
Oplog log nq Worst-Case Local Decoding and
Update Efficiency for Data Compression

Shashank Vatedka˚, Venkat Chandar:, Aslan Tchamkerten;
˚Dept. of Electrical Engineering, Indian Institute of Technology Hyderabad, India

:DE Shaw, New York, USA
;Dept. of Communications and Electronics, Telecom Paris, France

Abstract—This paper addresses the problem of data compres-
sion with local decoding and local update. A compression scheme
has worst-case local decoding dwc if any bit of the raw file can
be recovered by probing at most dwc bits of the compressed
sequence, and has update efficiency of uwc if a single bit of the
raw file can be updated by modifying at most uwc bits of the
compressed sequence. This article provides an entropy-achieving
compression scheme for memoryless sources that simultaneously
achieves Oplog log nq local decoding and update efficiency. Key
to this achievability result is a novel succinct data structure for
sparse sequences which allows efficient local decoding and local
update.

Under general assumptions on the local decoder and update
algorithms, a converse result shows that dwc and uwc must grow
as Ωplog log nq.

I. INTRODUCTION

Consider a source sequence Xn with independent and
identically distributed (i.i.d.) components having probability
mass function pX on a finite alphabet X . For simplicity we
assume here that pX is a known distribution over X “ t0, 1u.1

A fixed-length compression scheme of rate R consists of
a pair of algorithms, the encoder ENC and the decoder
DEC. The encoder maintains for every Xn, a codeword
CnR P t0, 1unR such that DECpCnRq is a good estimate of
Xn. The probability of error of the compression scheme is
defined as

Pglob – PrrDECpCnRq ‰ Xns.

From the source coding theorem, we know that there exist
sequences of codes with rate arbitrarily close to the entropy
HppXq and error probability vanishing in n.

Our goal is to design a fixed-length compression scheme
that additionally supports local encoding and decoding. A
locally decodable and updatable compression scheme consists
of a global encoder and decoder pair pENC,DECq and in
addition, a local decoder and a local updater:
‚ Local decoder: A local decoder is an algorithm which

given i P rns, probes (possibly adaptively) a small
number of bits of CnR to output pXi. Here, pXi is the
ith symbol of pXn def

“ DECpCnRq. The worst-case local
decodability dwc of the scheme is the maximum number

1This can be generalized to the scenario where pX is unknown to the
encoder and decoder by first estimating pX and then using this for designing
the compression scheme as in [1]. Similarly, our results can be generalized
to nonbinary alphabets.

of bits probed by the local decoder for any i. The
average local decodability d is the expected number of
bits (averaged over the source distribution) probed to
recover any pXi.

‚ Local updater: A local updater is an algorithm which
given i P rns and rXi P t0, 1u, adaptively reads and
modifies a small number of bits of CnR to give rCnR such
that rCnR “ ENCpX1, . . . , Xi´1

rXi, Xi`1, . . . , Xnq. In
particular, the local updater has no prior knowledge
of Xn or CnR and must probe CnR to obtain such
information.
The worst-case update efficiency uwc is defined as the
maximum of the sum of the bits read and written in order
to update any i. Also, we assume that rXi is distributed
according to pX and is independent of Xn. Likewise,
the average update efficiency u is the sum of the average
number of bits probed and written in order to update
any Xi.

It was recently shown in [1] that

pd, uq “ pOp1q, Op1qq

is achievable. In that paper the authors also gave a separate
compression scheme achieving

pdwc, uq “ pOplog log nq, Oplog log nqq.

In particular, the question of whether

pdwc, uwcq “ pOplog log nq, Oplog log nqq

is achievable was left open. In this paper we answer this
question in the affirmative. We also show that under certain
additional assumptions on the local decoder and the local
updater this locality is order optimal.

Our achievability proof is based on a novel succinct data
structure for Opb{ log bq-sparse sequences of length b in the
bitprobe model which for any 0 ă δ ă 1 takes space Opδbq
while enabling local decode and update using at most Oplog bq
and Op 1

δ log bq bit reads/writes respectively. Our restricted
converse is based on an analysis of bipartite graphs that
represent the encoding and decoding algorithms.

A. Prior work

Local decoding and update for entropy-achieving compres-
sion schemes have been studied mostly in isolation. The

problem of locally decodable source coding of random se-
quences has received attention very recently following [2],
[3]. Mazumdar et al. [4] gave a fixed-length compressor of
rate of HppXq ` ε with dwcp1q “ Θp 1

ε log 1
ε q. They also

provided a converse result for non-dyadic sources: dwcp1q “
Ωplogp1{εqq for any compression scheme that achieves rate
HppXq ` ε. Similar results are known for variable length
compression [5] and universal compression of sources with
memory [6]. Likewise, there are compressors that achieve [7]
rate R “ HppXq ` ε and update efficiency uwc “ Op1q.

In the computer science community, the literature has
mostly focused on the word-RAM model [8], [9], [10], [11],
[12], [13], where each operation (read/write/arithmetic oper-
ations) is on words of size w “ Oplog nq bits each, and
the complexity is measured in terms of the number of word
operations required for local decoding/update. However, in this
case the number of bitprobes required is Ωplog nq. For random
messages, it is almost trivial to obtain local decoding/update
efficiency of Oplog nq bitprobes by partitioning the n message
symbols into blocks of size Oplog nq and compressing each
block separately.

II. CONTRIBUTIONS

Before we present our main results we make a few obser-
vations aimed at justifying our model, and in particular the
requirements we impose on the local decoder (see previous
section).

Note that for any index i the local decoder must output pXi,
the i-th estimate of the global decoder. We could potentially
relax this constraint, by requiring that the local decoder
produces an estimate pX

plocq
i , potentially different from pXi,

with small error probability

Ploc
def
“ max

i
Prr pX

plocq
i ‰ Xis.

As we argue next, if we impose Ploc to be small (but non-
vanishing) with either no global decoder or with a separate
global decoder that achieves vanishing error probability, then
from a coding perspective the solution is essentially trivial.

1) Only local decodability and non-vanishing error: If we
only require Ploc to be small without constraints on the global
decoder, then we can easily achieve

pdwc, uwcq “

ˆ

O

ˆ

log
1

Ploc

˙

, O

ˆ

log
1

Ploc

˙˙

.

This can be obtained by partitioning the length´n message
into blocks of size b0 “ Oplog 1

Ploc
q, and compressing each

block using an entropy-achieving fixed-length compression
scheme—notice that the probability of wrongly decoding any
particular block vanishes exponentially with b0. Hence, for any
small but constant Ploc we can achieve

pdwc, uwcq “ pOp1q, Op1qq.

2) Separate local and global decoders: Suppose that in
addition to 1q we also want Pglob “ op1q using a separate
global decoder to recover pXn. This can be obtained by using
a low-density parity check (LDPC) code with Op1q maximum
variable and check node degrees. The codeword consists of
two parts:

CnR “ pCnpR´δqp1q, Cδnp2qq,

where CnpR´δqp1q is obtained as in the previous case by di-
viding the message into constant size b0 blocks and separately
encoding each, while Cδnp2q is obtained as the syndrome (of
the LDPC code) of the (Hamming) error vector between Xn

and the decoding of CnpR´δqp1q.
The local decoder only probes CnpR´δqp1q, while the local

updater needs to update both CnpR´δqp1q and Cnδp2q. Since
we are using an LDPC code, Cnδp2q can be updated using
Op1q bit modifications. Therefore,

pdwc, uwcq “ pOplog
1

Ploc
q, Oplog

1

Ploc
qq.

The global decoder decodes both CnpR´δqp1q and Cδnp2q
and can recover Xn with op1q probability of error.

As we see, 1q and 2q are essentially trivial cases from a
coding perspective. Note also that the solution to 2q generally
depends on the rate of decay of Ploc. Requiring the local
decoder to output pXi removes this degree of freedom—since
Pglob “ op1q implies Ploc “ op1q—and, as we argue below,
is more interesting from a coding perspective. This setup
is perhaps more interesting also practically since we can
parallelize global decoding. If we have a large number of
parallel processors, then the runtime of global decoding can
be made sublinear in n.

We will henceforth only consider compression schemes with
local decoders that output pXi.

The main result of this article is the following:

Theorem II.1. For any ε ą 0 there exists a compression
scheme for Bernoulli(p) sources that achieves

pR, dwc, uwcq “

ˆ

Hppq ` ε, Oplog log nq, Op
1

ε
log log nq

˙

,

and the overall computational complexity of global encod-
ing/decoding is quasilinear in n.

The above theorem is formally proved in Section III-A. The
proof of the above theorem is based on a novel dynamic
succinct data structure for sparse sequences that achieves
Oplog nq locality in the bitprobe model.

Lemma II.1. Fix any δ ą 0. For every β “ opb{ log bq, there
exists a dynamic succinct data structure for b-length binary
vectors of sparsity at most β with the following properties. Any
such vector occupies at most δbp1`op1qq bits, has worst-case
local decoding Oplog bq and worst-case update efficiency at
most Op 1

δ log bq.

To prove a lower bound, we make three assumptions
(A1) Global encoding and decoding using local algorithms:

We assume that CnR is obtained by running the local

....

....

....

....

....

....

....

....

....

....

....

Encoding
graph

Decoding
graph

Fig. 1: Encoding and decoding graphs under assumptions (A1)
and (A2). The degree of the ith left vertex in Ge is ∆l

i, which
is upper bounded by ui, the update efficiency for message
symbol i. The jth right vertex is the local encodability of the
ith symbol ej , defined in Sec. IV. The degree of a right vertex
in Gd is equal to the local decoding of the ith symbol di.

updater on each message symbol, and pXn by running
the local decoder for each bit. In other words, there is no
separate global encoder or decoder.

(A2) Function assumption: The local update function for the
t’th update is a deterministic function of Xn, and is
independent of the sequence of the previous t´1 updates.
Likewise, the local decoder does not depend on the
sequence of updates that have occurred previously.

(A3) Bounded average-to-worst case influence: For nonadap-
tive schemes, we can construct the corresponding local
encoding graph Ge and the local decoding graph Gd as
follows—see Fig. 1. Two vertices pi, jq in Ge are adjacent
if Cj is a function of Xi. Likewise, pj, iq are adjacent in
Gd if pXi is a function of Cj . We assume that the ratio of
the average to the worst case degrees of the right vertices
of Ge is bounded from below by a constant independent
of n, and similarly for the left vertices of Gd.

Remark: Under (A1) and (A2), any adaptive scheme (whether
for update or decoding) achieving worst-case locality l can be
converted to a non-adaptive scheme with locality ď 2l. This
is because an adaptive scheme with locality l may depend on
up to 2l different bits. Therefore a lower bound on the locality
of a non-adaptive scheme translates into a lower bound on the
logarithm of the locality of an adaptive scheme.

Theorem II.2. For any adaptive scheme that satisfy (A1)–(A3)
with R ă 1, we have

dwc ` uwc “ Ωplog log nq.

As mentioned earlier, it is possible to achieve pdwc, uwcq “

pOp1q, Op1qq without assumptions (A1)–(A3). We conjecture
that Theorem II.2 holds even without assumption (A3), but
were unsuccessful in proving this. We also conjecture that
it holds even without (A2). As we will see later, the data
structure that leads to Lemma II.1 does not satisfy (A2).

III. ACHIEVABILITY

The high-level structure of our scheme is inspired by the
locally decodable compressor in [4]. The idea in [4] is to
partition the set of message symbols into constant-sized blocks
and use a fixed-length compressor for each block. The residual
error vector is then encoded using the succinct data structure
in [14] that occupies negligible space but allows local decoding
of a single bit using Op1q bitprobes. However, this data
structure is static, in the sense that it does not allow efficient
updates and hence does not get us small uwc.

A well-known dynamic data structure in the word-RAM
model is the van Emde Boas tree [15] which takes space Opbq
but allows local retrieval, insert and delete in Oplog log bq time
(equivalently Oplog b log log bq bitprobes). If we use the van
Emde Boas tree for encoding the residual error vector, then
we can achieve rate close to HppXq but a higher locality of
Oplog log n polyplog log log nqq.

Our main contribution is a novel dynamic succinct data
structure (used to encode the residual error) which occupies
roughly the same space as [14] but allows local decode and
update using only Oplog bq bitprobes.

A. Proof of Theorem II.1

We partition the n-length message sequence xn into
blocks xb1p1q, . . . , xb1pn{b1q of size b1 “ Oplog nq
each. Each block i is further partitioned into subblocks
(xb0pi, 1q, . . . , xb0pi, b1{b0q) of b0 symbols each. Each sub-
block is compressed independently using a fixed-length lossy
compression scheme of rate Hppq ` ε and average per-letter
distortion ε. Let cb0pHppq`εqpi, jq denote this subcodeword for
the pi, jqth subblock. In addition, the error vectors (denoted
eb0pi, jq and equal to xb0pi, jq if xb0pi, jq is atypical and
0b0 otherwise) are concatenated and for each i, eb1piq def

“

peb0pi, 1q, . . . , eb0pi, b1{b0qq is compressed using the scheme
in Lemma II.1 to give c̄εb1piq with δ “ ε. The overall codeword
is the concatenation of pcb0pHppq`εqpi, jq : 1 ď i ď n{b1, 1 ď
j ď b1{b0q and pc̄εb1piq : 1 ď i ď n{b1q.

As long as the sparsity of eb1piq is less than αb1{ log b1
for a suitably chosen α ą 0, we can recover the ith message
block (or any symbol within it) without error.

We choose b1 “ α1plog n log log nq and b0 “ α2plog log nq.
Using Azuma’s inequality (and carefully choosing α1, α2),

the probability that the distortion in each block is greater than
α log n{ log log n falls as op1{nq.

The worst-case local decoding is at most Oplog b1q “
Oplog log nq, while the worst-case update efficiency is
Op 1

ε log log nq. The compression rate is Hppq ` 2ε, and the
overall probability of error (using the union bound over blocks)
is op1q. This completes the proof.

All that remains is to prove Lemma II.1.

B. A succinct data structure achieving Oplog bq locality for
sparse sequences of length b

The high-level idea in our data structure is to split the b
symbols into chunks of Oplog bq symbols each, and maintain
a dynamic memory table where we only store the chunks with

Status bits

Memory pointers

Counter

Memory table

...

...

D
a
ta

 s
tr

u
ct

u
re

Input sparse sequence

0 1 1 0

Fig. 2: Illustrating the data structure in Sec. III-B. For each message block, we store a status bit to denote whether the block
is nonzero, and a memory pointer indicating the corresponding location in the memory table. Additionally, we store a counter
with the number of nonzero blocks and a memory table. Each chunk in the memory table contains some data and a reverse
pointer to the corresponding block.

nonzero Hamming weight. Addressing is resolved by storing
for each chunk a pointer which indicates the location in the
memory table where the chunk is encoded.

We split the b-length sequence xb into blocks of b1 consec-
utive symbols each: xb1p1q, . . . , xb1pb{b1q.

The data structure has the following components:
‚ Status bits: b{b1 many bits s1, . . . , sb{b1 , one for each

block. The status bit si is set to 1 if the Hamming weight
of xb1piq is greater than zero, and set to zero otherwise.

‚ Memory table: β many chunks ybmp1q, . . . , ybmpβq of
bm “ b1 ` logpb{b1q bits each. The ith chunk ybmpiq
is split into two parts: yb1pi, 1q having b1 bits, and
ylogpb{b1qpi, 2q having logpb{b1q bits. Here, yb1pi, 1q is
a vector which stores a nonzero block xb1pjq for some
(suitably defined later) j, while ylogpb{b1qpi, 2q is a reverse
pointer which encodes j in logpb{b1q bits.

‚ Memory pointers: b{b1 words pbpp1q, . . . , pbppb{b1q of
bp “ log β bits each, one for each block.

‚ Counter for number of nonzero blocks: clog β is a vector
of length log β bits which stores the number of nonzero
blocks in xb.

The overall codeword is a bit sequence obtained by the con-
catenation of the status bits, memory table, memory pointers
and the counter. The total space required is

kds “
b

b1
` βpb1 ` logpb{b1qq `

b

b1
log β ` log β (1)

The data structure is illustrated in Fig. 2.
1) Initial encoding: Let k denote the number of nonzero

blocks in xb.
‚ Status bits: If xb1piq has nonzero Hamming weight, then
si “ 1. Otherwise, it is set to zero.

‚ Memory pointers: If there are j ´ 1 nonzero blocks
among xb1p1q, . . . , xb1pi´1q and xbppiq is nonzero, then
pbppiq “ j (or more precisely, the binary representation
of j).

‚ Counter for number of nonzero blocks: clog β is set to the
number of nonzero blocks.

‚ Memory table: For every i, if si “ 1 and xbppiq “ j,
then the jth chunk contains information about xb1piq.
Specifically, yb1pj, 1q “ xb1piq, and ylogpb{b1qpi, 2q is
equal to the binary representation of i.

2) Local decoding: Suppose that we want to recover xi
which happens to be the i1th bit in the i2th block (i.e., i “
pi2 ´ 1qb1 ` i1).
‚ If si2 “ 0, then output 0. This is because si2 “ 0 implies

that the entire block is zero.
‚ If not, then read pbppi2q. If pbppi2q “ j, then output the
i1th bit in yb1pj, 1q.

The maximum number of bits probed is

dwc “ 1` bp ` 1 “ 2` log β.

3) Local update: Suppose that we want to update xi (which
happens to be the i1th bit in the i2th block) with rxi. The update
algorithm works as follows:
‚ Suppose that xi “ 0 and rxi “ 1. The updater first reads
si2 .
– If si2 “ 1, then it reads pbppi2q. Suppose that pbppi2q “
j. Then it writes rxi into the i1th location of yb1pj, 1q.

– If si2 “ 0, then it means that the block was originally
a zero block. The updater sets si2 to 1, and increments
the counter for the number of nonzero blocks clog β

by 1. Suppose that after incrementing, clog β “ j.

Then the updater sets pbppi2q “ j, writes rxb1pi2q into
yb1pj, 1q, and sets ylogpb{b1qpj, 1q to i2.

‚ Suppose that xi “ 1 and rxi “ 0. The updater first reads
si2 . Clearly, this should be equal to 1. The updater reads
pbppi2q (suppose that it is equal to j), and then yb1pj, 1q
to compute xb1pi2q.
– If xb1pi2q has Hamming weight greater than 1, then it

flips the i1th bit of yb1pj, 1q.
– If not, then it implies that rxb1pi2q “ 0b1 . The updater

next sets si2 to 0. It then decrements clog β . It next
overwrites ybmpjq with the contents of ybmpclog βq, and
sets pbppylogpb{b1qpclog β , 2qq to j. This is to consis-
tently ensure that the first clog β chunks of the memory
table always contains all the information about nonzero
blocks.

The maximum number of bits that need to be read and
written in order to update a single message bit is

uwc “ 2`bp`2 log β`2bm`bp “ 2`b1`4 log β`log
b

b1
.

4) Proof of Lemma II.1: Let us now prove the statement.
We use the above scheme with b1 “ O

`

1
δ log b

˘

. From (1),
the total space used is

kds ď δbp1` op1qq.

The worst-case local decoding is equal to Oplog bq and the
worst-case update efficiency is equal to O

`

1
δ log b

˘

. This
completes the proof.

Remark III.1. The succinct data structure here satisfies
(A1) but not (A2). Clearly, the order of the chunks in the
memory table depends on the sequence of updates performed
previously. For example, the first chunk could initially contain
data of the first subblock. After a number of updates (e.g.,
involving setting all bits of the first block to zero, inserting
bits in other blocks, and then repopulating the first block with
ones), the first block could be stored in chunk l ą 1.

IV. LOWER BOUNDS ON SIMULTANEOUS LOCALITY

To obtain lower bounds, we introduce an additional param-
eter that we might be interested in minimizing: the worst-case
local encodability, ewc, defined to be the maximum number
of input symbols that any single codeword bit can depend on.
Note that this is different from the update efficiency. This was
studied in [16], where the authors related this quantity to a
problem of semisupervised learning. It has been established
in the literature that separately, each of dwc, uwc, ewc can be
made Op1q for near-entropy compression. However, it is not
known if

pdwc, uwc, ewcq “ pΘp1q,Θp1q,Θp1qq

can be simultaneously achieved.
In this section, we assume (A1)–(A3) and that the scheme

is nonadaptive.

Fig. 3: Illustrating various neighbourhoods used in the proofs.

1) The local encoding and decoding graphs: Our derivation
of the lower bound involves analyzing the connectivity prop-
erties of two bipartite graphs that describe the local encoding
and decoding functions. As we will demonstrate, the various
probabilities of error are influenced by the degrees of these
bipartite graphs, whose values are governed by dwc, ewc and
uwc.

‚ Under (A1) and (A2), the jth compressed bit Cj can be
written as Cj “ fjpXNepjqq for some function fj , where
Nepjq is the set of message locations that Cj can depend
on.

‚ The ith decoded bit X̂i can be written as X̂i “ gipCNdpiqq

for some function gi, where Ndpiq is the set of codeword
locations that need to be probed in order to recover Xi.

‚ We can construct an nˆ nR encoder bipartite graph Ge
where pi, jq is an edge only if i P Nepjq, and an nRˆn
decoder bipartite graph Gd where pj, iq P rnRs ˆ n is an
edge if j P Ndpiq. See Fig. 1 for an illustration.

‚ Let ej
def
“ |Nepjq| be the degree of the jth right vertex

in Ge. This is equal to the local encodability of the ith
codeword symbol and satisfies ei ď dwc.

‚ This gives a natural lower bound on the update efficiency
for the ith message symbol: it must be greater than or
equal to ∆l

i, the degree of the ith left vertex in Ge.
The average degree of a vertex in the left (corresponding
to a message symbol) is equal to R times the average
degree of a right vertex (which corresponds to codeword
bits). This implies that uwc is lower bounded by the
average (arithmetic mean of) the individual local encod-
abilities of the individual codeword bits.

‚ Likewise, we denote the degree of the jth left vertex of
Gd by ∆r

j and that of the ith right vertex in Gd by di. Note
that di is equal to the local decodability of pXi (maximum
number of codeword bits to be probed to recover pXi). By
definition, di ď dwc for all i.

‚ We also define the so-called effective neighbourhood of
pXi to be

Neffpiq
def
“ tXl : l P

ď

jPNdpiq

Nepjqu.

The ith decoded symbol is a function of only those
symbols in Neffpiq, i.e., there exists a function hi such
that X̂i “ hipXNeff piqq. This is illustrated in Fig. 3.

Let us now obtain a lower bound on the bit error probability
of any compression scheme satisfying the above properties.
We would like to point out that the following Lemmas IV.1
and IV.2 only make use of assumptions (A1) and (A2), and
do not require (A3).

Lemma IV.1. The probability of bit error, P piqe
def
“ PrrX̂i ‰

Xis satisfies

P piqe “

#

ě p1´ pq|Neff piq| ě p1´ pqewcdwc , or,
0.

Proof. For every i P rns, the decoded symbol X̂i is a
deterministic function (the composition of gi and fj’s) of
Neffpiq

def
“ tXl : l P

Ť

jPNdpiq
Nepjqu. But we have |Neffpiq| ď

ewcdwc. The probability of error is given by2

P ie “
ÿ

x

¨

˝

ź

lPNeff piq

PrrXl “ xls

˛

‚1
tXi“X̂iu

ě
ÿ

x

¨

˝

ź

lPNeff piq

p1´ pq

˛

‚1
tXi“X̂iu

.

If there is even a single configuration of Xn for which Xi ‰

X̂i, then P ie ě p1´ pq
|Neff piq| ě p1´ pqewcdwc .

Remark: Observe that Lemma IV.1 holds even without
assumption (A3). Also, if R ă 1, then by the pigeonhole
principle P piqe ą 0 for a nonvanishing fraction of i’s. Since
Pglob ě maxi P

piq
e , we can conclude that any compression

scheme satisfying (A1)–(A2) and having vanishing probability
of error and nontrivial rate must satisfy uwcuwc “ ωp1q. In
other words, one cannot achieve pdwc, uwcq “ pOp1q, Op1qq.

A similar observation was made in [3] for linear locally
decodable (but not updatable) compression schemes. If the
encoder of the compressor must be linear, then dwc “ ωp1q if
we desire a vanishingly small probability of error.

We can use the above lemma to prove a lower bound on
simultaneous local encodability and decoding.

Lemma IV.2. Any fixed-length compression scheme achieving
R ă 1, a vanishing probability of error, and satisfying
assumptions (A1) and (A2) must necessarily satisfy

ewcdwc “ Ωplog nq

Proof. If we operate at a rate R ă 1, then by the pigeonhole
principle, it must be the case that at least np1´Rq bits have
a nonzero bit error probability. Call this set of bits/locations
E .

We will now select a subset S of Opn{ewcdwcq many Xi’s
whose probabilities of error are all nonzero but whose error
events are statistically independent of each other. We can
construct such an S in a greedy manner.

For every i P E , the corresponding X̂i is a deterministic
function of tXl : l P Neffpiqu. In other words, each X̂i

2For an event E , 1E is the indicator function which takes value 1 if E
occurs, and zero otherwise.

depends on at most ewcdwc many Xl’s. We can start with
the empty set, and iteratively put those Xi’s in S which are
in E but not in

Ť

i1PS Neffpi1q. It is clear that

|S| ě np1´Rq{pdwcewcq.

Moreover, by construction, we have that all the events 1Xi‰X̂i

are independent for all i P S (since the corresponding sets of
Xl’s they depend on are disjoint).

Let m def
“ np1 ´ Rq{pewcdwcq. Using Lemma IV.1, the

probability of block error is bounded as

Pe ě 1´ p1´ p1´ pqdwcewcqm ě 1´ e´mp1´pq
dwcewc

ě mp1´ pqdwcewc .

The above quantity is vanishing in n only if dwcewc “

Ωplog nq

A. Lower bound on dwcuwc and proof of Theorem II.2

We can in fact tighten the analysis above to prove an
identical lower bound on dwcuwc.

Let ηi – Neffpiq. Let ui, ej , di respectively denote the
update efficiency for the ith message symbol, the local encod-
ability of the jth codeword symbol, and the local decoding of
the ith message symbol. These are also respectively greater
than or equal to the degrees of the ith left vertex in Ge, the
jth right vertex in Ge, and the ith right vertex in Gd.

Lemma IV.3. Consider any fixed-length compression scheme
achieving vanishing probability of error and nontrivial com-
pression rate R ă 1. There exists a set S Ă rns of message
symbols with S “ Θpnq such that for all i P S,

ηi “ Ωplog nq.

The proof is very similar to that of Lemma IV.2, so we
only sketch the details. We select a subset S 1 of rns such that
P ie ą 0 for all i P S 1. We know that |S 1| ě np1´Rq. A more
careful rederivation of Lemma IV.1 gives us P ie ě p1 ´ pqηi

for all i P S 1. Hence,

Pe ě 1´
n
ź

i“1

p1´ P ieq (2)

ě
ÿ

iPS1

p1´ pqηi , (3)

which is nonvanishing in n if ηi ă log n for any subset of
S 1 of size np1 ´ Rq{2. Therefore, there must exist a subset
S Ă S 1 of size np1 ´ Rq{2 where ηi ą log n for all i P S .
This completes the proof.

This leads us to the following result:

Theorem IV.1. Any fixed-length compression scheme achiev-
ing vanishing probability of error and R ă 1, and satisfying
assumptions (A1)—(A3) and nonadaptive local algorithms
must have

dwcuwc “ Ωplog nq.

Proof. From Lemma IV.3, there exists a set S of size Θpnq
such that for all i P S, ηi “ Ωplog nq. However, ηi ď
dwc

ř

jPNdpiq
ej . From the graph Ge, we also have

dwc

ÿ

jPrnRs

ej “ dwc

ÿ

iPrns

∆l
i ď dwc

ÿ

iPrns

ui ď ndwcuwc, (4)

where ∆l
i denotes the degree of the ith left vertex in Ge.

Using Lemma IV.3, we have

|S|Ωplog nq ď
ÿ

iPS
ηi ď

n
ÿ

i“1

ηi ď dwc

ÿ

jPrnRs

ej .

From (4) and using the fact that |S| “ Θpnq, we have
ndwcuwc “ Ωpn log nq, which implies dwcuwc “ Ωplog nq,
completing the proof.

Using Theorem IV.1 and our remark on adaptive vs non-
adaptive schemes just prior to Theorem II.2, we get Theo-
rem II.2.

REFERENCES

[1] S. Vatedka and A. Tchamkerten, “Local decoding and update of com-
pressed data,” in Proceedings of the 2019 IEEE International Symposium
on Information Theory (ISIT), (Paris, France), 2019.

[2] A. Makhdoumi, S.-L. Huang, M. Medard, and Y. Polyanskiy, “On locally
decodable source coding,” arXiv preprint arXiv:1308.5239, 2013.

[3] A. Makhdoumi, S.-L. Huang, M. Médard, and Y. Polyanskiy, “On
locally decodable source coding,” in Proceedings of the 2015 IEEE
International Conference on Communications (ICC), pp. 4394–4399,
IEEE, 2015.

[4] A. Mazumdar, V. Chandar, and G. W. Wornell, “Local recovery in data
compression for general sources,” in Proceedings of the 2015 IEEE
International Symposium on Information Theory (ISIT), pp. 2984–2988,
IEEE, 2015.

[5] A. Pananjady and T. A. Courtade, “The effect of local decodability
constraints on variable-length compression,” IEEE Transactions on
Information Theory, vol. 64, no. 4, pp. 2593–2608, 2018.

[6] K. Tatwawadi, S. Bidokhti, and T. Weissman, “On universal compres-
sion with constant random access,” in Proceedings of the 2018 IEEE
International Symposium on Information Theory, pp. 891–895, 2018.

[7] A. Montanari and E. Mossel, “Smooth compression, Gallager bound
and nonlinear sparse-graph codes,” in Proceedings of the 2008 IEEE
International Symposium on Information Theory, pp. 2474–2478, IEEE,
2008.

[8] M. Patrascu, “Succincter,” in 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, pp. 305–313, IEEE, 2008.

[9] M. Patrascu and M. Thorup, “Dynamic integer sets with optimal rank,
select, and predecessor search,” in 2014 IEEE 55th Annual Symposium
on Foundations of Computer Science, pp. 166–175, IEEE, 2014.

[10] V. Mäkinen and G. Navarro, “Dynamic entropy-compressed sequences
and full-text indexes,” in Annual Symposium on Combinatorial Pattern
Matching, pp. 306–317, Springer, 2006.

[11] K. Sadakane and R. Grossi, “Squeezing succinct data structures into
entropy bounds,” in Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pp. 1230–1239, Society for Industrial
and Applied Mathematics, 2006.

[12] G. Navarro and Y. Nekrich, “Optimal dynamic sequence representa-
tions,” SIAM Journal on Computing, vol. 43, no. 5, pp. 1781–1806,
2014.

[13] E. Viola, O. Weinstein, and H. Yu, “How to store a random walk,” arXiv
preprint arXiv:1907.1087, 2019.

[14] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh,
“Are bitvectors optimal?,” SIAM Journal on Computing, vol. 31, no. 6,
pp. 1723–1744, 2002.

[15] P. van Emde Boas, “Preserving order in a forest in less than logarithmic
time,” in 16th Annual Symposium on Foundations of Computer Science
(sfcs 1975), pp. 75–84, IEEE, 1975.

[16] A. Mazumdar and S. Pal, “Semisupervised clustering, AND-queries and
locally encodable source coding,” in Advances in Neural Information
Processing Systems, pp. 6489–6499, 2017.

	Introduction
	Prior work

	Contributions
	Only local decodability and non-vanishing error
	Separate local and global decoders

	Achievability
	Proof of Theorem II.1
	A succinct data structure achieving O(logb) locality for sparse sequences of length b
	Initial encoding
	Local decoding
	Local update
	Proof of Lemma II.1

	Lower bounds on simultaneous locality
	The local encoding and decoding graphs
	Lower bound on dwcuwc and proof of Theorem II.2

	References

