Control Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design
Outline of the Lecture

Why control flow analysis?
- Dominators and natural loops
- Intervals and reducibility
- $T_1 - T_2$ transformations and graph reduction
- Regions

Y.N. Srikant Control Flow Analysis
Why Control-Flow Analysis?

- Control-flow analysis (CFA) helps us to understand the structure of control-flow graphs (CFG)
- To determine the loop structure of CFGs
- Formulation of conditions for code motion use dominator information, which is obtained by CFA
- Construction of the static single assignment form (SSA) requires dominance frontier information from CFA
- It is possible to use interval structure obtained from CFA to carry out data-flow analysis
- Finding Control dependence, which is needed in parallelization, requires CFA
We say that a node d in a flow graph dominates node n, written $d \text{ dom } n$, if every path from the initial node of the flow graph to n goes through d.

Initial node is the root, and each node dominates only its descendents in the dominator tree (including itself).

The node x strictly dominates y, if x dominates y and $x \neq y$.

x is the immediate dominator of y (denoted $idom(y)$), if x is the closest strict dominator of y.

A dominator tree shows all the immediate dominator relationships.

Principle of the dominator algorithm:

If $p_1, p_2, ..., p_k$, are all the predecessors of n, and $d \neq n$, then $d \text{ dom } n$, iff $d \text{ dom } p_i$ for each i.
An Algorithm for finding Dominators

- $D(n) = OUT[n]$ for all n in N (the set of nodes in the flow graph), after the following algorithm terminates

{ /* $n_0 = \text{initial node}; \ N = \text{set of all nodes}; */
 OUT[n_0] = \{ n_0 \};
 \text{for } n \text{ in } N - \{ n_0 \} \text{ do } OUT[n] = N;
 \text{while (changes to any } OUT[n] \text{ or } IN[n] \text{ occur) do}
 \text{for } n \text{ in } N - \{ n_0 \} \text{ do}
 \begin{align*}
 IN[n] &= \bigcap_{P \text{ a predecessor of } n} OUT[P]; \\
 OUT[n] &= \{ n \} \cup \text{IN}[n]
 \end{align*}
}

Dominator Example

For determining dominators, assume visit order of nodes in the CFG to be B0,…,B8

init: OUT[B1,…,B8] = {B0,…,B8}, OUT[B0] = {B0}
1: IN[B1] = OUT[B0] = {B0}, OUT[B1] = {B0,B1}
3: IN[B3] = {B0,B1,B2}, OUT[B3] = {B0,B1,B2,B3}
 IN[B4] = {B0,B1,B2}, OUT[B4] = {B0,B1,B2,B4}
4: IN[B5] = {B0,B1,B2,B3} = IN[B6], OUT[B5] = {B0,B1,B2,B3,B5}
 OUT[B6] = {B0,B1,B2,B3,B6}, OUT[B8] = {B0,B1,B2,B4,B8}
 OUT[B7] = {B0,B1,B2,B3,B7}
Dominators, Back Edges, and Natural Loops

Flow Graph

Dominator Tree

Adapted from the “Dragon Book”, A-W, 1986
Dominators, Back Edges, and Natural Loops

Flow Graph

Dominator Tree

Adapted from the “Dragon Book”, A-W, 1986
Edges whose heads dominate their tails are called back edges ($a \to b : b = \text{head}, a = \text{tail}$)

Given a back edge $n \to d$

- The natural loop of the edge is d plus the set of nodes that can reach n without going through d
- d is the header of the loop
- A single entry point to the loop that dominates all nodes in the loop
- At least one path back to the header exists (so that the loop can be iterated)
Algorithm for finding the Natural Loop of a Back Edge

/* The back edge under consideration is \(n \rightarrow d \) */
{ stack = empty; loop = \{d\};
 /* This ensures that we do not look at predecessors of \(d \) */
 insert(n);
 while (stack is not empty) do {
 pop(m, stack);
 for each predecessor \(p \) of \(m \) do insert(p);
 }
}

procedure insert(m) {
 if \(m \notin \) loop then {
 loop = loop \cup \{m\};
 push(m, stack);
 }
}
Dominators, Back Edges, and Natural Loops

Flow Graph

Dominator Tree

Back edges and their natural loops

<table>
<thead>
<tr>
<th>Edge</th>
<th>Natural Loops</th>
</tr>
</thead>
<tbody>
<tr>
<td>7→4</td>
<td>{4,5,6,7,8,10}</td>
</tr>
<tr>
<td>10→7</td>
<td>{7,8,10}</td>
</tr>
<tr>
<td>4→3</td>
<td>{3,4,5,6,7,8,10}</td>
</tr>
<tr>
<td>10→3</td>
<td>{3,4,5,6,7,8,10}</td>
</tr>
<tr>
<td>11→1</td>
<td>{1,2,3,4,5,6,7,8,9,10,11}</td>
</tr>
</tbody>
</table>

Adapted from the "Dragon Book", A-W, 1986
Dominators, Back Edges, and Natural Loops

Flow Graph

Back edges and their natural loops

<table>
<thead>
<tr>
<th>Back edge</th>
<th>Natural loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 → 3</td>
<td>{3,4,5,6,7,8,10}</td>
</tr>
<tr>
<td>10 → 7</td>
<td>{7,8,10}</td>
</tr>
<tr>
<td>4 → 3</td>
<td>{3,4}</td>
</tr>
<tr>
<td>10 → 3</td>
<td>{3,4,5,6,7,8,10}</td>
</tr>
<tr>
<td>11 → 1</td>
<td>{1,2,3,4,5,6,7,8,9,10,11}</td>
</tr>
</tbody>
</table>

Dominator Tree

Adapted from the "Dragon Book", A-W, 1986
void dfs-num(int n) {
 mark node n “visited”;
 for each node s adjacent to n do {
 if s is “unvisited” {
 add edge n \rightarrow s to dfs tree T;
 dfs-num(s);
 }
 depth-first-num[n] = i ; i-- ;
 }
}
// Main program
{ T = empty; mark all nodes of CFG as “unvisited”;
 i = number of nodes of CFG;
 dfs-num(n₀); // n₀ is the entry node of the CFG
}
Depth-First Numbering Example 1

Control Flow Analysis

Y.N. Srikant
Depth-First Numbering Example 2

Flow Graph

Dominator Tree

Adapted from the “Dragon Book”, A-W, 1986

Nodes of the CFG show the DF-numbering
Reducibility

A flow graph G is reducible iff

- its edges can be partitioned into two disjoint groups, \textit{forward} edges and \textit{back} edges (back edge: heads dominate tails)
- forward edges form a DAG in which every node can be reached from the initial node of G
- In a reducible flow graph, all retreating edges in a DFS will be back edges
- In an irreducible flow graph, some retreating edges will NOT be back edges and hence the graph of “forward” edges will be cyclic
Reducibility - Example 1

Flow Graph

7 → 3, 10 → 7, 4 → 3, 10 → 3, and 11 → 1 are all back edges.

There are no other retreating edges in any depth-first search tree of this graph.

The rest of the edges form a DAG, in which each node is reachable from node 1.

Reducible graph.
Reducibility - Example 2

Irreducible graph, no back edge.

Either $2 \rightarrow 3$ or $3 \rightarrow 2$ is a retreating edge in a depth-first search tree.

The graph is cyclic, not a DAG.

d \rightarrow c is a back edge.

Other edges form a DAG in which each node is reachable from the node a.

Reducible graph.
Unless two loops have the same header, they are either disjoint or one is nested within the other.

Nesting is checked by testing whether the set of nodes of a loop A is a subset of the set of nodes of another loop B.

Similarly, two loops are disjoint if their sets of nodes are disjoint.

When two loops share a header, neither of these may hold (see next slide).

In such a case the two loops are combined and transformed as in the next slide.
Inner Loops and Loops with the same header

Adapted from the “Dragon Book”, A-W, 1986

<table>
<thead>
<tr>
<th>C→A</th>
<th>D→A</th>
<th>E→A</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A,B,C}</td>
<td>{A,B,D}</td>
<td>{A,B,C,D,E}</td>
</tr>
</tbody>
</table>

E is a dummy node

Back edges and their natural loops

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7→3</td>
<td>10→7</td>
<td>4→3</td>
<td>10→3</td>
<td>11→1</td>
<td></td>
</tr>
<tr>
<td>{3,4,5,6,7,8,10}</td>
<td>{7,8,10}</td>
<td>{3,4}</td>
<td>{3,4,5,6,7,8,10}</td>
<td>{1,2,3,4,5,6,7,8,9,10,11}</td>
<td></td>
</tr>
</tbody>
</table>
Given a depth-first spanning tree of a CFG, the largest number of retreating edges on any cycle-free path is the depth of the CFG.

The number of passes needed for convergence of the solution to a forward DFA problem is \((1 + \text{depth of CFG})\).

One more pass is needed to determine no change, and hence the bound is actually \((2 + \text{depth of CFG})\).

This bound can be actually met if we traverse the CFG using the depth-first numbering of the nodes.

For a backward DFA, the same bound holds, but we must consider the reverse of the depth-first numbering of nodes.

Any other order will still produce the correct solution, but the number of passes may be more.
Depth of a CFG - Example 1

Flow Graph

Dominator Tree

Nodes of the CFG show the DF-numbering

Depth of the CFG = 2 (10-7-3)

Adapted from the "Dragon Book", A-W, 1986
Depth of a CFG - Example 2

Depth of the CFG = 3 (10-7-4-3)

Adapted from the “Dragon Book”, A-W, 1986
Intervals have a header node that dominates all nodes in the interval.

Given a flow graph G with initial node n_0, and a node n of G, the interval with header n, denoted $I(n)$, is defined as follows:

1. n is in $I(n)$
2. If all the predecessors of some node $m \neq n_0$ are in $I(n)$, then m is in $I(n)$
3. Nothing else is in $I(n)$

Constructing $I(n)$

$$I(n) := \{n\};$$

while (there exists a node $m \neq n_0$, all of whose predecessors are in $I(n)$) do $I(n) := I(n) \cup \{m\};$
Partitioning a Flow Graph into Disjoint Intervals

Mark all nodes as “unselected”;
Construct $I(n_0)$; /* n_0 is the header of $I(n_0)$ */
Mark all the nodes in $I(n_0)$ as “selected”;
while (there is a node m, not yet marked “selected”,
but with a selected predecessor) do {
 Construct $I(m)$; /* m is the header of $I(m)$ */
 Mark all nodes in $I(m)$ as “selected”;
}

Note: The order in which interval headers are picked does not alter the final partition
Intervals and Reducibility - 1

\[\ell(1) = \{1, 2\}; \ell(3) = \{3\} \]
\[\ell(4) = \{4, 5, 6\}; \ell(7) = \{7, 8, 9, 10, 11\} \]

Flow Graph

Adapted from "The Dragon Book", A-W 1986
Flow Graph

\[I(1) = \{1,2\}; I(3) = \{3,4,5,6\}; I(7) = \{7,8,9,10,11\} \]
Interval Graphs

- Intervals correspond to nodes
- Interval containing n_0 is the initial node of $I(G)$
- If there is an edge from a node in interval $I(m)$ to the header of the interval $I(n)$, in G, then there is an edge from $I(m)$ to $I(n)$ in $I(G)$
- We make intervals in interval graphs and reduce them further
- Finally, we reach a limit flow graph, which cannot be reduced further
- A flow graph is reducible iff its limit flow graph is a single node
Node Splitting

- If we reach a limit flow graph that is other than a single node, we can proceed further only if we split one or more nodes.
- If a node has k predecessors, we may replace n by k nodes, n_1, n_2, \ldots, n_k.
- The i^{th} predecessor of n becomes the predecessor of n_i only, while all successors of n become successors of the n_i's.
- After splitting, we continue reduction and splitting again (if necessary), to obtain a single node as the limit flow graph.
- The node to be split is picked up arbitrarily, say, the node with largest number of predecessors.
- However, success is not guaranteed.
Node Splitting Example

Irreducible graph; no back edge, only forward edges, but graph is cyclic; each node is an interval on its own.
Transformation T_1: If n is a node with a loop, i.e., an edge $n \rightarrow n$ exists, then delete that edge

Transformation T_2: If there is a node n, not the initial node, that has a unique predecessor m, then m may consume n by deleting n and making all successors of n (including n, possibly) be successors of m

By applying the transformations T_1 and T_2 repeatedly in any order, we reach the limit flow graph

Node splitting may be necessary as in the case of interval graph reduction
Example of $T_1 - T_2$ Reduction
Example of $T_1 - T_2$ Reduction

Flow Graph
Example of $T_1 - T_2$ Reduction
Regions

- A set of nodes \(N \) that includes a header, which dominates all other nodes in the region
- All edges between nodes in \(N \) are in the region, except (possibly) for some of those that enter the header
- All intervals are regions but there are regions that are not intervals
 - A region may omit some nodes that an interval would include or they may omit some edges back to the header
 - For example, \(I(7) = \{7, 8, 9, 10, 11\} \), but \(\{8, 9, 10\} \) could be a region
- A region may have multiple exits
- As we reduce a flow graph \(G \) by \(T_1 \) and \(T_2 \) transformations, at all times, the following conditions are true
 1. A node represents a region of \(G \)
 2. An edge from \(a \) to \(b \) in a reduced graph represents a set of edges
 3. Each node and edge of \(G \) is represented by exactly one node or edge of the current graph
This arc corresponds to 2 arcs, CA and DA. Hence, the predecessors of T, the header of S in V are C and D.