Laplace Transforms

G. Ramesh

21 Sep 2015

OuTLINE

(1) Lecture-IV

LAPLACE TRANSFORM OF DERIVATIVES

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function with exponential order α. Assume that f^{\prime} is piecewise continuous. Then

- $\mathcal{L}\left(f^{\prime}\right)$ exists and
- $\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)$.

LAPLACE TRANSFORM OF DERIVATIVES

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function with exponential order α. Assume that f^{\prime} is piecewise continuous. Then

- $\mathcal{L}\left(f^{\prime}\right)$ exists and
- $\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)$.

Example

(1) Let $f(t)=\sin ^{2}(t)$. Find $\mathcal{L}(f)$?

LAPLACE TRANSFORM OF DERIVATIVES

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function with exponential order α. Assume that f^{\prime} is piecewise continuous. Then

- $\mathcal{L}\left(f^{\prime}\right)$ exists and
- $\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)$.

Example

(1) Let $f(t)=\sin ^{2}(t)$. Find $\mathcal{L}(f)$?

Ans: $\mathcal{L}(f)=\frac{2}{s\left(s^{2}+4\right)}$.
(2) Find $\mathcal{L}(t \sin (w t)), t \in[0, \infty)$? .

LAPLACE TRANSFORM OF DERIVATIVES

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a continuous function with exponential order α. Assume that f^{\prime} is piecewise continuous. Then

- $\mathcal{L}\left(f^{\prime}\right)$ exists and
- $\mathcal{L}\left(f^{\prime}\right)=s \mathcal{L}(f)-f(0)$.

Example

(1) Let $f(t)=\sin ^{2}(t)$. Find $\mathcal{L}(f)$?

Ans: $\mathcal{L}(f)=\frac{2}{s\left(s^{2}+4\right)}$.
(2) Find $\mathcal{L}(t \sin (w t)), t \in[0, \infty)$?.

Ans: $\mathcal{L}(f)=\frac{2 w s}{\left(s^{2}+w^{2}\right)^{2}}$.

GENERALIZATION

Theorem

Let $f, f^{\prime}, f^{\prime \prime}, \cdots, f^{n-1}$ be continuous on $[0, \infty)$ and
$f^{j}(j=1,2, \ldots, n)$ be of exponential order α. Then f^{n} is piecewise continuous and

$$
\mathcal{L}\left(f^{n}\right)=s^{n} \mathcal{L}(f)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-, \ldots,-f^{n-1}(0)
$$

GENERALIZATION

Theorem

Let $f, f^{\prime}, f^{\prime \prime}, \cdots, f^{n-1}$ be continuous on $[0, \infty)$ and
$f^{j}(j=1,2, \ldots, n)$ be of exponential order α. Then f^{n} is piecewise continuous and

$$
\mathcal{L}\left(f^{n}\right)=s^{n} \mathcal{L}(f)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-, \ldots,-f^{n-1}(0)
$$

Example

Solve the IVP: $y^{\prime}+4 y=e^{t}, y(0)=2$.

GENERALIZATION

Theorem

Let $f, f^{\prime}, f^{\prime \prime}, \cdots, f^{n-1}$ be continuous on $[0, \infty)$ and
$f^{j}(j=1,2, \ldots, n)$ be of exponential order α. Then f^{n} is piecewise continuous and

$$
\mathcal{L}\left(f^{n}\right)=s^{n} \mathcal{L}(f)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-, \ldots,-f^{n-1}(0)
$$

Example

Solve the IVP: $y^{\prime}+4 y=e^{t}, y(0)=2$.

- $\mathcal{L}(y)=\frac{9}{5}\left(\frac{1}{s+4}\right)+\frac{1}{5}\left(\frac{1}{s-1}\right)$

GENERALIZATION

Theorem

Let $f, f^{\prime}, f^{\prime \prime}, \cdots, f^{n-1}$ be continuous on $[0, \infty)$ and
$f^{j}(j=1,2, \ldots, n)$ be of exponential order α. Then f^{n} is piecewise continuous and

$$
\mathcal{L}\left(f^{n}\right)=s^{n} \mathcal{L}(f)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-, \ldots,-f^{n-1}(0)
$$

Example

Solve the IVP: $y^{\prime}+4 y=e^{t}, y(0)=2$.

- $\mathcal{L}(y)=\frac{9}{5}\left(\frac{1}{s+4}\right)+\frac{1}{5}\left(\frac{1}{s-1}\right)$
- $y(t)=\frac{9}{5} e^{-4 t}+\frac{1}{5} e^{t}$.

LAPLACE TRANSFORMS FOR INTEGRALS

THEOREM

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function with exponential order α. Then

$$
\mathcal{L}\left(\int_{0}^{t} f(u) d u\right)=\frac{\mathcal{F}(s)}{s}, \quad(s>0, s>\alpha)
$$

Hence $\left.\mathcal{L}^{-1}\left(\frac{\mathcal{F}(s)}{s}\right)=\int_{0}^{t} f(u) d u\right)$.

LAPLACE TRANSFORMS FOR INTEGRALS

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function with exponential order α. Then

$$
\mathcal{L}\left(\int_{0}^{t} f(u) d u\right)=\frac{\mathcal{F}(s)}{s},(s>0, s>\alpha)
$$

Hence $\left.\mathcal{L}^{-1}\left(\frac{\mathcal{F}(s)}{s}\right)=\int_{0}^{t} f(u) d u\right)$.

EXAMPLE-1
Find $\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+w^{2}\right)}\right)$

LAPLACE TRANSFORMS FOR INTEGRALS

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function with exponential order α. Then

$$
\mathcal{L}\left(\int_{0}^{t} f(u) d u\right)=\frac{\mathcal{F}(s)}{s}, \quad(s>0, s>\alpha)
$$

Hence $\left.\mathcal{L}^{-1}\left(\frac{\mathcal{F}(s)}{s}\right)=\int_{0}^{t} f(u) d u\right)$.
EXAMPLE-1
Find $\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+w^{2}\right)}\right)$
Answer: $f(t)=\frac{1-\cos (w t)}{w^{2}}$.

EXAMPLE-2

Find $\mathcal{L}^{-1}\left(\frac{1}{s^{2}\left(s^{2}+w^{2}\right)}\right)$

EXAMPLE-2

Find $\mathcal{L}^{-1}\left(\frac{1}{s^{2}\left(s^{2}+w^{2}\right)}\right)$
Answer: $f(t)=\frac{t-\frac{\sin (w t)}{w}}{w^{2}}$.

DIFFERENTIATION OF LAPLACE TRANSFORMS

Theorem

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be piecewise continuous and has exponential order α. Then

$$
\frac{d}{d s}(\mathcal{F}(s))=(-1)(t f(t)) .
$$

Hence $\mathcal{L}^{-1}(t f(t))=(-1) \frac{d}{d s}(\mathcal{F}(s))$.
EXAMPLES

- $\mathcal{L}(t \cos (w t))=\frac{s^{2}-w^{2}}{s^{2}+w^{2}}$.
- $\mathcal{L}(t \sin (w t))=\frac{2 w s}{s^{2}+w^{2}}$.

EXERCISES

Find the inverse Laplace transforms of the following:

- $\mathcal{L}^{-1}\left(\log \left(\frac{s+a}{s+b}\right)\right)$
- $\mathcal{L}^{-1}\left(\log \left(\frac{s^{2}+a^{2}}{s^{2}+b^{2}}\right)\right)$

Integration of Laplace transform

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function with exponenetial order α. Assume that $\lim _{t \rightarrow 0+} \frac{f(t)}{t}$ exists. Then

$$
\int_{s}^{\infty} F(u) d u=\mathcal{L}\left(\frac{f(t)}{t}\right) \quad(s>\alpha)
$$

Examples
(1) $\mathcal{L}\left(\frac{\sin t}{t}\right)=\int_{s}^{\infty} \frac{1}{x^{2}+1} d x=\frac{\pi}{2}-\tan ^{-1}(s)=\tan ^{-1}\left(\frac{1}{s}\right), \quad s>0$

Integration of Laplace transform

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function with exponenetial order α. Assume that $\lim _{t \rightarrow 0+} \frac{f(t)}{t}$ exists. Then

$$
\int_{s}^{\infty} F(u) d u=\mathcal{L}\left(\frac{f(t)}{t}\right) \quad(s>\alpha)
$$

Examples
(1) $\mathcal{L}\left(\frac{\sin t}{t}\right)=\int_{s}^{\infty} \frac{1}{x^{2}+1} d x=\frac{\pi}{2}-\tan ^{-1}(s)=\tan ^{-1}\left(\frac{1}{s}\right), \quad s>0$
(2) $\mathcal{L}\left(\frac{\sinh w t}{t}\right)=$

Integration of Laplace transform

Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a piecewise continuous function with exponenetial order α. Assume that $\lim _{t \rightarrow 0+} \frac{f(t)}{t}$ exists. Then

$$
\int_{s}^{\infty} F(u) d u=\mathcal{L}\left(\frac{f(t)}{t}\right) \quad(s>\alpha)
$$

Examples
(1) $\mathcal{L}\left(\frac{\sin t}{t}\right)=\int_{s}^{\infty} \frac{1}{x^{2}+1} d x=\frac{\pi}{2}-\tan ^{-1}(s)=\tan ^{-1}\left(\frac{1}{s}\right), \quad s>0$
(2) $\mathcal{L}\left(\frac{\sinh w t}{t}\right)=\frac{1}{2} \ln \frac{s+w}{s-w}(s>w)$.

CONVOLUTION PRODUCT

Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ be two functions. Then the convolution of f and g is defined by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

if the above integral exists.

CONVOLUTION PRODUCT

Let $f, g:[0, \infty) \rightarrow \mathbb{R}$ be two functions. Then the convolution of f and g is defined by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

if the above integral exists.
If f, g are piecewise continuous, the the above integral exists.

EXAMPLE

Let $f(t)=e^{t}$ and $g(t)=t$. Then

$$
(f * g)(t)=e^{t}-t-1 .
$$

LAPLACE TRANSFORM

If $f, g:[0, \infty) \rightarrow \mathbb{R}$ are piecewise continuous with exponential order α, then

$$
\mathcal{L}(f * g)=\mathcal{L}(f) \cdot \mathcal{L}(g)(s>\alpha)
$$

LAPLACE TRANSFORM

If $f, g:[0, \infty) \rightarrow \mathbb{R}$ are piecewise continuous with exponential order α, then

$$
\mathcal{L}(f * g)=\mathcal{L}(f) \cdot \mathcal{L}(g)(s>\alpha)
$$

- $\mathcal{L}\left(e^{a t} * e^{b t}\right)=\frac{1}{s-a} \frac{1}{s-b} \quad(s>a, s>b)$
- $\mathcal{L}^{-1}\left(\frac{1}{s-a} \frac{1}{s-b}\right)=e^{a t} * e^{b t}$.
(1) Find $\mathcal{L}^{-1}\left(\frac{1}{s^{2}} \frac{1}{s-1}\right)$
(2) Find $\mathcal{L}^{-1}\left(\frac{1}{(s+1)^{2}}\right)$
(3) Solve the integral equation

$$
y(t)=t+\int_{0}^{t} y(\tau) \sin (t-\tau) d \tau
$$

Partial Fractions

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

Partial Fractions

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

Example
$\mathcal{F}(s)=\frac{1}{(s-2)(s-3)} ;(s>3)$

Partial Fractions

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

Example
$\mathcal{F}(s)=\frac{1}{(s-2)(s-3)} ;(s>3)$
Write $\mathcal{F}(s)=\frac{A}{s-2}+\frac{B}{s-3}(A, B$ are constants $)$

Partial Fractions

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

Example
$\mathcal{F}(s)=\frac{1}{(s-2)(s-3)} ;(s>3)$
Write $\mathcal{F}(s)=\frac{A}{s-2}+\frac{B}{s-3}(A, B$ are constants $)$
Substituting $s=2$, we get $A=-1$.

Partial Fractions

Useful in finding the inverse Laplace transform when it is difficult to recognize that a given function is a Laplace transform of a known function.

Example
$\mathcal{F}(s)=\frac{1}{(s-2)(s-3)} ;(s>3)$
Write $\mathcal{F}(s)=\frac{A}{s-2}+\frac{B}{s-3}(A, B$ are constants $)$
Substituting $s=2$, we get $A=-1$.
$s=3$ gives $B=1$.
Hence $\mathcal{F}(s)=\frac{1}{s-3}-\frac{1}{s-2}$.

LINEAR FACTORS

Let $\mathcal{F}(s)=\frac{P(s)}{Q(s)}$, where P and Q are polynomials in s such that
(1) degree of P is less than or equals to the degree of Q
(2) P and Q have no common factors.

LINEAR FACTORS

Let $\mathcal{F}(s)=\frac{P(s)}{Q(s)}$, where P and Q are polynomials in s such that
(1) degree of P is less than or equals to the degree of Q
(2) P and Q have no common factors.

Then
(1) For each factor of the form $a s+b$ of $Q(s)$, there corresponds a partial fraction of the form $\frac{A}{a s+b}(A$ is a contsant)

Linear Factors

Let $\mathcal{F}(s)=\frac{P(s)}{Q(s)}$, where P and Q are polynomials in s such that
(1) degree of P is less than or equals to the degree of Q
(2) P and Q have no common factors.

Then
(1) For each factor of the form $a s+b$ of $Q(s)$, there corresponds a partial fraction of the form $\frac{A}{a s+b}(A$ is a contsant)
2 For each repeated linear factor of the form $(a s+b)^{n}$ of $Q(s)$, there corresponds a partial fraction of the form

$$
\frac{A_{1}}{a s+b}+\frac{A_{2}}{(a s+b)^{2}}+\cdots+\frac{A_{n}}{(a s+b)^{n}}\left(A_{i}^{\prime} s \text { are contsants }\right)
$$

QUADRATIC FACTORS

(1) For each factor of the form $a s^{2}+b s+c$ of $Q(s)$, there corresponds a partial fraction of the form $\frac{A s+B}{a s^{2}+b s+c}$ (A, B are contsants)

QUADRATIC FACTORS

(1) For each factor of the form $a s^{2}+b s+c$ of $Q(s)$, there corresponds a partial fraction of the form $\frac{A s+B}{a s^{2}+b s+c}$ (A, B are contsants)
(2) For each repeated factor of the form $\left(a s^{2}+b s+c\right)^{n}$ of $Q(s)$, there corresponds a partial fraction of the form

$$
\frac{A_{1} s+B_{1}}{a s^{2}+b s+c}+\frac{A_{2} s+B_{2}}{\left(a s^{2}+b s+c\right)^{2}}+\cdots+\frac{A_{n} s+B_{n}}{\left(a s^{2}+b s+c\right)^{n}}
$$

($A_{i}, B_{i}^{\prime} s$ are contsants)

EXAMPLES

Find $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right) ; s>1$

EXAMPLES

Find $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right) ; s>1$

- $\frac{s+1}{s^{2}(s-1)}=\frac{A s+B}{s^{2}}+\frac{C}{s-1}$

EXAMPLES

Find $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right) ; s>1$

- $\frac{s+1}{s^{2}(s-1)}=\frac{A s+B}{s^{2}}+\frac{C}{s-1}$
- substituting $s=0,1,2$, we get $B=-1, C=2, A=1$

EXAMPLES

Find $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right) ; s>1$

- $\frac{s+1}{s^{2}(s-1)}=\frac{A s+B}{s^{2}}+\frac{C}{s-1}$
- substituting $s=0,1,2$, we get $B=-1, C=2, A=1$
- $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right)=1-t+2 e^{t}$.

EXAMPLES

Find $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right) ; s>1$

- $\frac{s+1}{s^{2}(s-1)}=\frac{A s+B}{s^{2}}+\frac{C}{s-1}$
- substituting $s=0,1,2$, we get $B=-1, C=2, A=1$
- $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right)=1-t+2 e^{t}$.

Find $\mathcal{L}^{-1}\left(\frac{2 s^{2}}{\left(s^{2}+1\right)(s-1)^{2}}\right) ; s>1$

EXAMPLES

Find $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right) ; s>1$

- $\frac{s+1}{s^{2}(s-1)}=\frac{A s+B}{s^{2}}+\frac{C}{s-1}$
- substituting $s=0,1,2$, we get $B=-1, C=2, A=1$
- $\mathcal{L}^{-1}\left(\frac{s+1}{s^{2}(s-1)}\right)=1-t+2 e^{t}$.

Find $\mathcal{L}^{-1}\left(\frac{2 s^{2}}{\left(s^{2}+1\right)(s-1)^{2}}\right) ; s>1$
Solution: $-\cos (t)+e^{t}+t e^{t}$.

Solve the IVP:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t+1, \quad y(0)=1, y^{\prime}(0)=0
$$

Solve the IVP:

$$
\begin{aligned}
& y^{\prime \prime}+3 y^{\prime}+2 y=t+1, \quad y(0)=1, y^{\prime}(0)=0 \\
& -\mathcal{L}(y)=\frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)} ; s>0
\end{aligned}
$$

Solve the IVP:

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}+2 y=t+1, \quad y(0)=1, y^{\prime}(0)=0 . \\
& -\mathcal{L}(y)=\frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)} ; s>0 \\
& \cdot \frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)}=\frac{A s+b}{s^{2}}+\frac{C}{s+1}+\frac{D}{s+2}
\end{aligned}
$$

Solve the IVP:

$$
\begin{aligned}
& \quad y^{\prime \prime}+3 y^{\prime}+2 y=t+1, \quad y(0)=1, y^{\prime}(0)=0 . \\
& \text { - } \mathcal{L}(y)=\frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)} ; s>0 \\
& \text { - } \frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)}=\frac{A s+b}{s^{2}}+\frac{C}{s+1}+\frac{D}{s+2} \\
& \text { - } A=\frac{-1}{4}, B=\frac{1}{2}, C=2, D=\frac{-3}{4}
\end{aligned}
$$

Solve the IVP:

$$
\begin{aligned}
& \qquad y^{\prime \prime}+3 y^{\prime}+2 y=t+1, \quad y(0)=1, y^{\prime}(0)=0 . \\
& \text { - } \mathcal{L}(y)=\frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)} ; s>0 \\
& \text { - } \frac{s^{3}+3 s^{2}+s+1}{s^{2}(s+1)(s+2)}=\frac{A s+b}{s^{2}}+\frac{C}{s+1}+\frac{D}{s+2} \\
& \text { - } A=\frac{-1}{4}, B=\frac{1}{2}, C=2, D=\frac{-3}{4} \\
& \text { - } y(t)=\frac{t}{2}-\frac{1}{4}+2 e^{t}-\frac{3}{4} e^{-2 t}
\end{aligned}
$$

Periodic Functions

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic with period L if $f(x)=f(x+L)$ for all $x \in \mathbb{R}$

PERIODIC Functions

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called periodic with period L if $f(x)=f(x+L)$ for all $x \in \mathbb{R}$

EXAMPLES

(1) the functions $\cos (x), \sin (x)$ are periodic with period 2π
(2) the functions $\tan (x)$ and $\cot (x)$ are periodic with period π
(3) A constant function is periodic with any period
(4) $f(x)=x^{n}, x \in \mathbb{R}(n \in \mathbb{N})$ is not periodic
(5) the functions $\mathrm{e}^{x}, \cosh (x)$ are not periodic

- If L is a period for a periodic function, then $n L$ is a period for each $n \in \mathbb{Z}$
- If L is a period for a periodic function, then $n L$ is a period for each $n \in \mathbb{Z}$
- the smallest period is called the fundamental period for the function.
- 2π is the fundamental period for $\cos (x)$ and $\sin (x)$
- a constant function has no fundamental period.
- If L is a period for a periodic function, then $n L$ is a period for each $n \in \mathbb{Z}$
- the smallest period is called the fundamental period for the function.
- 2π is the fundamental period for $\cos (x)$ and $\sin (x)$
- a constant function has no fundamental period.

THEOREM

Let f be a periodic function with period L and $\mathcal{L}(f)=\mathcal{F}(s)$.
Then

$$
\mathcal{F}(s)=\frac{1}{1-e^{s L}} \int_{0}^{L} e^{-s t} f(t) d t
$$

THANK YOU

