
Control Flow Analysis

Y.N. Srikant

Department of Computer Science and Automation
Indian Institute of Science

Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant Control Flow Analysis



Outline of the Lecture

Why control flow analysis?
Dominators and natural loops
Intervals and reducibility
T1 − T2 transformations and graph reduction
Regions

Y.N. Srikant Control Flow Analysis



Why Control-Flow Analysis?

Control-flow analysis (CFA) helps us to understand the
structure of control-flow graphs (CFG)
To determine the loop structure of CFGs
Formulation of conditions for code motion use dominator
information, which is obtained by CFA
Construction of the static single assignment form (SSA)
requires dominance frontier information from CFA
It is possible to use interval structure obtained from CFA to
carry out data-flow analysis
Finding Control dependence, which is needed in
parallelization, requires CFA

Y.N. Srikant Control Flow Analysis



Dominators

We say that a node d in a flow graph dominates node n,
written d dom n, if every path from the initial node of the
flow graph to n goes through d
Initial node is the root, and each node dominates only its
descendents in the dominator tree (including itself)
The node x strictly dominates y , if x dominates y and
x 6= y
x is the immediate dominator of y (denoted idom(y)), if x
is the closest strict dominator of y
A dominator tree shows all the immediate dominator
relationships
Principle of the dominator algorithm

If p1,p2, ...,pk , are all the predecessors of n, and d 6= n,
then d dom n, iff d dom pi for each i

Y.N. Srikant Control Flow Analysis



An Algorithm for finding Dominators

D(n) = OUT [n] for all n in N (the set of nodes in the flow
graph), after the following algorithm terminates
{ /* n0 = initial node; N = set of all nodes; */

OUT [n0] = {n0};
for n in N − {n0} do OUT [n] = N;
while (changes to any OUT [n] or IN[n] occur) do

for n in N − {n0} do

IN[n] =
⋂

P a predecessor of n

OUT [P];

OUT [n] = {n} ∪ IN[n]

}

Y.N. Srikant Control Flow Analysis



Dominator Example

Y.N. Srikant Control Flow Analysis



Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control Flow Analysis



Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control Flow Analysis



Dominators and Natural Loops

Edges whose heads dominate their tails are called back
edges (a→ b : b = head , a = tail)
Given a back edge n→ d

The natural loop of the edge is d plus the set of nodes that
can reach n without going through d
d is the header of the loop

A single entry point to the loop that dominates all nodes in
the loop
Atleast one path back to the header exists (so that the loop
can be iterated)

Y.N. Srikant Control Flow Analysis



Algorithm for finding the Natural Loop of a Back Edge

/* The back edge under consideration is n→ d /*
{ stack = empty; loop = {d};

/* This ensures that we do not look at predecessors of d */
insert(n);
while (stack is not empty) do {

pop(m, stack);
for each predecessor p of m do insert(p);

}
}

procedure insert(m) {
if m /∈ loop then {

loop = loop ∪ {m};
push(m, stack);

}
}

Y.N. Srikant Control Flow Analysis



Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control Flow Analysis



Dominators, Back Edges, and Natural Loops

Y.N. Srikant Control Flow Analysis



Depth-First Numbering of Nodes in a CFG

Y.N. Srikant Control Flow Analysis



Depth-First Numbering Example 1

Y.N. Srikant Control Flow Analysis



Depth-First Numbering Example 2

Y.N. Srikant Control Flow Analysis



Reducibility

A flow graph G is reducible iff
its edges can be partitioned into two disjoint groups,
forward edges and back edges (back edge: heads
dominate tails)
forward edges form a DAG in which every node can be
reached from the initial node of G
In a reducible flow graph, all retreating edges in a DFS will
be back edges
In an irreducible flow graph, some retreating edges will
NOT be back edges and hence the graph of “forward”
edges will be cyclic

Y.N. Srikant Control Flow Analysis



Reducibility - Example 1

Y.N. Srikant Control Flow Analysis



Reducibility - Example 2

Y.N. Srikant Control Flow Analysis



Inner Loops

Unless two loops have the same header, they are either
disjoint or one is nested within the other
Nesting is checked by testing whether the set of nodes of a
loop A is a subset of the set of nodes of another loop B
Similarly, two loops are disjoint if their sets of nodes are
disjoint
When two loops share a header, neither of these may hold
(see next slide)
In such a case the two loops are combined and
transformed as in the next slide

Y.N. Srikant Control Flow Analysis



Inner Loops and Loops with the same header

Y.N. Srikant Control Flow Analysis



Preheader

Y.N. Srikant Control Flow Analysis



Depth of a Flow Graph and Convergence of DFA

Given a depth-first spanning tree of a CFG, the largest
number of retreating edges on any cycle-free path is the
depth of the CFG
The number of passes needed for convergence of the
solution to a forward DFA problem is (1 + depth of CFG)
One more pass is needed to determine no change, and
hence the bound is actually (2 + depth of CFG)
This bound can be actually met if we traverse the CFG
using the depth-first numbering of the nodes
For a backward DFA, the same bound holds, but we must
consider the reverse of the depth-first numbering of nodes
Any other order will still produce the correct solution, but
the number of passes may be more

Y.N. Srikant Control Flow Analysis



Depth of a CFG - Example 1

Y.N. Srikant Control Flow Analysis



Depth of a CFG - Example 2

Y.N. Srikant Control Flow Analysis



Intervals

Intervals have a header node that dominates all nodes in
the interval
Given a flow graph G with initial node n0, and a node n of
G, the interval with header n, denoted I(n) is defined as
follows

1 n is in I(n)
2 If all the predecessors of some node m 6= n0 are in I(n),

then m is in I(n)
3 Nothing else is in I(n)

Constructing I(n)

I(n) := {n};
while (there exists a node m 6= n0, all of whose
predecessors are in I(n)) do I(n) := I(n) ∪ {m};

Y.N. Srikant Control Flow Analysis



Partitioning a Flow Graph into Disjoint Intervals

Mark all nodes as “unselected”;
Construct I(n0); /* n0 is the header of I(n0) */
Mark all the nodes in I(n0) as “selected”;
while (there is a node m, not yet marked “selected”,

but with a selected predecessor) do {
Construct I(m);/* m is the header of I(m) */
Mark all nodes in I(m) as “selected”;

}

Note: The order in which interval headers are picked does not
alter the final partition

Y.N. Srikant Control Flow Analysis



Intervals and Reducibility - 1

Y.N. Srikant Control Flow Analysis



Intervals and Reducibility - 2

Y.N. Srikant Control Flow Analysis



Interval Graphs

Intervals correspond to nodes
Interval containing n0 is the initial node of I(G)

If there is an edge from a node in interval I(m) to the
header of the interval I(n), in G, then there is an edge from
I(m) to I(n) in I(G)

We make intervals in interval graphs and reduce them
further
Finally, we reach a limit flow graph, which cannot be
reduced further
A flow graph is reducible iff its limit flow graph is a single
node

Y.N. Srikant Control Flow Analysis



Node Splitting

If we reach a limit flow graph that is other than a single
node, we can proceed further only if we split one or more
nodes
If a node has k predecessors, we may replace n by k
nodes, n1,n2, ...,nk

The i th predecessor of n becomes the predecessor of ni
only, while all successors of n become successors of the
ni ’s
After splitting, we continue reduction and splitting again (if
necessary), to obtain a single node as the limit flow graph
The node to be split is picked up arbitrarily, say, the node
with largest number of predecessors
However, success is not guaranteed

Y.N. Srikant Control Flow Analysis



Node Splitting Example

Y.N. Srikant Control Flow Analysis



T1 − T2 Transformations and Graph Reduction

Transformation T1: If n is a node with a loop, i .e., an edge
n→ n exists, then delete that edge
Transformation T2: If there is a node n, not the initial
node, that has a unique predecessor m, then m may
consume n by deleting n and making all successors of n
(including n, possibly) be successors of m
By applying the transformations T1 and T2 repeatedly in
any order, we reach the limit flow graph
Node splitting may be necessary as in the case of interval
graph reduction

Y.N. Srikant Control Flow Analysis



Example of T1 − T2 Reduction

Y.N. Srikant Control Flow Analysis



Example of T1 − T2 Reduction

Y.N. Srikant Control Flow Analysis



Example of T1 − T2 Reduction

Y.N. Srikant Control Flow Analysis



Regions

A set of nodes N that includes a header, which dominates
all other nodes in the region
All edges between nodes in N are in the region, except
(possibly) for some of those that enter the header
All intervals are regions but there are regions that are not
intervals

A region may omit some nodes that an interval would
include or they may omit some edges back to the header
For example, I(7) = {7,8,9,10,11}, but {8,9,10} could be
a region

A region may have multiple exits
As we reduce a flow graph G by T1 and T2 transformations,
at all times, the following conditions are true

1 A node represents a region of G
2 An edge from a to b in a reduced graph represents a set of

edges
3 Each node and edge of G is represented by exactly one

node or edge of the current graph

Y.N. Srikant Control Flow Analysis



Region Example

Y.N. Srikant Control Flow Analysis


