LAPLACE TRANSFORM

G. Ramesh IIT Hyderabad

9th sep 2015

= 900

OUTLINE

Uses of Laplace transform

- solving the problems that arise in engineering as well as in Mathematics
- The Ordinary differential Equations and partial differential equations describe certain quantities that vary with time

- current in an electrical circuit
- oscillations of a vibrating string
- the heat flow through an insulated conductor

Uses of Laplace transform

- solving the problems that arise in engineering as well as in Mathematics
- The Ordinary differential Equations and partial differential equations describe certain quantities that vary with time
 - current in an electrical circuit
 - oscillations of a vibrating string
 - the heat flow through an insulated conductor

(Example: Initial Value Problem)

$$y' + 4y = e^t$$
, $y(0) = 2$.

・ロ・・聞・・聞・・聞・ 一間・ うらの

POWER SERIES

Let
$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
, where $\{a_n\}_{n=1}^{\infty}$ be a sequence.
• $a_n = 1$ for all $n = 0, 1, 2, ...$, then $F(x) = \frac{1}{1 - x}$ for a

•
$$a_n = 1$$
 for all $n = 0, 1, 2, ...$, then $F(x) = \frac{1}{1 - x}$ for all $|x| < 1$

◆□→ ◆□→ ◆三→ ◆三→ 三三 のへぐ

POWER SERIES

Let
$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
, where $\{a_n\}_{n=1}^{\infty}$ be a sequence.
• $a_n = 1$ for all $n = 0, 1, 2, ...$, then $F(x) = \frac{1}{1-x}$ for all $|x| < 1$
• $a_n = \frac{1}{n!}$ for all $n = 0, 1, 2, ...$, then $F(x) = e^x$ for all $x \in \mathbb{R}$

POWER SERIES

Let
$$F(x) = \sum_{n=0}^{\infty} a_n x^n$$
, where $\{a_n\}_{n=1}^{\infty}$ be a sequence.

•
$$a_n = 1$$
 for all $n = 0, 1, 2, ...$, then $F(x) = \frac{1}{1 - x}$ for all $|x| < 1$
• $a_n = \frac{1}{n!}$ for all $n = 0, 1, 2, ...$, then $F(x) = e^x$ for all $x \in C$

 \mathbb{R}

<ロ> (四)、(四)、(日)、(日)、(日)

Continuous Analogue

$$F(x) = \int_0^\infty a(t) x^t dt$$

Substitute s = -log(x), x > 0. Then $F(s) = \int_0^\infty e^{-st} f(t) dt$

LAPLACE TRANSFORMS

DEFINITION

Let $f : [0, \infty) \to \mathbb{R}$ be a function. The Laplace transform of f is defined by

$$\mathcal{L}(f) := \int_0^\infty e^{-st} f(t) dt$$

if the above integral exists. The Laplace transform of f is also denoted by $\mathcal{F}(s)$.

LAPLACE TRANSFORMS

DEFINITION

Let $f : [0, \infty) \to \mathbb{R}$ be a function. The Laplace transform of f is defined by

$$\mathcal{L}(f) := \int_0^\infty e^{-st} f(t) dt$$

if the above integral exists. The Laplace transform of *f* is also denoted by $\mathcal{F}(s)$. Note: $\int_0^\infty e^{-st} f(t) dt = \lim_{b \to \infty} \int_0^b e^{-st} f(t) dt$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲三 少へぐ

Examples

1 Let
$$f(t) = 1$$
 for all $t \in [0, \infty)$.

• Let
$$f(t) = 1$$
 for all $t \in [0, \infty)$. Then $\mathcal{L}(f) = \frac{1}{s}, s > 0$

• Let f(t) = 1 for all $t \in [0, \infty)$. Then $\mathcal{L}(f) = \frac{1}{s}$, s > 0• Let f(t) = t for all $t \in [0, \infty)$.

◆□ → ◆□ → ◆三 → ◆三 → ○へ⊙

• Let f(t) = 1 for all $t \in [0, \infty)$. Then $\mathcal{L}(f) = \frac{1}{s}, s > 0$ • Let f(t) = t for all $t \in [0, \infty)$. Then $\mathcal{L}(f) = \frac{1}{s^2}, s > 0$

1 Let f(t) = 1 for all $t \in [0, \infty)$. Then $\mathcal{L}(f) = \frac{1}{s}, s > 0$ 2 Let f(t) = t for all $t \in [0, \infty)$. Then $\mathcal{L}(f) = \frac{1}{s^2}, s > 0$ 3 Let $f(t) = t^n, n \in \mathbb{N}$ for all $t \in [0, \infty)$.

Integration by parts

$$[u(x)v(x)]_a^b = \int_a^b u'(x)v(x)\,dx + \int_a^b u(x)v'(x)\,dx.$$

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

EXAMPLES

1 Let
$$a \in \mathbb{R}$$
 be fixed and $f(t) = e^{at}$, $t \in [0, \infty)$. Then
 $\mathcal{L}(f) = \frac{1}{s-a}$, $s > a$
2 Let $f(t) = e^{iwt}$, $t \in [0, \infty)$, $w \in \mathbb{R}$. Then
 $\mathcal{L}(f) = \frac{1}{s-iw}$, $s > w$ or $Re(s) > w$
3 Let $a > -1$ and $f(t) = t^a$, $t \in [0, \infty)$. Then
 $\mathcal{L}(f) = \frac{\Gamma(a+1)}{s^{a+1}}$, $s > 0$. Here $\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$, the
Gamma function

PIECEWISE CONTINUOUS

Definition

A function $f : (0, b) \to \mathbb{R}$ is said to be piecewise continuous if f is continuous on (0, b) except possibly at finite number of points $\{t_i : i = 1, 2, ..., n\}$ at which f has a jump discontinuity.

PIECEWISE CONTINUOUS

Definition

A function $f : (0, b) \to \mathbb{R}$ is said to be piecewise continuous if f is continuous on (0, b) except possibly at finite number of points $\{t_i : i = 1, 2, ..., n\}$ at which f has a jump discontinuity.

A function $g : [0, \infty) \to R$ is said to be piecewise continuous on $[0, \infty)$ if g is piecewise continuous on every finite sub interval of $[0, \infty)$.

• every continuous function is piecewise continuous

• every continuous function is piecewise continuous

< □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

2
$$f(t) = \begin{cases} 1, t \ge 0 \\ -1, t < 0. \end{cases}$$
 is piecewise continuous

• every continuous function is piecewise continuous

f(t) =

$$\begin{cases}
 1, t \ge 0 \\
 -1, t < 0.
 \end{cases}
 is piecewise continuous

$$g(t) = \frac{1}{t^2}, t \in (-1, 1) \setminus \{0\} \text{ is not piecewise continuous}$$$$

A function $f : [0, \infty) \to \mathbb{R}$ is said to be of exponential order α , if there exists constants M > 0 and α such that for some $t_0 \ge 0$, we have

$$|f(t)| \leq Me^{\alpha t}$$
 for all $t \geq t_0$

Examples

• every bounded function on $[0,\infty)$ is of exponential order 0

A function $f : [0, \infty) \to \mathbb{R}$ is said to be of exponential order α , if there exists constants M > 0 and α such that for some $t_0 \ge 0$, we have

$$|f(t)| \leq Me^{lpha t}$$
 for all $t \geq t_0$

Examples

• every bounded function on $[0,\infty)$ is of exponential order 0

<ロ> (四)、(四)、(日)、(日)、(日)

• $f(t) = e^{at}$ has exponential order $\alpha = a$

A function $f : [0, \infty) \to \mathbb{R}$ is said to be of exponential order α , if there exists constants M > 0 and α such that for some $t_0 \ge 0$, we have

$$|f(t)| \leq Me^{lpha t}$$
 for all $t \geq t_0$

Examples

- every bounded function on $[0,\infty)$ is of exponential order 0
- $f(t) = e^{at}$ has exponential order $\alpha = a$
- g(t) = tⁿ for all t ∈ [0,∞) is has exponential order α for any α > 0

A function $f : [0, \infty) \to \mathbb{R}$ is said to be of exponential order α , if there exists constants M > 0 and α such that for some $t_0 \ge 0$, we have

$$|f(t)| \leq Me^{\alpha t}$$
 for all $t \geq t_0$

Examples

- every bounded function on $[0,\infty)$ is of exponential order 0
- $f(t) = e^{at}$ has exponential order $\alpha = a$
- g(t) = tⁿ for all t ∈ [0,∞) is has exponential order α for any α > 0

•
$$h(t) = e^{t^2}$$
 is not of exponential order.

EXISTENCE OF LAPLACE TRANSFORM

Let $f:[0,\infty) \to \mathbb{R}$ be a function satisfying

- f is piecewise continuous
- *f* is of exponential order with order α .

Then $\mathcal{L}(f)$ exists for all $s > \alpha$.

• Let
$$f(t) = \frac{1}{\sqrt{t}}$$
, $t > 0$. Then $\mathcal{L}(f)$ exists, but f is not piecewise continuous but has exponential order

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Let $D(\mathcal{L}) := \{f : [0, \infty) \to \mathbb{R} : f \text{ is piecewise continuous and exponention} Then$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

• \mathcal{L} is linear. That is $\mathcal{L}(af + bg) = a\mathcal{L}(f) + \mathcal{L}(g)$ for all $f, g \in D(\mathcal{L}), a, b \in \mathbb{R}$

Let $D(\mathcal{L}) := \{f : [0, \infty) \to \mathbb{R} : f \text{ is piecewise continuous and exponention } Then$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

• \mathcal{L} is linear. That is $\mathcal{L}(af + bg) = a\mathcal{L}(f) + \mathcal{L}(g)$ for all $f, g \in D(\mathcal{L}), a, b \in \mathbb{R}$

Example

Find the $\mathcal{L}(f)$, where $f(t) = \cosh(at), t \in [0, \infty)$

Let $D(\mathcal{L}) := \{f : [0, \infty) \to \mathbb{R} : f \text{ is piecewise continuous and exponention } Then$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

• \mathcal{L} is linear. That is $\mathcal{L}(af + bg) = a\mathcal{L}(f) + \mathcal{L}(g)$ for all $f, g \in D(\mathcal{L}), a, b \in \mathbb{R}$

Example

Find the $\mathcal{L}(f)$, where $f(t) = \cosh(at), t \in [0, \infty)$ Answer: $\mathcal{L}(f) = \frac{s}{s^2 - a^2}, s > a$.

Let $D(\mathcal{L}) := \{f : [0, \infty) \to \mathbb{R} : f \text{ is piecewise continuous and exponention } Then$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

• \mathcal{L} is linear. That is $\mathcal{L}(af + bg) = a\mathcal{L}(f) + \mathcal{L}(g)$ for all $f, g \in D(\mathcal{L}), a, b \in \mathbb{R}$

Example

Find the $\mathcal{L}(f)$, where $f(t) = \cosh(at), t \in [0, \infty)$ Answer: $\mathcal{L}(f) = \frac{s}{s^2 - a^2}, s > a$. Find the Laplace transform of $f(t) = \cos(wt), t \in [0, \infty)$ Answer: $\mathcal{F}(s) = \frac{s}{s^2 + w^2}, s > w$

Let $D(\mathcal{L}) := \{f : [0, \infty) \to \mathbb{R} : f \text{ is piecewise continuous and exponention } Then$

• \mathcal{L} is linear. That is $\mathcal{L}(af + bg) = a\mathcal{L}(f) + \mathcal{L}(g)$ for all $f, g \in D(\mathcal{L}), a, b \in \mathbb{R}$

Example

Find the
$$\mathcal{L}(f)$$
, where $f(t) = \cosh(at), t \in [0, \infty)$
Answer: $\mathcal{L}(f) = \frac{s}{s^2 - a^2}, s > a$.
Find the Laplace transform of $f(t) = \cos(wt), t \in [0, \infty)$
Answer: $\mathcal{F}(s) = \frac{s}{s^2 + w^2}, s > w$

$$\mathcal{L}(\sin(wt)) = \frac{w}{s^2 + w^2}, \ s > w$$

$$\mathcal{L}(\sinh(at)) = \frac{a}{s^2 - a^2}, \ s > a$$

Vanishing property

Let $f : [0, \infty)$ be piecewise continuous and has exponential order α . Then $\mathcal{F}(s) \to 0$ as $s \to \infty$.

<ロ> (四)、(四)、(日)、(日)、(日)

Vanishing property

Let $f : [0, \infty)$ be piecewise continuous and has exponential order α . Then $\mathcal{F}(s) \to 0$ as $s \to \infty$. The functions

<ロ> (四)、(四)、(日)、(日)、(日)

1 $\mathcal{F}_1(s) = \frac{s-1}{s+1}, \ s > -1$ 2 $\mathcal{F}_2(s) = \frac{e^s}{s}, \ s > 0$ 3 $\mathcal{F}_3(s) = s^2, \ s \in \mathbb{R}$

cannot be Laplace transform of any function.

Example

• $g(t) = e^{at}, t \in [0,\infty).$

Example

•
$$g(t) = e^{at}, t \in [0,\infty)$$
. Then $\mathcal{L}(g) = \frac{1}{s-a}, s > a$

æ

•
$$g(t) = e^{at}t, t \in [0, \infty).$$

Example

•
$$g(t) = e^{at}, t \in [0, \infty)$$
. Then $\mathcal{L}(g) = \frac{1}{s-a}, s > a$
• $g(t) = e^{at}t, t \in [0, \infty)$. Then $\mathcal{L}(g) = \frac{1}{(s-a)^2}, s > a$

< □ > < □ > < □ > < □ > < □ > .

æ.

Example

•
$$g(t) = e^{at}, t \in [0,\infty)$$
. Then $\mathcal{L}(g) = \frac{1}{s-a}, s > a$

•
$$g(t) = e^{at}t, \ t \in [0,\infty)$$
. Then $\mathcal{L}(g) = \frac{1}{(s-a)^2}, \ s > a$

First Shift Theorem

Let $f : [0, \infty) \to \mathbb{R}$ be such that $\mathcal{L}(f)$ exists. Then

$$\mathcal{L}(e^{at}f(f)) = \mathcal{F}(s-a), \ s > a.$$

HEAVISIDE STEP FUNCTION

Let $a \ge 0$. The the Heaviside step function or the delayed unit step function is defined by

$$u_{a}(t) = egin{cases} 1,t \geq a, \ 0, ext{else}. \end{cases}$$

< ロ > < 同 > < 三 > < 三 > <</p>

HEAVISIDE STEP FUNCTION

Let $a \ge 0$. The the Heaviside step function or the delayed unit step function is defined by

$$u_a(t) = \begin{cases} 1, t \ge a, \\ 0, \text{else.} \end{cases}$$

э

Then the
$$\mathcal{L}(u_a(t)) = rac{e^{-as}}{s}, \ s > 0$$

HEAVISIDE STEP FUNCTION

Let $a \ge 0$. The the Heaviside step function or the delayed unit step function is defined by

$$u_a(t) = \begin{cases} 1, t \ge a, \\ 0, \text{else.} \end{cases}$$

Then the
$$\mathcal{L}(u_a(t)) = rac{e^{-as}}{s}, \ s > 0$$

Hence $\mathcal{L}^{-1}(rac{e^{-as}}{s}) = u_a(t).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

DIRAC DELTA OPERATOR

Let $a \ge 0$. Then the Dirac delta operator is defined by

$$\delta(t-a) = \begin{cases} \infty, t = a \\ 0, \text{else}, \end{cases} \text{ and } \int_0^\infty \delta(t-a)dt = 1.$$

< □ > < □ > < □ > < □ > < □ > ... 注

What is $\mathcal{L}(\delta(t-a))$?.

DIRAC DELTA OPERATOR

Let $a \ge 0$. Then the Dirac delta operator is defined by

$$\delta(t-a) = \begin{cases} \infty, t = a \\ 0, \text{else}, \end{cases} \text{ and } \int_0^\infty \delta(t-a)dt = 1.$$

<□> <□> <□> <□> < □> < □> < □> = Ξ

What is $\mathcal{L}(\delta(t-a))$?.

Ans: $\mathcal{L}(\delta(t-a)) = e^{-as}, s > 0.$

DIRAC DELTA OPERATOR

Let $a \ge 0$. Then the Dirac delta operator is defined by

$$\delta(t-a) = \begin{cases} \infty, t=a \\ 0, \text{else}, \end{cases}$$
 and $\int_0^\infty \delta(t-a)dt = 1.$

What is $\mathcal{L}(\delta(t-a))$?.

Ans: $\mathcal{L}(\delta(t-a)) = e^{-as}, \ s > 0.$ Hence $\mathcal{L}^{-1}(e^{-as}) = \delta(t-a).$