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Lecture-IV

LAPLACE TRANSFORM OF DERIVATIVES

Let f : [0,∞)→ R be a continuous function with exponential
order α. Assume that f ′ is piecewise continuous. Then

• L(f ′) exists and

• L(f ′) = sL(f )− f (0).

Example

1 Let f (t) = sin2(t). Find L(f )?

Ans: L(f ) = 2
s(s2 + 4)

.

2 Find L(t sin(wt)), t ∈ [0,∞)?.

Ans: L(f ) = 2ws
(s2 + w2)2 .
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Lecture-IV

GENERALIZATION

THEOREM

Let f , f ′, f
′′
, · · · , f n−1 be continuous on [0,∞) and

f j (j = 1,2, . . . ,n) be of exponential order α. Then f n is
piecewise continuous and

L(f n) = snL(f )− sn−1f (0)− sn−2f ′(0)−, . . . ,−f n−1(0).

Example

Solve the IVP: y ′ + 4y = et , y(0) = 2.

• L(y) = 9
5
( 1

s + 4
)
+

1
5
( 1

s − 1
)

• y(t) =
9
5

e−4t +
1
5

et .
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LAPLACE TRANSFORMS FOR INTEGRALS

THEOREM

Let f : [0,∞)→ R be a piecewise continuous function with
exponential order α. Then

L
(∫ t

0
f (u)du

)
=
F(s)

s
, (s > 0, s > α)

Hence L−1
(
F(s)

s

)
=

∫ t

0
f (u)du).

EXAMPLE-1

Find L−1
(

1
s(s2 + w2)

)
Answer: f (t) =

1− cos(wt)
w2 .
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EXAMPLE-2

Find L−1
(

1
s2(s2 + w2)

)

Answer: f (t) =
t − sin(wt)

w
w2 .
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EXAMPLE-2

Find L−1
(

1
s2(s2 + w2)

)
Answer: f (t) =

t − sin(wt)
w

w2 .
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DIFFERENTIATION OF LAPLACE TRANSFORMS

THEOREM

Let f : [0,∞)→ R be piecewise continuous and has
exponential order α. Then

d
ds (F(s)) = (−1)(tf (t)).

Hence L−1(tf (t)) = (−1) d
ds (F(s)).

EXAMPLES

• L
(

t cos(wt)
)
=

s2 − w2

s2 + w2 .

• L
(

t sin(wt)
)
=

2ws
s2 + w2 .
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EXERCISES

Find the inverse Laplace transforms of the following:

• L−1
(

log( s+a
s+b )

)
• L−1

(
log( s2+a2

s2+b2 )
)
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INTEGRATION OF LAPLACE TRANSFORM

Let f : [0,∞)→ R be a piecewise continuous function with

exponenetial order α. Assume that lim
t→0+

f (t)
t

exists. Then

∫ ∞
s

F (u)du = L
(

f (t)
t

)
(s > α).

EXAMPLES

1 L
(

sin t
t

)
=
∫∞

s
1

x2+1dx = π
2 − tan−1(s) = tan−1(1

s ), s > 0

2 L
(

sinh wt
t

)
= 1

2 ln s+w
s−w (s > w).
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Lecture-IV

CONVOLUTION PRODUCT

Let f ,g : [0,∞)→ R be two functions. Then the convolution of f
and g is defined by

(f ∗ g)(t) =
∫ t

0
f (τ)g(t − τ)dτ

if the above integral exists.

If f ,g are piecewise continuous, the the above integral exists.

EXAMPLE

Let f (t) = et and g(t) = t . Then

(f ∗ g)(t) = et − t − 1.
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LAPLACE TRANSFORM

If f ,g : [0,∞)→ R are piecewise continuous with exponential
order α, then

L(f ∗ g) = L(f ).L(g)(s > α)

• L(eat ∗ ebt) = 1
s−a

1
s−b (s > a, s > b)

• L−1
(

1
s−a

1
s−b

)
= eat ∗ ebt .

1 Find L−1
(

1
s2

1
s−1

)
2 Find L−1

(
1

(s+1)2

)
3 Solve the integral equation

y(t) = t +
∫ t

0
y(τ) sin(t − τ)dτ.
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PARTIAL FRACTIONS

Useful in finding the inverse Laplace transform when it is
difficult to recognize that a given function is a Laplace transform
of a known function.

EXAMPLE

F(s) = 1
(s − 2)(s − 3)

; (s > 3)

Write F(s) = A
s − 2

+
B

s − 3
(A,B are constants)

Substituting s = 2, we get A = −1.
s = 3 gives B = 1.

Hence F(s) = 1
s − 3

− 1
s − 2

.
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Lecture-IV

LINEAR FACTORS

Let F(s) = P(s)
Q(s)

, where P and Q are polynomials in s such

that

1 degree of P is less than or equals to the degree of Q
2 P and Q have no common factors.

Then

1 For each factor of the form as + b of Q(s), there

corresponds a partial fraction of the form
A

as + b
(A is a

contsant)

2 For each repeated linear factor of the form (as + b)n of
Q(s), there corresponds a partial fraction of the form

A1

as + b
+

A2

(as + b)2 + · · ·+ An

(as + b)n (A
′
is are contsants)
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QUADRATIC FACTORS

1 For each factor of the form as2 + bs + c of Q(s), there

corresponds a partial fraction of the form
As + B

as2 + bs + c
(A, B are contsants)

2 For each repeated factor of the form (as2 + bs + c)n of
Q(s), there corresponds a partial fraction of the form

A1s + B1

as2 + bs + c
+

A2s + B2

(as2 + bs + c)2 + · · ·+ Ans + Bn

(as2 + bs + c)n

(Ai , B′i s are contsants)
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QUADRATIC FACTORS

1 For each factor of the form as2 + bs + c of Q(s), there

corresponds a partial fraction of the form
As + B
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(A, B are contsants)
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Lecture-IV

EXAMPLES

Find L−1
( s + 1

s2(s − 1)

)
; s > 1

•
s + 1

s2(s − 1)
=

As + B
s2 +

C
s − 1

• substituting s = 0,1,2, we get B = −1, C = 2, A = 1

• L−1
( s + 1

s2(s − 1)

)
= 1− t + 2et .

Find L−1
( 2s2

(s2 + 1)(s − 1)2

)
; s > 1

Solution: − cos(t) + et + tet .
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Solve the IVP:

y ′′ + 3y ′ + 2y = t + 1, y(0) = 1, y ′(0) = 0.

• L(y) = s3 + 3s2 + s + 1
s2(s + 1)(s + 2)

; s > 0

•
s3 + 3s2 + s + 1
s2(s + 1)(s + 2)

=
As + b

s2 +
C

s + 1
+

D
s + 2

• A = −1
4 , B = 1

2 , C = 2, D = −3
4

• y(t) = t
2 −

1
4 + 2et − 3

4e−2t .
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PERIODIC FUNCTIONS

A function f : R→ R is called periodic with period L if
f (x) = f (x + L) for all x ∈ R

EXAMPLES

1 the functions cos(x), sin(x) are periodic with period 2π

2 the functions tan(x) and cot(x) are periodic with period π

3 A constant function is periodic with any period

4 f (x) = xn, x ∈ R (n ∈ N) is not periodic

5 the functions ex , cosh(x) are not periodic
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• If L is a period for a periodic function, then nL is a period
for each n ∈ Z

• the smallest period is called the fundamental period for the
function.

• 2π is the fundamental period for cos(x) and sin(x)

• a constant function has no fundamental period.

THEOREM

Let f be a periodic function with period L and L(f ) = F(s).
Then

F(s) = 1
1− esL

∫ L

0
e−st f (t)dt .
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