Fourier Transforms

G. Ramesh
$28^{\text {th }}$ Sep 2015

OUTLINE

(1) Fourier Integrals
(2) Fourier Transforms

FOURIER INTEGRAL

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. The representation

$$
\begin{equation*}
f(x)=\int_{0}^{\infty}(A(w) \cos (w x)+B(w) \sin (w x)) d w \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A(w)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \cos (w v) d v \\
& B(w)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(v) \sin (w v) d v
\end{aligned}
$$

is called the Fourier Integral representation of f.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that

- piecewise cont in every finite interval
- absolutely integrable $\left(\int_{-\infty}^{\infty}|f(x)| d x<\infty\right)$
- f has left and right derivative at every point in the finite interval.

Then $f(x)$ can be represented by Fourier integral.
If f is discontinuous at x_{0}, then $f\left(x_{0}\right)=\frac{f\left(x_{0}+\right)+f\left(x_{0}-\right)}{2}$.

Find the Fourier integral representation of
$f(x)=\left\{\begin{array}{l}1, \text { if }|x|<1 \\ 0, \text { if }|x|>1 .\end{array}\right.$

Find the Fourier integral representation of
$f(x)= \begin{cases}1, & \text { if }|x|<1 \\ 0, & \text { if }|x|>1 .\end{cases}$
Sol: We have

$$
\begin{aligned}
A(w) & =\frac{2 \sin (w)}{\pi w} \\
B(w) & =0 \\
f(x) & =\frac{2}{\pi} \int_{0}^{\infty} \frac{\cos (w x) \sin (w)}{w} d w \\
f(1) & =\frac{f(1+)+f(1-)}{2}=\frac{1}{2}
\end{aligned}
$$

Fourier Cosine Integral

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} A(w) \cos (w x) d w \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
A(w)=\frac{2}{\pi} \int_{0}^{\infty} f(v) \cos (w v) d v \tag{3}
\end{equation*}
$$

is called the Fourier cosine integral of f.

Fourier sine Integral

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} B(w) \sin (w x) d w \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
B(w)=\frac{2}{\pi} \int_{0}^{\infty} f(v) \sin (w v) d v \tag{5}
\end{equation*}
$$

is called the Fourier sine integral of f.

Find the Fourier cosine and sine integrlas of $f(x)=e^{-k x}, x>0, k>0$.

Find the Fourier cosine and sine integrlas of $f(x)=e^{-k x}, x>0, k>0$.
Ans: $A(w)=\frac{2 k}{\pi\left(k^{2}+w^{2}\right)}$,

Find the Fourier cosine and sine integrlas of $f(x)=e^{-k x}, x>0, k>0$.
Ans: $A(w)=\frac{2 k}{\pi\left(k^{2}+w^{2}\right)}$,

$$
\begin{equation*}
\frac{\pi}{2 k} e^{-k x}=\int_{0}^{\infty} \frac{\cos (w x)}{k^{2}+w^{2}} d w \tag{6}
\end{equation*}
$$

Find the Fourier cosine and sine integrlas of
$f(x)=e^{-k x}, x>0, k>0$.
Ans: $A(w)=\frac{2 k}{\pi\left(k^{2}+w^{2}\right)}$,

$$
\begin{equation*}
\frac{\pi}{2 k} e^{-k x}=\int_{0}^{\infty} \frac{\cos (w x)}{k^{2}+w^{2}} d w \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& B(w)=\frac{2 w}{\pi\left(k^{2}+w^{2}\right)} \text { and } \\
& \qquad \int_{0}^{\infty} \frac{w \sin (w x)}{k^{2}+w^{2}} d w=\frac{\pi}{2} e^{-k x} \tag{7}
\end{align*}
$$

The integrals in Equations (6) and (7) are called as Laplace integrals.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the cosine integral is given by
Equations (2) and (3). Let $A(w)=\sqrt{\frac{2}{\pi}} \hat{f}_{c}(w)$, where

$$
\hat{f}_{c}(w)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \cos (w x) d x
$$

is called the Fourier cosine transform of f and

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{c}(w) \cos (w x) d w
$$

is called the inverse Fourier Cosine transform of f.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Then the sine integral is given by
Equations (4) and (5). Let $B(w)=\sqrt{\frac{2}{\pi}} \hat{f}_{s}(w)$, where

$$
\hat{f}_{s}(w)=\int_{0}^{\infty} f(x) \sin (w x) d x
$$

is called the Fourier Sine transform of f and

$$
f(x)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \hat{f}_{s}(w) \sin (w x) d w
$$

is called the inverse Fourier Sine transform of f.

Find the Fourier Cosine and sine transforms of the function

$$
f\left(x= \begin{cases}x & \text { if } 0<x<a \\ 0 & \text { if } x>a\end{cases}\right.
$$

Ans: $\hat{f}_{c}(w)=\sqrt{\frac{2}{\pi}} \frac{k \sin (w)}{w}$.

Find the Fourier Cosine and sine transforms of the function

$$
f\left(x= \begin{cases}x & \text { if } 0<x<a \\ 0 & \text { if } x>a\end{cases}\right.
$$

Ans: $\hat{f}_{c}(w)=\sqrt{\frac{2}{\pi}} \frac{k \sin (w)}{w}$.
Find the Fourier cosine transform of $f(x)=e^{-x}, x \in \mathbb{R}$.

PROPERTIES

Let \mathcal{F}_{c} and \mathcal{F}_{s} denote the Fourier Cosine and Sine transforms of f respectively. Then
(1) $\mathcal{F}_{c}(a f+b g)=a \mathcal{F}_{c}(w)+b \mathcal{F}_{c}(w)$
(2) $F_{s}(a f+b g)=a \mathcal{F}_{s}(w)+b \mathcal{F}_{s}(w)$

THEOREM

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that
(1) f is continuous
(2) f is absolutely integrable on \mathbb{R}
(3) f^{\prime} is piecewise continuous on each finite interval
(4) $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

Then
(A) $\mathcal{F}_{C}\left(f^{\prime}\right)=w \mathcal{F}_{s}(f)-\sqrt{\frac{2}{\pi}} f(0)$
(В) $\mathcal{F}_{s}\left(f^{\prime}\right)=-w \mathcal{F}_{c}(f)$.

THEOREM

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that
(1) f is continuous
(2) f is absolutely integrable on \mathbb{R}
(3) f^{\prime} is piecewise continuous on each finite interval
(4) $f(x) \rightarrow 0$ as $x \rightarrow \infty$.

Then
(A) $\mathcal{F}_{c}\left(f^{\prime}\right)=w \mathcal{F}_{s}(f)-\sqrt{\frac{2}{\pi}} f(0)$
(В) $\mathcal{F}_{s}\left(f^{\prime}\right)=-w \mathcal{F}_{c}(f)$.

Similarly we can prove the following:
(A) $\mathcal{F}_{c}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}_{c}(f)-\sqrt{\frac{2}{\pi}} f^{\prime}(0)$
(B) $\mathcal{F}_{s}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}_{s}(f)+\sqrt{\frac{2}{\pi}} w f^{\prime}(0)$.
(A) $\mathcal{F}_{c}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}_{c}(f)-\sqrt{\frac{2}{\pi}} f^{\prime}(0)$
(В) $\mathcal{F}_{s}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}_{s}(f)+\sqrt{\frac{2}{\pi}} w f^{\prime}(0)$.

Find the Fourier cosine transform of $f(x)=e^{-a x},(a>0)$
(A) $\mathcal{F}_{c}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}_{c}(f)-\sqrt{\frac{2}{\pi}} f^{\prime}(0)$
(В) $\mathcal{F}_{s}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}_{s}(f)+\sqrt{\frac{2}{\pi}} w f^{\prime}(0)$.

Find the Fourier cosine transform of $f(x)=e^{-a x},(a>0)$
Ans: $\mathcal{F}_{c}(f)=\sqrt{\frac{2}{\pi}}\left(\frac{a}{a^{2}+w^{2}}\right)$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. The Fourier transform of f is defined by

$$
\begin{equation*}
\hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i w x} f(x) d x \tag{8}
\end{equation*}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. The Fourier transform of f is defined by

$$
\begin{equation*}
\hat{f}(w)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i w x} f(x) d x \tag{8}
\end{equation*}
$$

The inverse Fourier transform of $\hat{f}(w)$ is defined by

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i w x} \hat{f}(w) d w \tag{9}
\end{equation*}
$$

EXISTENCE OF FOURIER TRANSFORM

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that
(1) f is piecewise cont. on \mathbb{R}
(2) f is absolutely integrable.

Then \hat{f} exists.

Existence of Fourier transform

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that
(1) f is piecewise cont. on \mathbb{R}
(2) f is absolutely integrable.

Then \hat{f} exists.

Find the Fourier transform of $f(x)= \begin{cases}k & 0<x<a \\ 0 & x>a .\end{cases}$

EXISTENCE OF FOURIER TRANSFORM

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that
(1) f is piecewise cont. on \mathbb{R}
(2) f is absolutely integrable.

Then \hat{f} exists.

Find the Fourier transform of $f(x)= \begin{cases}k & 0<x<a \\ 0 & x>a .\end{cases}$

Find the Fourier trans of $f(x)=e^{-a x^{2}}, a>0$

PROPERTIES

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\mathcal{F}(f)$ and $\mathcal{F}(g)$ exists. Then
(1) $\mathcal{F}(f+g)=\mathcal{F}(f)+\mathcal{F}(g)$
(2) $\mathcal{F}(\alpha f)=\alpha \mathcal{F}(f)$

PROPERTIES

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\mathcal{F}(f)$ and $\mathcal{F}(g)$ exists. Then
(1) $\mathcal{F}(f+g)=\mathcal{F}(f)+\mathcal{F}(g)$
(2) $\mathcal{F}(\alpha f)=\alpha \mathcal{F}(f)$

Let f be a continuous fucntion such that $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
Let f^{\prime} be absolutely integrable. Then

$$
\mathcal{F}\left(f^{\prime}\right)=i w \mathcal{F}(f)
$$

PROPERTIES

Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\mathcal{F}(f)$ and $\mathcal{F}(g)$ exists. Then
(1) $\mathcal{F}(f+g)=\mathcal{F}(f)+\mathcal{F}(g)$
(2) $\mathcal{F}(\alpha f)=\alpha \mathcal{F}(f)$

Let f be a continuous fucntion such that $f(x) \rightarrow 0$ as $|x| \rightarrow \infty$.
Let f^{\prime} be absolutely integrable. Then

$$
\mathcal{F}\left(f^{\prime}\right)=i w \mathcal{F}(f) .
$$

If $f^{\prime \prime}$ is absolutely integrable, we can show that $\mathcal{F}\left(f^{\prime \prime}\right)=-w^{2} \mathcal{F}(f)$.

Let $f(x)=x e^{-x^{2}}, x \in \mathbb{R}$. Find $\mathcal{F}(f)$.

Let $f(x)=x e^{-x^{2}}, x \in \mathbb{R}$. Find $\mathcal{F}(f)$.
Ans: $\mathcal{F}(f)=\frac{-i w}{2 \sqrt{2}} e^{-\frac{w^{2}}{4}}$.

Let $f(x)=x e^{-x^{2}}, x \in \mathbb{R}$. Find $\mathcal{F}(f)$.
Ans: $\mathcal{F}(f)=\frac{-i W}{2 \sqrt{2}} e^{-\frac{w^{2}}{4}}$.
Let f and g are piecewise continuous and absolutely integrable. Then

$$
\mathcal{F}(f * g)=\sqrt{2 \pi} \mathcal{F}(f) \mathcal{F}(g)
$$

THANK YOU

