
EE2340/EE5847: Information Sciences/Information Theory 2020

Handout 1: Introduction
Instructor: Shashank Vatedka

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
Please email the course instructor in case of any errors.

1.1 Introduction to information theory

Welcome to this course on information theory! This course will introduce you to fundamental concepts that
deal with the processing of information. The principles introduced in this course are useful in a variety of
applications including

• Data compression

• Digital communication

• Cryptography

• Gambling/investment

• Machine learning

• Deriving bounds in computer science

• Physics

• Neuroscience, bioinformatics, . . .

In this course, we will see a number of quantities used to measure information, and their connections to data
compression and digital communication.

1.2 Uncertainty and information

What is uncertainty? What is information? Can we measure information?

• Heuristically, more randomness implies more uncertainty

• Example: predicting the next letter in an English word

Q-

probably ’U’
A-

more unsure

• We gain information if there is some reduction in uncertainty

– Saying that Q is followed by U gives less information than saying that A is followed by N.

1-1



Lecture 1: Introduction 1-2

1.2.1 Randomness and data compression

• More random a file is, higher the compressed file size, i.e., more the uncertainty, the harder it is to
compress

• Intuitively, more uniform a source is, the more “random” it is.

– E.g.: A fair coin vs a biased coin with PrrHs “ 0.9.

1.3 Communication over a noisy channel

Communication over wireless/wireline media is hampered by: (a) attenuation (b) noise1. The simplest model
used in practice is the following

yptq “ axptq ` nptq

where yptq is the received signal, xptq is the transmitted signal, and nptq is a noise signal. The variance of
nptq is bounded, and known (through estimation) in practice. The attenuation factor a typically depends on
the distance between the transmitter and receiver (in many situations, inversely proportional to the square
of the distance).

In such a scenario, how do we ensure reliable long-range communication?

• Increasing noise power improves reliability, but not practical.

• Solution used prior to the 80’s: repeaters. These act as relays, which amplify the received signal and
retransmit. But this amplifies both signal and noise.

• If the signal power and noise power are fixed, can we obtain an arbitrarily small probability of error?

• (Shannon, 1948): YES! Using channel coding.

1There are other factors as well, such as self and inter-user interference, but we will ignore that for now.
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1.4 Refresher in probability

Some references to refresh your memory:

• Papoulis, Probability, random variables and stochastic processes

• Ross, Introduction to probability models

Concepts that you will need:

• What is a random variable

• Discrete and continuous random variables

• Probability mass function, probability density function, cumulative distribution function

• Expectation, conditional expectation, properties of expectation

• Variance, standard deviation

• Moments, moment generating function

The following bound is frequently used:

Lemma 1.1 (Union bound). If E1 and E2 are two events, then

PrrE1
ď

E2s ď PrrE1s ` PrrE2s.

1.5 Concentration inequalities

A concentration inequality typically tries to answer the following question: What is the probability that a
random variable deviates significantly from its mean?

The following results are extremely useful in several situations:

Lemma 1.2 (Markov’s inequality). Suppose that X is a nonnegative random variable, and EX “ µ ą 0.
Then, for all a ą 0, we have

PrrX ě as ď
µ

a
.

Proof. Suppose that X has pdf f . Then,

µ “ EX “

ż 8

t“0

xfpxqdx

“

ż a

t“0

xfpxq `

ż 8

t“a

xfpxqdx

ě

ż 8

t“a

xfpxqdx (why?)

ě a

ż 8

t“a

fpxqdx (why?)

“ aPrrX ě as.

Rearranging the above gives the desired inequality.
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The above lemma is used as a starting point in proving many other inequalities.

Lemma 1.3 (Chebyshev inequality). Suppose that X is a random variable with mean µ and variance σ2.
Then, for any a ą 0, we have

Prr|X ´ µ| ą as ď
σ2

a2

Proof. We can write
Prr|X ´ µ| ą as “ PrrpX ´ µq2 ą a2s

We can now use Markov’s inequality to bound the right hand side.

Prr|X ´ µ| ą as ď
ErpX ´ µq2s

a2
(1.1)

“
σ2

a2
. (1.2)

Lemma 1.4 (Chernoff bound). If X is a random variable with mean µ, then for every a ą 0, we have

PrrX ě µ` as ď min
tą0

EetpX´µq

eta

PrrX ď µ´ as ď min
tą0

Ee´tpX´µq

e´ta

Proof. Left as exercise.

Use the above to prove the following result for Bernoulli random variables:

Lemma 1.5. If Xn is an iid random sequence with Bernoulli(p) components, then

Pr

«

1

n

n
ÿ

i“1

Xi ě pp1` δq

ff

ď

ˆ

eδ

p1` δq1`δ

˙np

ď e´
δ2np

3

Pr

«

1

n

n
ÿ

i“1

Xi ď pp1´ δq

ff

ď

ˆ

e´δ

p1´ δq1´δ

˙np

ď e´
δ2np

3

for any 0 ď δ ď 1.

To prove the above, you can use the inequality2 2δ
2`δ ď logp1` δq.

1.5.1 Sequences of random variables

Random variables X1 and X2 are independent if

PrrX1 P A, X2 P Bs “ PrrX1 P As ˆ PrrX2 P Bs

for all A,B.

2See https://en.wikipedia.org/wiki/List_of_logarithmic_identities for more such identities.

https://en.wikipedia.org/wiki/List_of_logarithmic_identities
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We say that a sequence of random variables Xn def
“ X1, X2, . . . , Xn (where each Xi is drawn from a finite

alphabet X ) is independent and identically distributed according to pX (abbreviated as iid „ pX) if

PrrX1 P A1, X2 P A2 . . . , Xn P Ans “ pXpA1q ˆ pXpA2q ˆ ¨ ¨ ¨ ˆ pXpAnq “
n
ź

i“1

pXpAiq,

for all A1,A2, . . . ,An.

We say that a sequence of random variables is a first-order time-homogeneous Markov chain with transition
kernel pX2|X1

and initial distribution π if for all xn P Xn, we have

PrrXn “ xns “ πpx1q
n
ź

i“2

pX2|X1
pxi|xi´1q.

We say that a sequence of random variables Xn forms a time-homogeneous k-th order Markov chain with
transition kernel pXk|X1...Xk´1

and initial distribution πk if

PrrXn “ xns “ πkpx
kq

n
ź

i“k`1

pXk|X1...Xk´1
pxi|xi´k . . . xi´1q

for every xn P Xn.

1.5.1.1 Weak law of large numbers

Lemma 1.6 (Weak law of large numbers). If Xn is a sequences of independent and identically distributed
random variables with finite mean µ and finite variance, then

lim
nÑ8

Pr

«
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Xi ´ µ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

ff

“ 0

for all ε ą 0.

Note

A sequence of random variables Xn is said to converge in probability to another random variable X if for
every ε ą 0,

lim
nÑ8

Prr|Xn ´X| ą εs “ 0.

Lemma 1.6 says that 1
n

řn
i“1Xi converges to µ in probability if Xn is iid.

1.5.2 Markov chains

Xn is a first-order time-homogeneous Markov chain with transition probabilities pX1|X and initial distribution
pX if

PrrXn “ xns “ pXpx1q
n
ź

i“2

pX1|Xpxi|xi´1q

It is also called a first-order Markov source.

Some properties:
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• Conditioned on the present, the future is independent of the past, i.e., given Xi, the random variable
Xi`k is independent of pX1, . . . Xi´1q for all i, k.

• If P denotes the transition probability matrix, then the stationary distribution is a pmf π such that

πP “ π

Xn is a k-th order Markov source with initial distribution pXk and transition probabilities pXk`1|Xk if

pXnpx
nq “ pXkpx1, . . . , xkq

n
ź

i“k`1

pXk`1|Xkpxi|xi´1, . . . , xi´kq

Markov sources are the simplest sources which capture “memory” in the source. These sources have no
long-range dependencies. In fact, English text can be roughly approximated by a Markov source.

1.5.3 Big-O notation

Frequently in computer science and information theory, we use the big-O notation, or Bachmann-Landau
notation3 to study asymptotics.

Given two sequences in n, say fpnq and gpnq,

• We say that fpnq “ Opgpnqq if there exist positive constants α, n0 independent of n such that fpnq ď
αgpnq for all n ě n0.

• We say that fpnq “ Ωpgpnqq if there exist positive constants α, n0 independent of n such that fpnq ě
αgpnq for all n ě n0.

• We say that fpnq “ Θpgpnqq if there exist positive constants αl, αu, n0 independent of n such that
αlgpnq ď fpnq ď αugpnq for all n ě n0.

• We say that fpnq “ opgpnqq if limnÑ8 fpnq{gpnq “ 0.

• We say that fpnq “ ωpgpnqq if limnÑ8 fpnq{gpnq “ 8.

Questions:

• If fpnq “ Op1q, then what can you say?

• If fpnq “ op1q, then what can you say?

• If fpnq “ ωp1q, then what can you say?

• If fpnq “ op1{nq, then what can you say?

• If fpnq “ 23np1`op1qq, then what can you say?

3See https://en.wikipedia.org/wiki/Big_O_notation for more.

https://en.wikipedia.org/wiki/Big_O_notation
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1.6 Commonly used notation

Vectors of length n (typically column vectors) will be denoted with a superscript n, e.g., xn, yn, an. The it
component of this vector will be denoted using a subscript, e.g., xi is the ith component of xn.

Random variables will be denoted in uppercase, e.g., X,Y, Z. Random vectors in uppercase, with superscript
denoting the dimension. E.g., Xn, Y n, Zn.

Sets are usually denoted in calligraphic uppercase, e.g., A,B, etc. Special sets: R denotes the set of real
numbers, Z is the set of integers.

The probability mass function of a discrete rv X will be pX , and that of Xn will be pXn . The probability
density function of a continuous rv X will be fX .

In this course, we will assume that the continuous random variables in consideration have a density. However,
this is not true in general (there exist random variables having a CDF but not a PDF). Most definitions and
results studied in this course also carry forward even when the rvs do not have PDF, but this requires some
careful redefinition of various quantities that we will not get into.

We will use nCk and
`

n
k

˘

interchangeably to denote the binomial coefficient.
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