied in the last class will prove helpful in studying the convexity properties
of information measures.

Let us first show that the KL divergence is convex.

Lemma 5.1. D(p|q) is convez in (p,q).

Proof. We need to show that for every a € [0, 1] and pmfs (p1,q1) and (p2, ¢2),

D(apy + (1 = a)p2|agr + (1 — a)q2) < aD(p1]q1) + (1 — ) D(p2lq2)-

However,
Dlaps + (1= apalan + (1~ ) = 3 ((oma(a) (1~ apata o (002 03 = 0
api(x) o) 1o (1 — a)pa(z)
< 30 (oo e, G255 + 01—t ons = )

)

)
~a (Zm Jlog; 8) +(1-a) <;p2($) log, {;g;)
= aD(pilq1) + (1 — @) D(p2g2)

where in the second step, we have used the log-sum inequality. O

Corollary 5.2. The entropy H(X) is a concave function of px.

Proof. Let u denote the uniform distribution on X’ and pi, p2 be two distributions.

The trick is to write entropy as a KL divergence: H(px) = log |X| — D(px|lu) (Verify!).

H(apy + (1 —a)pz) =log|X| — D(ap1 + (1 — a)pzfou + (1 — a)u)

log | X| = aD(p1|u) — (1 — a)D(p2u)

a(log|X| = D(pi|uw) + (1 — a) (log [X| — D(pz2[u))
aH(p1) + (1 — a)H(p2),

\%

where in the second step we have used convexity of KL divergence. O
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The above corollary means that maximizing the entropy is not a hopeless task. One can use any convex
solver to do this.

Lemma 5.3. I(X;Y) is a concave function of px for fized py|x. It is a convex function of py|x for fized

px-

Proof. To prove the first part, observe that
I(X;Y)=H(Y)-HY|X) = ZPY\X (ylz)px (z)) + szx ylz)px () logs py x (y|z).
The first term is a concave function of px (from the previous corollary). The second term is linear in px for
a fixed py|x. Therefore, I(X;Y) is concave in px for fixed py|x.
To prove the second part, consider py|x and gy|x and px. We have,

pxy(z,y) = pY\X(y‘x)pX(x)7 axv(z,y) = QY\X(Z/|9C)PX($)

and
py(W) = pyixWopx (), av(y) = Y avix (yle)px(z).

The mutual information can be written as
f(py\x’px) = D(pXYHpXPY)-
Therefore, by linearity
flapyx + (1 — a)gy|x,px) = D(apxy + (1 — a)gxyllapxpy + (1 — a)pxqy)
Using the property that KL divergence is convex,

flapy|x + (1 = a)gy|x,px) < af(py|x,px) + (1 — ) f(qy|x,Px),
thus completing the proof. O

The above lemma implies that we can maximize I(X;Y") with respect to px (as we usually do to find channel
capacity) implying that there is a “best” distribution for a channel, and minimize I(X;Y") with respect to
py|x (implying that there is a “worst” channel for an input distribution).

5.2 Data processing inequality

We say that X,Y, Z form a Markov chain, denoted X — Y — 7 if
pxyz(®,y,2) = px(x)PY|X(y|l")PZ|Y(Z|y)-

e If Y denotes the encoding of X and Z is obtained by passing Y through a noisy channel, then X —-Y —Z.

e Likewise, if Y is obtained by passing X through a channel and Z is obtained by decoding from Y, then
X-Y-Z.

e X — Y — Z also implies that

pxyz(z,y,2) = PZ(Z)PY|Z(Z/|Z)I7X\Y(9C\?J)~

To show the above, it suffices to prove that px|y z(z|yz) = px|y (x|y). This can be shown using Bayes
rule and the definition of X —Y — Z.
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o If X —Y — Z then X and Z are conditionally independent given Y, implying that
I(X;Z]Y)=0.

Lemma 5.4 (Data processing inequality). If X —Y — Z, then I(X;Y) = I(X; Z). In other words, further
processing cannot increase mutual information.

Proof. Using the chain rule of mutual information,
I(X;Y,2)=1(X;2)+ I(X;Y|2) 2 I[(X; 2).

However,
I(X;Y,2)=1(X;Y)+ I(X;Z]Y)=1(X;Y)

since X, Z are conditionally independent given Y. Combining the above equations,
I(X;Y) = I(X; 2).

O

e The data processing inequality reveals that no amount of preprocessing or postprocessing may increase
the capacity of a noisy channel.

5.3 Fano’s inequality

Suppose that X, X ,Y are jointly distributed random variables, where X is to be interpreted as an estimate
of X from Y. More precisely, X —Y — X forms a Markov chain. For example, X could be a message, Y the
received vector, and X the decoder’s estimate of X. Define the probability of error

P. ¥ pr[x £ X).
Lemma 5.5 (Fano’s inequality).

H(X|Y) < H(X|X) < Hy(P.) + P.log, | X|.

Proof. Let us define a new random variable

b ,ﬁX#X
0, if X = X.

Using the chain rule of entropy,
H(X|X)=H(X,E|X)— H(E|X,X) = HX, E|X)

where the last step follows from the fact that E is a function of (X, X) and therefore H(E|X, X) = 0. Using
the chain rule on H(X, E|X), we have

H(X|X)=H(E|X)+ H(X|E,X) < HE) + HX|E, X) = Hy(P,) + H(X|E, X).

The inequality above follows from the property that conditioning reduces entropy.
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H(X|X) < Hy(P,) + H(X|X,E)
= Hy(P,) + H(X|X,E = 0)Pr[E = 0] + H(X|X,E = 1)Pr[E = 1]
= H

2(P.) + 0 x Pr[E = 0] + H(X|X,E = 1)Pr[E = 1]

where the last step follows from the fact that if £ = 1, then X = X and therefore H(X|X, E = 0) = 0.

H(X|X) < Hy(P,) + H(X|X,E = 1)Pr[E = 1]
= Hy(P,) + H(X|X,E = 1)P,
< HZ(Pe) ( )
< Hy(P.) + log, | X| x P, (5.1)

Since X — Y — X, R
I(X;X) <I(X3Y)

by the data processing inequality. By the definition of mutual information,
H(X) - H(X|X) < H(X) - H(X|Y)

or

H(X|X) > H(X|Y)

Using the above in (5.1)), R
H(X|Y) < HX|X) < Hy(P:) + P.logy | X|,

completing the proof. O
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