EE2340/EE5847: Information Sciences/Information Theory

Handout 4: Properties of the information measures - 1

2020

Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. Please email the course instructor in case of any errors.

4.1 Recap

- The minimum rate for fixed-length compression of a memoryless source with distribution p_X is equal to the entropy H(X).
- The maximum rate of reliable communication over a DMC $p_{Y|X}$ is equal to the capacity $C = \max_{p_X} I(X;Y)$.
- The optimal error exponent for classifying between two sources p_s, p_g is equal to the KL divergence $D(p_s || p_g)$.

The material covered in this handout is contained in Chapter 2 of the book by Cover and Thomas.

4.2 Relook of the information measures

Verify that we can write

$$H(X) = \mathbb{E}_X \log_2 \frac{1}{p_X(X)}$$
$$H(X,Y) = \mathbb{E}_{XY} \log_2 \frac{1}{p_{XY}(X,Y)}$$
$$H(X|Y) = \mathbb{E}_{XY} \log_2 \frac{1}{p_{X|Y}(X|Y)}$$
$$I(X;Y) = \mathbb{E}_{XY} \log_2 \frac{p_{XY}(X,Y)}{p_X(X)p_Y(Y)}.$$

We have already seen in previous classes that

$$I(X;Y) = H(X) - H(X|Y).$$

4.3 Properties

4.3.1 Properties

Lemma 4.1. Entropy is nonnegative.

This follows from the fact that $-x \log x > 0$ for all $x \in (0, 1)$.

4.3.2 Chain rules

In the homework, you will show that

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y).$$
(4.1)

and

$$H(X, Y|Z) = H(X|Z) + H(Y|X, Z).$$
(4.2)

This will be useful in proving a number of chain rules.

4.3.2.1 More variables

$$H(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i | X_1, \dots, X_{i-1}).$$
(4.3)

This can be proved by repeatedly using (4.1) and (4.2).

$$H(X_1, \dots, X_n) = H(X_1) + H(X_2, \dots, X_n | X_1)$$
(4.4)

$$= H(X_1) + H(X_2|X_1) + H(X_3, \dots, X_n|X_1, X_2)$$
(4.5)

$$= H(X_1) + H(X_2|X_1) + \ldots + H(X_n|X_1, \ldots X_{n-1}).$$
(4.7)

4.3.2.2 Chain rule of mutual information

The conditional mutual information is defined as

$$I(X;Y|Z) = H(X|Z) - H(X|Y,Z).$$

We can prove the following chain rule

$$I(X_1, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_1, \dots, X_{i-1})$$
(4.8)

This follows by repeatedly using the chain rule of entropy for each of the conditional entropy terms.

$$I(X_1, X_2; Y) = H(X_1, X_2) - H(X_1, X_2|Y)$$

= $H(X_1) + H(X_2|X_1) - H(X_1|Y) - H(X_2|X_1, Y)$
= $I(X_1; Y) + I(X_2; Y|X_1).$

4.3.2.3 Chain rule for KL divergence

We can prove something similar here as well: For any pair of joint distributions p_{XY} and q_{XY} such that $p_{XY}(x,y) = 0$ whenever $q_{XY}(x,y) = 0$, we have

$$D(p_{XY} || q_{XY}) = D(p_X || q_X) + D(p_{Y|X} || q_{Y|X}),$$

where we define

$$D(p_{Y|X} \| q_{Y|X}) \stackrel{\text{def}}{=} \sum_{x,y} p_{XY}(x,y) \log_2 \frac{p_{XY}(x,y)}{q_{XY}(x,y)}$$

This follows from definition.

$$D(p_{XY} || q_{XY}) = \sum_{x,y} p_{XY}(x,y) \log_2 \frac{p_{XY}(x,y)}{q_{XY}(x,y)}$$

$$= \sum_{x,y} p_{XY}(x,y) \log_2 \frac{p_X(x)p_{Y|X}(y|x)}{q_X(x)q_{Y|X}(y|x)}$$

$$= \sum_{x,y} p_{XY}(x,y) \log_2 \frac{p_X(x)}{q_X(x)} + \sum_{x,y} p_{XY}(x,y) \log_2 \frac{p_{Y|X}(y|x)}{q_{Y|X}(y|x)}$$

$$= \sum_x p_X(x) \log_2 \frac{p_X(x)}{q_X(x)} + \sum_{x,y} p_{XY}(x,y) \log_2 \frac{p_{Y|X}(y|x)}{q_{Y|X}(y|x)}$$

$$= D(p_X || q_X) + D(p_{Y|X} || q_{Y|X}).$$

4.4 Convex sets and functions

A set $S \subset \mathbb{R}^m$ is said to be convex if the line segment joining any two points within S also lies in S. Formally, S is convex if

$$\alpha x_1 + (1 - \alpha) x_2 \in \mathcal{S}$$
 for all $x_1, x_2 \in \mathcal{S}$ and $\alpha \in [0, 1]$.

Note that every closed interval $[a, b] \subset \mathbb{R}$ is convex.

A function defined on a convex set $\mathcal{S}, f: \mathcal{S} \to \mathbb{R}$ is convex if for all $x, y \in \mathcal{S}$ and $\alpha \in [0, 1]$, we have

$$f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).$$

The function is strictly convex if equality holds only for $\alpha = 0, 1$.

A function f is concave if -f is convex.

Lemma 4.2. A twice-differentiable function $f : \mathbb{R} \to \mathbb{R}$ has nonnegative second derivative on [a, b] if and only if it is convex in [a, b]. If the second derivative is strictly positive in the interval, then it is also strictly convex and vice versa.

Proof. To show that the second derivative being nonnegative implies convexity, see Theorem 2.6.1 in Cover and Thomas.

For the other way around, recall from your calculus course that

$$f''(x) = \lim_{t \to 0} \frac{f(x+t) + f(x-t) - 2f(x)}{t^2}.$$

It therefore suffices to show that $\frac{f(x+t)+f(x-t)-2f(x)}{t^2} \ge 0$ for all t > 0.

Now since f is convex,

$$f(x) = f\left(\frac{x+t}{2} + \frac{x-t}{2}\right) \leq \frac{1}{2}f(x+t) + \frac{1}{2}f(x-t).$$

Rearranging, we get that

$$f(x+t) + f(x-t) - 2f(x) \ge 0.$$

This completes the proof. If the function is strictly convex, then the inequality is strict, and therefore the second derivative is positive. \Box

A very useful inequality for convex functions is the following:

Lemma 4.3 (Jensen's inequality). For any convex function $f : \mathbb{R} \to \mathbb{R}$ and random variable X, we have

 $\mathbb{E}f(x) \ge f(\mathbb{E}X).$

If f is strictly convex, then equality implies that X is a constant.

Proof. The Cover and Thomas book gives a proof specific to discrete random variables using mathematical induction. Here is a shorter proof:

Let $c + \alpha x$ denote the tangent to f(x) at the point $\mathbb{E}X$. I claim that the following is true (Why?):

$$c + \alpha x \leqslant f(x)$$

Using this,

$$\mathbb{E}f(X) \ge \mathbb{E}(a+bX) = a+b\mathbb{E}X \tag{4.9}$$

However, the line intersects f(x) for $x = \mathbb{E}X$, and hence $a + \mathbb{E}X = f(\mathbb{E}X)$. This completes the proof.

Equality in (4.9) implies that f(x) = a + bx for all x having nonzero probability (or nonzero density for continuous rvs). If the random variable is not a constant, then it means that the second derivative of f is zero and hence it is not strictly convex.

Jensen's inequality is the basis for many other results in information theory and statistics.

4.4.0.1 Nonnegativity of KL divergence

Lemma 4.4. $D(p||q) \ge 0$ with equality iff p(x) = q(x) for all x such that p(x) > 0.

Proof. Let S denote the set of all x such that p(x) > 0. This is called the support of p. The main observation here is that $\log_2(x)$ is a concave function of x, and we can use Jensen's inequality. To start with, consider

$$-D(p||q) = -\sum_{x \in \mathcal{S}} p(x) \log_2 \frac{p(x)}{q(x)} = \sum_{x \in \mathcal{S}} p(x) \log_2 \frac{q(x)}{p(x)}$$

Note that the last term can be written as $\mathbb{E}_p \log_2 \frac{q(X)}{p(X)}$, where $X \sim p$. Using Jensen's inequality,

$$-D(p||q) \leq \log_2\left(\sum_{x \in \mathcal{S}} p(x) \frac{q(x)}{p(x)}\right)$$
$$= \log_2\left(\sum_{x \in \mathcal{S}} q(x)\right)$$
$$= \log_2(1) = 0.$$

Rearranging, we get $D(p||q) \ge 0$.

4.4.0.2 Implications of nonnegativity of KL divergence

٠

 $I(X;Y) \ge 0.$

And equality holds in the above iff X, Y are independent. This follows from the fact that $I(X;Y) = D(p_{XY} || p_X p_Y)$.

•

$$D(p_{Y|X} \| q_{Y|X}) \ge 0$$

with equality iff $p_{Y|X}(y|x) = q_{Y|X}(y|x)$ for all (x, y) such that $p_{Y|X}(y|x) > 0$.

•

$I(X;Y|Z) \ge 0$

• Conditioning reduces entropy

$$H(Y|X) \leqslant H(Y)$$

with equality iff X and Y are independent. This follows from I(X;Y) = H(Y) - H(Y|X).

 $H(X) \leq \log_2 |\mathcal{X}|.$ Consider $q(x) = \frac{1}{|\mathcal{X}|}$ for all x and $p(x) = p_X(x)$. Simplifying D(p||q), we get

$$0 \leq D(p||q) = \log_2 |\mathcal{X}| - H(X).$$

٠

$$H(X_1,\ldots,X_n) \leq \sum_{i=1}^n H(X_i).$$

4.4.0.3 Log-sum inequality

Lemma 4.5. Suppose that $\alpha_1, \ldots, \alpha_k$ and β_1, \ldots, β_k are nonnegative numbers such that $\alpha_i > 0$ whenever $\beta_i > 0$. Then,

$$\sum_{i} \alpha_i \log_2 \frac{\alpha_i}{\beta_i} \ge \left(\sum_{i} \alpha_i\right) \log_2 \frac{(\sum_{i} \alpha_i)}{(\sum_{i} \beta_i)}$$

and equality holds if and only if $\alpha_i = \beta_i$ for all *i* such that $\alpha_i > 0$.

Proof. We will again use Jensen's inequality on the strictly convex function $x \log x$. Start with the LHS.

$$\sum_{i=1}^{k} \alpha_{i=1}^{k} \log_2 \frac{\alpha_i}{\beta_i} = \sum_{i=1}^{k} \beta_i \frac{\alpha_i}{\beta_i} \log_2 \frac{\alpha_i}{\beta_i}$$
$$= \left(\sum_{j=1}^{k} \beta_j\right) \left(\sum_{i=1}^{k} \frac{\beta_i}{\sum_{j=1}^{k} \beta_j} \frac{\alpha_i}{\beta_i} \log_2 \frac{\alpha_i}{\beta_i}\right)$$

If we set $p(i) = \beta_i / \sum_{j=1}^k \beta_j$, and $t_i = \alpha_i / \beta_i$, then the above becomes

$$\sum_{i=1}^{k} \alpha_{i=1}^{k} \log_2 \frac{\alpha_i}{\beta_i} = (\sum_{j=1}^{k} \beta_j) \sum_{i=1}^{k} p(i)(t_i \log_2 t_i)$$

$$\geq (\sum_{j=1}^{k} \beta_{j}) (\sum_{i=1}^{k} p(i)t_{i}) \log_{2} (\sum_{i=1}^{k} p(i)t_{i})$$

$$\geq (\sum_{j=1}^{k} \beta_{j}) \left(\sum_{i=1}^{k} \frac{\beta_{i}}{\sum_{j=1}^{k} \beta_{j}} \frac{\alpha_{i}}{\beta_{i}} \right) \log_{2} \left(\sum_{i=1}^{k} \frac{\beta_{i}}{\sum_{j=1}^{k} \beta_{j}} \frac{\alpha_{i}}{\beta_{i}} \right)$$

$$= \left(\sum_{i} \alpha_{i} \right) \log_{2} \frac{(\sum_{i} \alpha_{i})}{\left(\sum_{j} \beta_{j} \right)}$$

This can be generalized easily to the continuous case by replacing summations with integrals in the proofs (assuming that they all exist).

Lemma 4.6. Let f, g be nonnegative integrable functions on \mathbb{R} with $\int_{x=-\infty}^{\infty} f(x)dx > 0$ and $\int_{x=-\infty}^{\infty} g(x)dx > 0$. Additionally, f(x) = 0 whenever g(x) = 0. Then,

$$\int_{x=-\infty}^{\infty} f(x) \log_2 \frac{f(x)}{g(x)} dx \ge \left(\int_{x=-\infty}^{\infty} f(x) dx \right) \log_2 \frac{\left(\int_{x=-\infty}^{\infty} f(x) dx \right)}{\left(\int_{x=-\infty}^{\infty} g(x) dx \right)}.$$