LAPLACE TRANSFORMS

G. Ramesh

21 Sep 2015

◆□ → ◆□ → ◆ □ → ◊ → ◊ → ◊ → ◊ → ◊ ∧ □ → ◊ → ◊ ∧ □ → ◊ ∧ ◊ ∧ □ → ◊ ∧ ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊

OUTLINE

Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function with exponential order α . Assume that f' is piecewise continuous. Then

- $\mathcal{L}(f')$ exists and
- $\mathcal{L}(f') = s\mathcal{L}(f) f(0).$

Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function with exponential order α . Assume that f' is piecewise continuous. Then

• $\mathcal{L}(f')$ exists and

•
$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0).$$

Example

```
• Let f(t) = \sin^2(t). Find \mathcal{L}(f)?
```

Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function with exponential order α . Assume that f' is piecewise continuous. Then

• $\mathcal{L}(f')$ exists and

•
$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0).$$

Example

Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function with exponential order α . Assume that f' is piecewise continuous. Then

э.

• $\mathcal{L}(f')$ exists and

•
$$\mathcal{L}(f') = s\mathcal{L}(f) - f(0).$$

Example

1 Let
$$f(t) = \sin^2(t)$$
. Find $\mathcal{L}(f)$?
Ans: $\mathcal{L}(f) = \frac{2}{s(s^2 + 4)}$.
2 Find $\mathcal{L}(t \sin(wt)), t \in [0, \infty)$?.
Ans: $\mathcal{L}(f) = \frac{2ws}{(s^2 + w^2)^2}$.

THEOREM

Let $f, f', f'', \dots, f^{n-1}$ be continuous on $[0, \infty)$ and f^j $(j = 1, 2, \dots, n)$ be of exponential order α . Then f^n is piecewise continuous and

$$\mathcal{L}(f^n) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{n-1}(0)$$

THEOREM

Let $f, f', f'', \dots, f^{n-1}$ be continuous on $[0, \infty)$ and f^j $(j = 1, 2, \dots, n)$ be of exponential order α . Then f^n is piecewise continuous and

$$\mathcal{L}(f^n) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{n-1}(0)$$

Example

Solve the IVP: $y' + 4y = e^t$, y(0) = 2.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

THEOREM

Let $f, f', f'', \dots, f^{n-1}$ be continuous on $[0, \infty)$ and f^j $(j = 1, 2, \dots, n)$ be of exponential order α . Then f^n is piecewise continuous and

$$\mathcal{L}(f^n) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{n-1}(0)$$

Example

Solve the IVP: $y' + 4y = e^t$, y(0) = 2. • $\mathcal{L}(y) = \frac{9}{5}(\frac{1}{s+4}) + \frac{1}{5}(\frac{1}{s-1})$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ④ < ⊙

THEOREM

Let $f, f', f'', \dots, f^{n-1}$ be continuous on $[0, \infty)$ and f^j $(j = 1, 2, \dots, n)$ be of exponential order α . Then f^n is piecewise continuous and

$$\mathcal{L}(f^n) = s^n \mathcal{L}(f) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - f^{n-1}(0)$$

Example

Solve the IVP:
$$y' + 4y = e^t$$
, $y(0) = 2$.
• $\mathcal{L}(y) = \frac{9}{5}(\frac{1}{s+4}) + \frac{1}{5}(\frac{1}{s-1})$
• $y(t) = \frac{9}{5}e^{-4t} + \frac{1}{5}e^t$.

◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

LAPLACE TRANSFORMS FOR INTEGRALS

THEOREM

Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous function with exponential order α . Then

$$\mathcal{L}\left(\int_{0}^{t} f(u) du\right) = \frac{\mathcal{F}(s)}{s}, \ (s > 0, \ s > \alpha)$$

Hence $\mathcal{L}^{-1}\left(\frac{\mathcal{F}(s)}{s}\right) = \int_{0}^{t} f(u) du$.

э.

LAPLACE TRANSFORMS FOR INTEGRALS

THEOREM

Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous function with exponential order α . Then

$$\mathcal{L}\left(\int_{0}^{t} f(u) du\right) = \frac{\mathcal{F}(s)}{s}, \ (s > 0, \ s > \alpha)$$

Hence $\mathcal{L}^{-1}\left(\frac{\mathcal{F}(s)}{s}\right) = \int_{0}^{t} f(u) du$.

EXAMPLE-1

Find
$$\mathcal{L}^{-1}\left(\frac{1}{s(s^2+w^2)}\right)$$

LAPLACE TRANSFORMS FOR INTEGRALS

THEOREM

Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous function with exponential order α . Then

$$\mathcal{L}\left(\int_{0}^{t} f(u) du\right) = \frac{\mathcal{F}(s)}{s}, \ (s > 0, \ s > \alpha)$$

Hence $\mathcal{L}^{-1}\left(\frac{\mathcal{F}(s)}{s}\right) = \int_{0}^{t} f(u) du$.

EXAMPLE-1

Find
$$\mathcal{L}^{-1}\left(\frac{1}{s(s^2+w^2)}\right)$$

Answer: $f(t) = \frac{1-\cos(wt)}{w^2}$

EXAMPLE-2
Find
$$\mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+w^2)}\right)$$

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆□ ▶ ◆□ ▶

EXAMPLE-2

Find
$$\mathcal{L}^{-1}\left(\frac{1}{s^2(s^2+w^2)}\right)$$

Answer: $f(t) = \frac{t - \frac{\sin(wt)}{w}}{w^2}$

DIFFERENTIATION OF LAPLACE TRANSFORMS

THEOREM

Let $f : [0, \infty) \to \mathbb{R}$ be piecewise continuous and has exponential order α . Then

$$\frac{d}{ds}(\mathcal{F}(s)) = (-1)(tf(t)).$$

Hence
$$\mathcal{L}^{-1}(tf(t)) = (-1)\frac{d}{ds}(\mathcal{F}(s)).$$

EXAMPLES

•
$$\mathcal{L}(t\cos(wt)) = \frac{s^2 - w^2}{s^2 + w^2}$$
.
• $\mathcal{L}(t\sin(wt)) = \frac{2ws}{s^2 + w^2}$.

EXERCISES

Find the inverse Laplace transforms of the following:

•
$$\mathcal{L}^{-1}\left(\log(\frac{s+a}{s+b})\right)$$

• $\mathcal{L}^{-1}\left(\log(\frac{s^2+a^2}{s^2+b^2})\right)$

INTEGRATION OF LAPLACE TRANSFORM

Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous function with exponential order α . Assume that $\lim_{t\to 0+} \frac{f(t)}{t}$ exists. Then

$$\int_{s}^{\infty} F(u) du = \mathcal{L}\left(\frac{f(t)}{t}\right) \quad (s > \alpha).$$

EXAMPLES

•
$$\mathcal{L}\left(\frac{\sin t}{t}\right) = \int_{s}^{\infty} \frac{1}{x^{2}+1} dx = \frac{\pi}{2} - \tan^{-1}(s) = \tan^{-1}(\frac{1}{s}), \ s > 0$$

INTEGRATION OF LAPLACE TRANSFORM

Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous function with exponential order α . Assume that $\lim_{t\to 0+} \frac{f(t)}{t}$ exists. Then

$$\int_{s}^{\infty} F(u) du = \mathcal{L}\left(\frac{f(t)}{t}\right) \quad (s > \alpha).$$

EXAMPLES

$$\mathcal{L}\left(\frac{\sin t}{t}\right) = \int_{s}^{\infty} \frac{1}{x^{2}+1} dx = \frac{\pi}{2} - \tan^{-1}(s) = \tan^{-1}(\frac{1}{s}), \quad s > 0$$

$$\mathcal{L}\left(\frac{\sinh wt}{t}\right) =$$

INTEGRATION OF LAPLACE TRANSFORM

Let $f : [0, \infty) \to \mathbb{R}$ be a piecewise continuous function with exponential order α . Assume that $\lim_{t\to 0+} \frac{f(t)}{t}$ exists. Then

$$\int_{s}^{\infty} F(u) du = \mathcal{L}\left(\frac{f(t)}{t}\right) \quad (s > \alpha).$$

EXAMPLES

$$\mathcal{L}\left(\frac{\sin t}{t}\right) = \int_{s}^{\infty} \frac{1}{x^{2}+1} dx = \frac{\pi}{2} - \tan^{-1}(s) = \tan^{-1}(\frac{1}{s}), \quad s > 0$$

$$\mathcal{L}\left(\frac{\sinh wt}{t}\right) = \frac{1}{2} \ln \frac{s+w}{s-w} \quad (s > w).$$

CONVOLUTION PRODUCT

Let $f, g : [0, \infty) \to \mathbb{R}$ be two functions. Then the convolution of f and g is defined by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$$

э

if the above integral exists.

CONVOLUTION PRODUCT

Let $f, g : [0, \infty) \to \mathbb{R}$ be two functions. Then the convolution of f and g is defined by

$$(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d au$$

if the above integral exists.

If f, g are piecewise continuous, the the above integral exists.

EXAMPLE

Let $f(t) = e^t$ and g(t) = t. Then

$$(f*g)(t)=e^t-t-1.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目: 少々(や)

LAPLACE TRANSFORM

If $f, g : [0, \infty) \to \mathbb{R}$ are piecewise continuous with exponential order α , then

$$\mathcal{L}(f * g) = \mathcal{L}(f).\mathcal{L}(g)(s > \alpha)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

LAPLACE TRANSFORM

If $f, g : [0, \infty) \to \mathbb{R}$ are piecewise continuous with exponential order α , then

$$\mathcal{L}(f * g) = \mathcal{L}(f).\mathcal{L}(g)(s > \alpha)$$

•
$$\mathcal{L}(e^{at} * e^{bt}) = \frac{1}{s-a} \frac{1}{s-b} (s > a, s > b)$$

• $\mathcal{L}^{-1}\left(\frac{1}{s-a} \frac{1}{s-b}\right) = e^{at} * e^{bt}.$

- 1 Find $\mathcal{L}^{-1}\left(\frac{1}{s^2}\frac{1}{s-1}\right)$ 2 Find $\mathcal{L}^{-1}\left(\frac{1}{(s+1)^2}\right)$
- **3** Solve the integral equation

$$y(t) = t + \int_0^t y(\tau) \sin(t-\tau) d\tau.$$

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

EXAMPLE $\mathcal{F}(s) = \frac{1}{(s-2)(s-3)}; (s > 3)$

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

EXAMPLE $\mathcal{F}(s) = \frac{1}{(s-2)(s-3)}; (s > 3)$ Write $\mathcal{F}(s) = \frac{A}{s-2} + \frac{B}{s-3}$ (A, B are constants)

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

EXAMPLE

$$\mathcal{F}(s) = \frac{1}{(s-2)(s-3)}; (s > 3)$$

Write $\mathcal{F}(s) = \frac{A}{s-2} + \frac{B}{s-3}$ (A, B are constants)
Substituting $s = 2$, we get $A = -1$.

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

EXAMPLE

$$\mathcal{F}(s) = \frac{1}{(s-2)(s-3)}; (s > 3)$$

Write $\mathcal{F}(s) = \frac{A}{s-2} + \frac{B}{s-3}$ (A, B are constants)
Substituting $s = 2$, we get $A = -1$.
 $s = 3$ gives $B = 1$.
Hence $\mathcal{F}(s) = \frac{1}{s-3} - \frac{1}{s-2}$.

LINEAR FACTORS

Let $\mathcal{F}(s) = \frac{P(s)}{Q(s)}$, where *P* and *Q* are polynomials in *s* such that

degree of P is less than or equals to the degree of Q

2 *P* and *Q* have no common factors.

LINEAR FACTORS

Let $\mathcal{F}(s) = \frac{P(s)}{Q(s)}$, where *P* and *Q* are polynomials in *s* such that

• degree of P is less than or equals to the degree of Q

2 *P* and *Q* have no common factors.

Then

• For each factor of the form as + b of Q(s), there corresponds a partial fraction of the form $\frac{A}{as + b}$ (A is a contsant)

LINEAR FACTORS

Let $\mathcal{F}(s) = \frac{P(s)}{Q(s)}$, where *P* and *Q* are polynomials in *s* such that

• degree of P is less than or equals to the degree of Q

2 *P* and *Q* have no common factors.

Then

- For each factor of the form as + b of Q(s), there corresponds a partial fraction of the form $\frac{A}{as + b}$ (A is a contsant)
- Solution For each repeated linear factor of the form $(as + b)^n$ of Q(s), there corresponds a partial fraction of the form $\frac{A_1}{as+b} + \frac{A_2}{(as+b)^2} + \dots + \frac{A_n}{(as+b)^n} (A'_i s \text{ are contsants})$

QUADRATIC FACTORS

• For each factor of the form $as^2 + bs + c$ of Q(s), there corresponds a partial fraction of the form $\frac{As + B}{as^2 + bs + c}$ (*A*, *B* are contsants)

QUADRATIC FACTORS

- For each factor of the form $as^2 + bs + c$ of Q(s), there corresponds a partial fraction of the form $\frac{As + B}{as^2 + bs + c}$ (*A*, *B* are contsants)
- For each repeated factor of the form (as² + bs + c)ⁿ of Q(s), there corresponds a partial fraction of the form

$$\frac{A_1s + B_1}{as^2 + bs + c} + \frac{A_2s + B_2}{(as^2 + bs + c)^2} + \dots + \frac{A_ns + B_n}{(as^2 + bs + c)^n}$$

 $A_i, B'_is \text{ are contsants})$

EXAMPLES

Find
$$\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right)$$
; $s > 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EXAMPLES

Find
$$\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right)$$
; $s > 1$
• $\frac{s+1}{s^2(s-1)} = \frac{As+B}{s^2} + \frac{C}{s-1}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

EXAMPLES

Find
$$\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right)$$
; $s > 1$
• $\frac{s+1}{s^2(s-1)} = \frac{As+B}{s^2} + \frac{C}{s-1}$
• substituting $s = 0, 1, 2$, we get $B = -1, C = 2, A = 1$

EXAMPLES

Find
$$\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right)$$
; $s > 1$
• $\frac{s+1}{s^2(s-1)} = \frac{As+B}{s^2} + \frac{C}{s-1}$
• substituting $s = 0, 1, 2$, we get $B = -1, C = 2, A = 1$
• $\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right) = 1 - t + 2e^t$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ () ◆

EXAMPLES

Find
$$\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right)$$
; $s > 1$
• $\frac{s+1}{s^2(s-1)} = \frac{As+B}{s^2} + \frac{C}{s-1}$
• substituting $s = 0, 1, 2$, we get $B = -1, C = 2, A = 1$
• $\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right) = 1 - t + 2e^t$.

Find
$$\mathcal{L}^{-1}\Big(\frac{2s^2}{(s^2+1)(s-1)^2}\Big); s > 1$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ へ ⊙

EXAMPLES

Find
$$\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right)$$
; $s > 1$
• $\frac{s+1}{s^2(s-1)} = \frac{As+B}{s^2} + \frac{C}{s-1}$
• substituting $s = 0, 1, 2$, we get $B = -1, C = 2, A = 1$
• $\mathcal{L}^{-1}\left(\frac{s+1}{s^2(s-1)}\right) = 1 - t + 2e^t$.

Find
$$\mathcal{L}^{-1}\left(\frac{2s^2}{(s^2+1)(s-1)^2}\right)$$
; $s > 1$
Solution: $-\cos(t) + e^t + te^t$.

・ロ・・日・・日・・日・・日・

$$y'' + 3y' + 2y = t + 1$$
, $y(0) = 1$, $y'(0) = 0$.

$$y'' + 3y' + 2y = t + 1$$
, $y(0) = 1$, $y'(0) = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$\mathcal{L}(y) = \frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)}; \ s > 0$$

$$y'' + 3y' + 2y = t + 1$$
, $y(0) = 1$, $y'(0) = 0$.

•
$$\mathcal{L}(y) = \frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)}; \ s > 0$$

• $\frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)} = \frac{As+b}{s^2} + \frac{C}{s+1} + \frac{D}{s+2}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solve the IVP:

$$y'' + 3y' + 2y = t + 1$$
, $y(0) = 1$, $y'(0) = 0$.

•
$$\mathcal{L}(y) = \frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)}; \ s > 0$$

• $\frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)} = \frac{As+b}{s^2} + \frac{C}{s+1} + \frac{D}{s+2}$
• $A = \frac{-1}{4}, \ B = \frac{1}{2}, \ C = 2, \ D = \frac{-3}{4}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

$$y'' + 3y' + 2y = t + 1$$
, $y(0) = 1$, $y'(0) = 0$.

•
$$\mathcal{L}(y) = \frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)}; \ s > 0$$

• $\frac{s^3 + 3s^2 + s + 1}{s^2(s+1)(s+2)} = \frac{As+b}{s^2} + \frac{C}{s+1} + \frac{D}{s+2}$
• $A = \frac{-1}{4}, \ B = \frac{1}{2}, \ C = 2, \ D = \frac{-3}{4}$
• $y(t) = \frac{t}{2} - \frac{1}{4} + 2e^t - \frac{3}{4}e^{-2t}$.

PERIODIC FUNCTIONS

A function $f : \mathbb{R} \to \mathbb{R}$ is called periodic with period *L* if f(x) = f(x + L) for all $x \in \mathbb{R}$

э.

PERIODIC FUNCTIONS

A function $f : \mathbb{R} \to \mathbb{R}$ is called periodic with period *L* if f(x) = f(x + L) for all $x \in \mathbb{R}$

EXAMPLES

- 1 the functions $\cos(x)$, $\sin(x)$ are periodic with period 2π
- **2** the functions tan(x) and cot(x) are periodic with period π
- 3 A constant function is periodic with any period
- 4 $f(x) = x^n, x \in \mathbb{R} (n \in \mathbb{N})$ is not periodic
- **S** the functions e^x , $\cosh(x)$ are not periodic

 If *L* is a period for a periodic function, then *nL* is a period for each *n* ∈ Z

- If *L* is a period for a periodic function, then *nL* is a period for each *n* ∈ Z
- the smallest period is called the fundamental period for the function.

- 2π is the fundamental period for $\cos(x)$ and $\sin(x)$
- a constant function has no fundamental period.

- If *L* is a period for a periodic function, then *nL* is a period for each *n* ∈ Z
- the smallest period is called the fundamental period for the function.
- 2π is the fundamental period for $\cos(x)$ and $\sin(x)$
- a constant function has no fundamental period.

THEOREM

Let *f* be a periodic function with period *L* and $\mathcal{L}(f) = \mathcal{F}(s)$. Then

$$\mathcal{F}(s) = \frac{1}{1 - e^{sL}} \int_0^L e^{-st} f(t) dt.$$

THANK YOU

◆□ → ◆□ → ◆ □ → ◊ → ◊ → ◊ → ◊ → ◊ ∧ □ → ◊ → ◊ ∧ □ → ◊ ∧ ◊ ∧ □ → ◊ ∧ ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊ ∧ □ → ◊