
EE2340/EE5847: Information Sciences/Information Theory 2020

Handout 4: Properties of the information measures - 1
Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
Please email the course instructor in case of any errors.

4.1 Recap

• The minimum rate for fixed-length compression of a memoryless source with distribution pX is equal
to the entropy HpXq.

• The maximum rate of reliable communication over a DMC pY |X is equal to the capacity C “ maxpX
IpX;Y q.

• The optimal error exponent for classifying between two sources ps, pg is equal to the KL divergence
Dpps}pgq.

The material covered in this handout is contained in Chapter 2 of the book by Cover and Thomas.

4.2 Relook of the information measures

Verify that we can write

HpXq “ EX log2

1

pXpXq

HpX,Y q “ EXY log2

1

pXY pX,Y q

HpX|Y q “ EXY log2

1

pX|Y pX|Y q

IpX;Y q “ EXY log2

pXY pX,Y q

pXpXqpY pY q
.

We have already seen in previous classes that

IpX;Y q “ HpXq ´HpX|Y q.

4.3 Properties

4.3.1 Properties

Lemma 4.1. Entropy is nonnegative.

This follows from the fact that ´x log x ą 0 for all x P p0, 1q.
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4.3.2 Chain rules

In the homework, you will show that

HpX,Y q “ HpXq `HpY |Xq “ HpY q `HpX|Y q. (4.1)

and
HpX,Y |Zq “ HpX|Zq `HpY |X,Zq. (4.2)

This will be useful in proving a number of chain rules.

4.3.2.1 More variables

HpX1, . . . , Xnq “

n
ÿ

i“1

HpXi|X1, . . . , Xi´1q. (4.3)

This can be proved by repeatedly using (4.1) and (4.2).

HpX1, . . . , Xnq “ HpX1q `HpX2, . . . , Xn|X1q (4.4)

“ HpX1q `HpX2|X1q `HpX3, . . . , Xn|X1, X2q (4.5)

... (4.6)

“ HpX1q `HpX2|X1q ` . . .`HpXn|X1, . . . Xn´1q. (4.7)

4.3.2.2 Chain rule of mutual information

The conditional mutual information is defined as

IpX;Y |Zq “ HpX|Zq ´HpX|Y,Zq.

We can prove the following chain rule

IpX1, . . . , Xn;Y q “
n
ÿ

i“1

IpXi;Y |X1, . . . , Xi´1q (4.8)

This follows by repeatedly using the chain rule of entropy for each of the conditional entropy terms.

IpX1, X2;Y q “ HpX1, X2q ´HpX1, X2|Y q

“ HpX1q `HpX2|X1q´HpX1|Y q ´HpX2|X1, Y q

“ IpX1;Y q ` IpX2;Y |X1q.

4.3.2.3 Chain rule for KL divergence

We can prove something similar here as well: For any pair of joint distributions pXY and qXY such that
pXY px, yq “ 0 whenever qXY px, yq “ 0, we have

DppXY }qXY q “ DppX}qXq `DppY |X}qY |Xq,

where we define

DppY |X}qY |Xq
def
“

ÿ

x,y

pXY px, yq log2

pXY px, yq

qXY px, yq
.
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This follows from definition.

DppXY }qXY q “
ÿ

x,y

pXY px, yq log2

pXY px, yq

qXY px, yq

“
ÿ

x,y

pXY px, yq log2

pXpxqpY |Xpy|xq

qXpxqqY |Xpy|xq

“
ÿ

x,y

pXY px, yq log2

pXpxq

qXpxq
`
ÿ

x,y

pXY px, yq log2

pY |Xpy|xq

qY |Xpy|xq

“
ÿ

x

pXpxq log2

pXpxq

qXpxq
`
ÿ

x,y

pXY px, yq log2

pY |Xpy|xq

qY |Xpy|xq

“ DppX}qXq `DppY |X}qY |Xq.

4.4 Convex sets and functions

A set S Ă Rm is said to be convex if the line segment joining any two points within S also lies in S. Formally,
S is convex if

αx1 ` p1´ αqx2 P S for all x1, x2 P S and α P r0, 1s.

Note that every closed interval ra, bs Ă R is convex.

A function defined on a convex set S, f : S Ñ R is convex if for all x, y P S and α P r0, 1s, we have

fpαx` p1´ αqyq ď αfpxq ` p1´ αqfpyq.

The function is strictly convex if equality holds only for α “ 0, 1.

A function f is concave if ´f is convex.

Lemma 4.2. A twice-differentiable function f : R Ñ R has nonnegative second derivative on ra, bs if and
only if it is convex in ra, bs. If the second derivative is strictly positive in the interval, then it is also strictly
convex and vice versa.

Proof. To show that the second derivative being nonnegative implies convexity, see Theorem 2.6.1 in Cover
and Thomas.

For the other way around, recall from your calculus course that

f2pxq “ lim
tÑ0

fpx` tq ` fpx´ tq ´ 2fpxq

t2
.

It therefore suffices to show that fpx`tq`fpx´tq´2fpxq
t2 ě 0 for all t ą 0.

Now since f is convex,

fpxq “ f

ˆ

x` t

2
`
x´ t

2

˙

ď
1

2
fpx` tq `

1

2
fpx´ tq.

Rearranging, we get that
fpx` tq ` fpx´ tq ´ 2fpxq ě 0.

This completes the proof. If the function is strictly convex, then the inequality is strict, and therefore the
second derivative is positive.
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A very useful inequality for convex functions is the following:

Lemma 4.3 (Jensen’s inequality). For any convex function f : RÑ R and random variable X, we have

Efpxq ě fpEXq.

If f is strictly convex, then equality implies that X is a constant.

Proof. The Cover and Thomas book gives a proof specific to discrete random variables using mathematical
induction. Here is a shorter proof:

Let c` αx denote the tangent to fpxq at the point EX. I claim that the following is true (Why?):

c` αx ď fpxq.

Using this,
EfpXq ě Epa` bXq “ a` bEX (4.9)

However, the line intersects fpxq for x “ EX, and hence a` EX “ fpEXq. This completes the proof.

Equality in (4.9) implies that fpxq “ a ` bx for all x having nonzero probability (or nonzero density for
continuous rvs). If the random variable is not a constant, then it means that the second derivative of f is
zero and hence it is not strictly convex.

Jensen’s inequality is the basis for many other results in information theory and statistics.

4.4.0.1 Nonnegativity of KL divergence

Lemma 4.4. Dpp}qq ě 0 with equality iff ppxq “ qpxq for all x such that ppxq ą 0.

Proof. Let S denote the set of all x such that ppxq ą 0. This is called the support of p. The main observation
here is that log2pxq is a concave function of x, and we can use Jensen’s inequality. To start with, consider

´Dpp}qq “ ´
ÿ

xPS
ppxq log2

ppxq

qpxq
“

ÿ

xPS
ppxq log2

qpxq

ppxq

Note that the last term can be written as Ep log2
qpXq
ppXq , where X „ p. Using Jensen’s inequality,

´Dpp}qq ď log2

˜

ÿ

xPS
ppxq

qpxq

ppxq

¸

“ log2

˜

ÿ

xPS
qpxq

¸

“ log2p1q “ 0.

Rearranging, we get Dpp}qq ě 0.
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4.4.0.2 Implications of nonnegativity of KL divergence

•
IpX;Y q ě 0.

And equality holds in the above iff X,Y are independent. This follows from the fact that IpX;Y q “
DppXY }pXpY q.

•
DppY |X}qY |Xq ě 0

with equality iff pY |Xpy|xq “ qY |Xpy|xq for all px, yq such that pY |Xpy|xq ą 0.

•
IpX;Y |Zq ě 0

• Conditioning reduces entropy
HpY |Xq ď HpY q

with equality iff X and Y are independent. This follows from IpX;Y q “ HpY q ´HpY |Xq.

•
HpXq ď log2 |X |.

Consider qpxq “ 1
|X | for all x and ppxq “ pXpxq. Simplifying Dpp}qq, we get

0 ď Dpp}qq “ log2 |X | ´HpXq.

•
HpX1, . . . , Xnq ď

n
ÿ

i“1

HpXiq.

4.4.0.3 Log-sum inequality

Lemma 4.5. Suppose that α1, . . . , αk and β1, . . . , βk are nonnegative numbers such that αi ą 0 whenever
βi ą 0. Then,

ÿ

i

αi log2

αi

βi
ě

˜

ÿ

i

αi

¸

log2

p
ř

i αiq

p
ř

i βiq

and equality holds if and only if αi “ βi for all i such that αi ą 0.

Proof. We will again use Jensen’s inequality on the strictly convex function x log x. Start with the LHS.

k
ÿ

i“1

αk
i“1 log2

αi

βi
“

k
ÿ

i“1

βi
αi

βi
log2

αi

βi

“ p

k
ÿ

j“1

βjq

˜

k
ÿ

i“1

βi
řk

j“1 βj

αi

βi
log2

αi

βi

¸

If we set ppiq “ βi{
řk

j“1 βj , and ti “ αi{βi, then the above becomes

k
ÿ

i“1

αk
i“1 log2

αi

βi
“ p

k
ÿ

j“1

βjq
k
ÿ

i“1

ppiqpti log2 tiq
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ě p

k
ÿ

j“1

βjqp
k
ÿ

i“1

ppiqtiq log2p

k
ÿ

i“1

ppiqtiq

ě p

k
ÿ

j“1

βjq

˜

k
ÿ

i“1

βi
řk

j“1 βj

αi

βi

¸

log2

˜

k
ÿ

i“1

βi
řk

j“1 βj

αi

βi

¸

“

˜

ÿ

i

αi

¸

log2

p
ř

i αiq
´

ř

j βj

¯

This can be generalized easily to the continuous case by replacing summations with integrals in the proofs
(assuming that they all exist).

Lemma 4.6. Let f, g be nonnegative integrable functions on R with
ş8

x“´8
fpxqdx ą 0 and

ş8

x“´8
gpxqdx ą

0. Additionally, fpxq “ 0 whenever gpxq “ 0. Then,

ż 8

x“´8

fpxq log2

fpxq

gpxq
dx ě

ˆ
ż 8

x“´8

fpxqdx

˙

log2

´

ş8

x“´8
fpxqdx

¯

´

ş8

x“´8
gpxqdx

¯ .
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