
EE2340/EE5847: Information Sciences/Information Theory 2020

Handout 3: Channel coding and Classification
Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
Please email the course instructor in case of any errors.

Recap

• Memoryless sources

• Data compression: rate, probability of error

• Source coding theorem: The optimal rate of compression for iid sources is HpXq

• Entropy:
HpXq “ ´

ÿ

xPX
pXpxq log2 pXpxq.

3.1 Discrete memoryless channels
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Figure 3.1: Basic block diagram of a digital communication system.
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Fig. 3.1 shows the block diagram of a a typical digital communication system. The system has a modular
structure. If we combine the physical channel and the modulator/demodulator blocks, then effectively from
the modulator input at the transmitter to the demodulator output at the receiver we have a discrete channel
with a finite input and output alphabet.

Formally, a discrete memoryless channel is defined by an input alphabet X , an output alphabet Y (here,
X and Y are discrete but potentially could be infinite) and a transition probability law pY |X (a conditional
probability) on Y ˆ X . When used for n channel uses, the probability law is

pY n|Xnpy
n|xnq “

n
ź

i“1

pY |Xpyi|xiq.

In other words, we assume that the noise induced by the channel has no ‘memory’, i.e., acts independently
across time.

Since the input to the channel decoder is compressed data, we will assume that the “message,” or the input
to the channel encoder, is a uniformly distributed k-bit sequence. Our goal is to ensure that the receiver
(the decoder in this case) is able to recover the message correctly.

3.1.1 Channel code

A channel code is formally defined as a pair of maps, an encoder f : t0, 1uk Ñ Xn, and a decoder g : Yn Ñ
t0, 1uk. The throughput, or rate of the code is

R
def
“

k

n

while the probability of error is

Pe
def
“

ÿ

mkPt0,1uk

ÿ

xn,yn

1

2k
Prrfpmkq “ xnspY n|Xnpy

n|xnqPrrgpynq “ mks.

Our goal is to maximize R for a desired probability of error.

We say that a rate R is achievable for a channel if there exist codes of rate R that achieve limnÑ0 Pe over
this channel. The capacity of the channel is the maximum R which is achievable.

Unlike the source coding problem, finding the optimal channel code is harder.

3.1.1.1 Common channels

• Binary symmetric channel (BSC): The BSC with crossover probability p, denoted BSC(p), has X “

Y “ t0, 1u, and

pY |Xpy|xq “

#

1´ p if x “ y

p if x ‰ y.

• Binary erasure channel (BEC): The BEC with erasure probability p, denoted BEC(p), has input
alphabet X “ t0, 1u, and output alphabet Y “ t0, 1, eu, where e is called the erasure symbol. The
transition probabilities are

pY |Xpy|xq “

$

’

&

’

%

p if y “ e

1´ p if x “ y

0 otherwise.
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• Additive white Gaussian noise (AWGN) channel: This is not a discrete channel, as the input and
output alphabet are continuous. The input and output alphabets are R. The channel can be described
by the rule:

Yi “ xi ` Zi, i “ 1, 2, . . . , n

where pZ1, . . . , Znq are iid with N p0, σ2q components. The transition law is:

fY |Xpy|xq “
1

?
2πσ2

e´
py´xq2

2σ2 .

Additionally, there is usually a power constraint imposed: the transmitted vector xn must satisfy

}xn}2
def
“

n
ÿ

i“1

x2i ď nP

for some P ą 0 called the power constraint.

• Complex slow/quasi-static fading channel: Another continuous time channel. The input and output
alphabets are C. This can be described by the rule

Yi “ hXi ` Zi,

where h is called the fading coefficient and is random, while Zi is circularly symmetric complex Gaus-
sian1 with zero mean and variance σ2. The transmitted vector x P Cn must also satisfy a power
constraint of P :

}x}2 “
n
ÿ

i“1

|xi|
2 ď nP.

In the simplest case, h is assumed to be complex Gaussian (Rayleigh fading).

• Fast fading channel:
Yi “ hiXi ` Zi,

where hn “ ph1, . . . , hnq has iid components.

• Multiple antenna/multi-input multi-output (MIMO) channels: Here, the input alphabet is Rts while
the output alphabet is Rtr .

Yi “ HiXi `Zi, i “ 1, . . . , n

where Yi P Rtr , Xi P Rts . The channel coefficient matrix Hi is a random trˆ ts matrix, while Zi P Rts
has AWGN components. The input pY1, . . . ,Ynq must satisfy a power constraint.

3.1.1.2 More complicated channels

The following channels are not memoryless, and not dealt with in this course:

• A simple channel with memory: These are reasonable models for most wireless communication systems.

Yi “ a0Xi ` a1Xi´1 ` . . .` akXi´k ` Zi

where Zi „ N p0, σ2q is iid.

• Insertion/deletion channels: These model synchronization errors. In this setup, the input to the
channel is an n-length vector (corresponding to the n channel uses). If the clocks between the sender
and receiver are not synchronized, then the length of the vector seen at the output (after sampling) is
different from n. See fig. 3.5.

1In other words, h “ hR `
?
´1hI , where hR and hI are independent N p0, q
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Figure 3.3: The binary symmetric channel with crossover probability p.
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Figure 3.4: The binary erasure channel with crossover probability p.

3.1.1.3 Simple codes

Assume that X “ Y “ t0, 1u, and the following binary symmetric channel (BSC) with crossover probability
p.

• Uncoded transmission: If we transmit the message directly, then the rate is R “ 1, and the
probability of error is 1´ p1´ pqn.

• Repetition code: Suppose that we resend each bit l times. Decoding follows the majority rule:
declare the message bit to be 1 if at least l{2 code bits are equal to 1. Then, n “ kl, the rate is 1{l.

Observe that if we want limnÑ8 Pe “ 0, then the asymptotic rate is zero if we use a repetition code.

3.1.2 Mutual information

If X,Y are discrete random variables with joint distributiom pXY , then the mutual information between X
and Y is defined as

IpX;Y q
def
“

ÿ

xPX ,yPY
pXY px, yq log2

pXY px, yq

pXpxqpY pyq
,

where pXpxq “
ř

yPY pXY px, yq and pY pyq “
ř

xPX pXY px, yq are the marginals of X and Y respectively.

Some notes and observations:

• The points we made about entropy in the previous handout also holds for mutual information. IpX;Y q
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Figure 3.5: Insertion channel. Due to the difference in clock frequencies, additional symbols may get ”in-
serted”. The length of the output is different from the length of the input.



Lecture 3: Channel coding and Classification 3-6

is not a function of X,Y but rather a function of pXY . Moreover, the sum in IpX;Y q is taken over
only those px, yq for which pXY px, yq ą 0.

• Mutual information is symmetric in X and Y . In other words, IpX;Y q “ IpY ;Xq. The following is
an example of a function which is not symmetric in X,Y :

rIpX;Y q “
ÿ

pxPX ,yPY

pXY px, yq log2

pXY px, yq

pXpxq
.

• The mutual information is a measure of “information” that X gives about Y , or (due to symmetry)
that Y gives about X.

We will briefly give an operational meaning to mutual information before studying the properties of entropy
and mutual information.

3.2 The channel coding theorem

Theorem 3.1 (Shannon, 1948). The capacity of a discrete memoryless channel with transition probabilities
pY |X is equal to

C “ max
pX

IpX;Y q.

Let us see what the channel coding theorem says for the binary symmetric channel.

Claim: It suffices to consider 0 ă p ă 1{2.

• What is the optimal channel code for p “ 0?

• Why do you think the capacity is zero when p “ 1{2? What can you do?

• What if p ą 1{2?

For the BSC(p), the capacity C “ 1 ´ H2ppq “ 1 ` p log2 p ` p1 ´ pq log2p1 ´ pq. The pX that maximizes
IpX;Y q is Bernoulli(1{2).

Definition 3.2. Given two binary sequences xn and yn, the Hamming distance between xn and yn, denoted
dHpx

n, ynq, is the number of locations in which xn and yn differ.

The Hamming distance is a metric. A metric generalizes the notion of distance (such as the Euclidean
distance you are familiar with). A metric on a set X is a function f : X ˆ X Ñ R such that

• (Non-negativity) fpx, yq ě 0 for all x, y P X , and equality holds if and only if x “ y,

• (Symmetry) fpx, yq “ fpy, xq for all x, y, and

• (Triangle inequality) fpx, yq ď fpx, zq ` fpz, yq for all x, y, z.

You should be able to prove the following lemma:

Lemma 3.3. For any binary sequence xn, let Y n be the sequence that the receiver observes when xn is
passed through a BSC(p). Then,

PrrdHpx
n, Y nq ą npp1` εqs ď 2´αε

2n

for some universal constant α ą 0.
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3.2.0.1 Channel coding as a packing problem

Lemma 3.3 says that the received vector is at a Hamming distance of « np from the transmitted codeword.
This gives a nice way of constructing a code: The codebook must be a set of points in t0, 1un such that
every pair of points are at a distance of at least 2npp1` 2εq away from each other.

The above construction guarantees that the probability of error is at most 2´αε
2n.

However, it turns out that this method gives us a rate less than Theorem 3.1.

3.3 Relationship between entropy and mutual information

We can write,

IpX;Y q “
ÿ

x,y

pXY px, yq log2

pXY px, yq

pXpxqpY pyq

“
ÿ

x,y

pXY px, yq log2

pX|Y px, yq

pXpxq

“
ÿ

x,y

pXY px, yq
`

log2 pX|Y px, yq ´ log2 pXpxq
˘

“ ´
ÿ

x

pXpxq log2 pXpxq ` ´
ÿ

x

pXY px, yq log2 pX|Y px|yq

“ HpXq ´HpX|Y q,

where
HpX|Y q

def
“ ´

ÿ

x

pXY px, yq log2 pX|Y px|yq

is called the conditional entropy of X given Y . Similarly,

IpX;Y q “ HpY q ´HpY |Xq

Interpretation: Mutual information is a measure of the information that X gives about Y (or by symmetry,
Y gives about X). It is equal to the difference in the randomness that was originally there about X and the
amount of randomness that remains about X after observing Y (and the other way around, by symmetry).

3.4 The problem of classification

Consider the following problem: you observe n iid samples X1, . . . , Xn, where each sample may have distri-
bution ps or pg. In the context of email spam classification, ps is the distribution of the email if it is spam,
and pg is the distribution if it is not spam (good).

We want a rule such that
Prrdeclare spam|email is not spams ď ε

and
Prrdeclare not spam|email is spams is minimized.
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The optimal test turns out to be the likelihood ratio test:

Output

#

spam if log2
pspx

n
q

pgpxnq
ą α

not spam if log2
pspx

n
q

pgpxnq
ď α

The value of α is chosen to satisfy

Pr

„

log2

pspX
nq

pgpXnq
ą α

ˇ

ˇ

ˇ
not spam



“ ε

Then,

lim
nÑ8

1

n
Prrdeclare not spam|email is spams “ ´Dpps}pgq,

where

Dpps}pgq
def
“

ÿ

xPX
pspxq log2

pspxq

pgpxq

is called the Kullback-Liebler (KL) divergence (or the relative entropy) between ps and pg.

• Relationship between KL divergence and mutual information:

IpX;Y q “ DppXY }pXpY q.

3.5 Continuous alphabet

Suppose that we have continuous random variables X,Y with a joint pdf fXY and marginals fX , fY .

The differential entropy of X,

hpXq
def
“ ´

ż 8

´8

fXpxq log2 fXpxqdx.

Recall that we use the convention 0 log2 0 “ 0.

The conditional differential entropy of X given Y is

hpX|Y q
def
“ ´

ż

x,y

fXY px, yq log2 fX|Y px|yqdxdy.

The mutual information between X and Y is

IpX;Y q “ hpXq ´ hpX|Y q “ hpY q ´ hpY |Xq “

ż

x,y

fXY px, yq log2

fXY px, yq

fXpxqfY pyq
dxdy

Shannon’s channel coding theorem holds for continuous alphabet as well: The capacity of any channel with
power constraint P and transition law fY |X is

C “ max
fX :VarpXqďP

IpX;Y q (3.1)

The Gaussian random variable is very important as we encounter it frequently in communications and signal
processing. You can compute the differential entropy of the Gaussian X „ N pµ, σ2q: It is equal to

hpXq “
1

2
log2p2πeσ

2q.
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For the power constrained AWGN channel Yi “ Xi `Zi with Zi „ N p0, σ2q, (3.1) is maximized when fX is
N p0, P q. Then,

IpX;Y q “ hpY q ´ hpY |Xq “ hpY q ´ hpZq.

Since X,Z are independent Gaussians, Y „ N p0, P ` σ2q. Using the formula for the entropy of a Gaussian
and simplifying, we get

C “
1

2
log2

ˆ

1`
P

σ2

˙

.
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