Global Register Allocation

Y N Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560012

NPTEL Course on Compiler Design
Outline

- Issues in Global Register Allocation
- The Problem
- Register Allocation based in Usage Counts
- Linear Scan Register allocation
- Chaitin’s graph colouring based algorithm
Some Issues in Register Allocation

- Which values in a program reside in registers? (register allocation)
- In which register? (register assignment)
 - The two together are usually loosely referred to as register allocation
- What is the unit at the level of which register allocation is done?
 - Typical units are basic blocks, functions and regions.
 - RA within basic blocks is called local RA
 - The other two are known as global RA
 - Global RA requires much more time than local RA
Some Issues in Register Allocation

- Phase ordering between register allocation and instruction scheduling
 - Performing RA first restricts movement of code during scheduling – not recommended
 - Scheduling instructions first cannot handle spill code introduced during RA
 - Requires another pass of scheduling

- Tradeoff between speed and quality of allocation
 - In some cases e.g., in Just-In-Time compilation, cannot afford to spend too much time in register allocation.
The Problem

- Global Register Allocation assumes that allocation is done beyond basic blocks and usually at function level.
- Decision problem related to register allocation:
 - Given an intermediate language program represented as a control flow graph and a number k, is there an assignment of registers to program variables such that no conflicting variables are assigned the same register, no extra loads or stores are introduced, and at most k registers are used.
- This problem has been shown to be NP-hard (Sethi 1970).
- Graph colouring is the most popular heuristic used.
- However, there are simpler algorithms as well.
Conflicting variables

- Two variables interfere or conflict if their live ranges intersect
 - A variable is live at a point p in the flow graph, if there is a use of that variable in the path from p to the end of the flow graph
 - A live range of a variable is the smallest set of program points at which it is live.
 - Typically, instruction no. in the basic block along with the basic block no. is the representation for a point.
Example

If (cond)
then A =
else B =

X: if (cond)
then = A
else = B

A and B both live

Live range of A: B2, B4, B5
Live range of B: B3, B4, B6
Global Register Allocation via Usage Counts (for Single Loops)

- Allocate registers for variables used within loops
- Requires information about liveness of variables at the entry and exit of each basic block (BB) of a loop
- Once a variable is computed into a register, it stays in that register until the end of the BB (subject to existence of next-uses)
- Load/Store instructions cost 2 units (because they occupy two words)
Global Register Allocation via Usage Counts (for Single Loops)

1. For every usage of a variable v in a BB, until it is first defined, do:
 - $\text{savings}(v) = \text{savings}(v) + 1$
 - after v is defined, it stays in the register any way, and all further references are to that register

2. For every variable v computed in a BB, if it is live on exit from the BB,
 - count a savings of 2, since it is not necessary to store it at the end of the BB
Global Register Allocation via Usage Counts (for Single Loops)

- Total savings per variable v are
 \[
 \sum_{B \in \text{Loop}} (\text{savings}(v,B) + 2 \times \text{liveandcomputed}(v,B))
 \]
 - $\text{liveandcomputed}(v,B)$ in the second term is 1 or 0

- On entry to (exit from) the loop, we load (store) a variable live on entry (exit), and lose 2 units for each
 - But, these are “one time” costs and are neglected

- Variables, whose savings are the highest will reside in registers
Global Register Allocation via Usage Counts (for Single Loops)

Savings for the variables

<table>
<thead>
<tr>
<th></th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(0+2)+(1+0)+(1+0)+(0+0) = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>(3+0)+(0+0)+(0+0)+(0+2) = 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>(1+0)+(1+0)+(0+0)+(1+0) = 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>(0+2)+(1+0)+(0+0)+(1+0) = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>(0+2)+(0+2)+(1+0)+(0+0) = 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>(1+0)+(1+0)+(0+2)+(0+0) = 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If there are 3 registers, they will be allocated to the variables, a, b, and e.
Global Register Allocation via Usage Counts (for Nested Loops)

- We first assign registers for inner loops and then consider outer loops. Let L_1 nest L_2

- For variables assigned registers in L_2, but not in L_1
 - load these variables on entry to L_2 and store them on exit from L_2

- For variables assigned registers in L_1, but not in L_2
 - store these variables on entry to L_2 and load them on exit from L_2

- All costs are calculated keeping the above rules
Global Register Allocation via Usage Counts (for Nested Loops)

- **case 1**: variables x, y, z assigned registers in L2, but not in L1
 - Load x, y, z on entry to L2
 - Store x, y, z on exit from L2
- **case 2**: variables a, b, c assigned registers in L1, but not in L2
 - Store a, b, c on entry to L2
 - Load a, b, c on exit from L2
- **case 3**: variables p, q assigned registers in both L1 and L2
 - No special action
A Fast Register Allocation Scheme

- Linear scan register allocation (Poletto and Sarkar 1999) uses the notion of a live interval rather than a live range.
- Is relevant for applications where compile time is important, such as in dynamic compilation and in just-in-time compilers.
- Other register allocation schemes based on graph colouring are slow and are not suitable for JIT and dynamic compilers.
Linear Scan Register Allocation

- Assume that there is some numbering of the instructions in the intermediate form.
- An interval \([i, j]\) is a *live interval* for variable \(v\) if there is no instruction with number \(j' > j\) such that \(v\) is live at \(j'\) and no instruction with number \(i' < i\) such that \(v\) is live at \(i\).
- This is a conservative approximation of live ranges: there may be subranges of \([i, j]\) in which \(v\) is not live but these are ignored.
Live Interval Example

sequentially numbered instructions

\[v \text{ live } \]

\[\begin{array}{cccc}
 & \vdots & i': & \cdots \\
 \vdots & \vdots & \vdots & \vdots \\
 & \vdots & \vdots & \vdots \\
 i: & \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots \\
 j: & \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots \\
 j': & \vdots & \vdots & \vdots \\
\end{array} \]

\{ \]

\[i - j : \text{ live interval for variable } v \]

\[v \text{ live } \]

\[\times \]

\[\begin{array}{cccc}
 & \vdots & i': & \cdots \\
 \vdots & \vdots & \vdots & \vdots \\
 & \vdots & \vdots & \vdots \\
 i: & \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots \\
 j: & \vdots & \vdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots \\
 j': & \vdots & \vdots & \vdots \\
\end{array} \]

\[\times \]

\[i' \text{ does not exist} \]

\[j' \text{ does not exist} \]
Example

If (cond)
then A=
else B=

X: if (cond)
then =A
else = B

A NOT LIVE HERE

LIVE INTERVAL FOR A

If (cond)
A=
= A

If (cond)
B=
= B
Live Intervals

- Given an order for pseudo-instructions and live variable information, live intervals can be computed easily with one pass through the intermediate representation.
- Interference among live intervals is assumed if they overlap.
- Number of overlapping intervals changes only at start and end points of an interval.
The Data Structures

- Live intervals are stored in the sorted order of increasing start point.
- At each point of the program, the algorithm maintains a list (active list) of live intervals that overlap the current point and that have been placed in registers.
- active list is kept in the order of increasing end point.
Example

Active lists (in order of increasing end pt)

Active(A)= \{i1\}
Active(B)=\{i1,i5\}
Active(C)=\{i8,i5\}
Active(D)= \{i7,i4,i11\}

Sorted order of intervals (according to start point):
i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Three registers enough for computation without spills
The Algorithm (1)

```plaintext
{ active := [];
  for each live interval i, in order of increasing start point do
  { ExpireOldIntervals (i);
    if length(active) == R then SpillAtInterval(i);
    else { register[i] := a register removed from the pool of free registers;
      add i to active, sorted by increasing end point
    }
  }
}
```
The Algorithm (2)

`ExpireOldIntervals (i)`

{ *for* each interval *j* in active, in order of increasing end point *do*

 { *if* endpoint[*j*] > startpoint[*i*] *then* continue

 else { remove *j* from active;

 add register[*j*] to pool of free registers;

 }

 }

}
The Algorithm (3)

SpillAtInterval (i)

\{ spill := last interval in active; \\
 \textit{if} endpoint [spill] \geq \text{endpoint} [i] \ \textit{then} \\
 \{ register [i] := register [spill]; \\
 \text{location} [spill] := \text{new stack location}; \\
 \text{remove spill from active}; \\
 \text{add} \ i \ \text{to active, sorted by increasing end point}; \\
 \} \ \textit{else} \ \text{location} [i] := \text{new stack location}; \\
\}
Example 1

- Active lists (in order of increasing end point):
 - Active(A) = \{i1\}
 - Active(B) = \{i1, i5\}
 - Active(C) = \{i8, i5\}
 - Active(D) = \{i7, i4, i11\}

- Sorted order of intervals (according to start point):
 - i1, i5, i8, i2, i9, i6, i3, i10, i7, i4, i11

Three registers enough for computation without spills
Example 2

1, 2: give A, B register
3: Spill C since endpoint[C] > endpoint [B]
4: A expires, give D register
5: B expires, E gets register

2 registers available
Example 3

1,2 : give A,B register
3: Spill B since endpoint[B] > endpoint [C]
give register to C

4: A expires, give D register
5: C expires, E gets register

2 registers available
Complexity of the Linear Scan Algorithm

- If V is the number of live intervals and R the number of available physical registers, then if a balanced binary tree is used for storing the active intervals, complexity is $O(V \log R)$.
 - Active list can be at most ‘R’ long
 - Insertion and deletion are the important operations

- Empirical results reported in literature indicate that linear scan is significantly faster than graph colouring algorithms and code emitted is at most 10% slower than that generated by an aggressive graph colouring algorithm.
Chaitin’s Formulation of the Register Allocation Problem

- A graph colouring formulation on the interference graph
- Nodes in the graph represent either live ranges of variables or entities called webs
- An edge connects two live ranges that interfere or conflict with one another
- Usually both adjacency matrix and adjacency lists are used to represent the graph.
Chaitin’s Formulation of the Register Allocation Problem

- Assign colours to the nodes such that two nodes connected by an edge are not assigned the same colour.
 - The number of colours available is the number of registers available on the machine.
 - A k-colouring of the interference graph is mapped onto an allocation with k registers.
Example

- Two colourable
- Three colourable
Idea behind Chaitin’s Algorithm

- Choose an arbitrary node of degree less than k and put it on the stack
- Remove that vertex and all its edges from the graph
 - This may decrease the degree of some other nodes and cause some more nodes to have degree less than k
- At some point, if all vertices have degree greater than or equal to k, some node has to be spilled
- If no vertex needs to be spilled, successively pop vertices off stack and colour them in a colour not used by neighbours (reuse colours as far as possible)
Simple example – Given Graph

1

2

3

4

5

STACK

3 REGISTERS
Simple Example – Delete Node 1

STACK

3 REGISTERS
Simple Example – Delete Node 2

STACK

3 REGISTERS

1
2
3
4
5

2
1

3 REGISTERS

Y.N. Srikant
Simple Example – Delete Node 4
Simple Example – Delete Nodes 3
Simple Example – Delete Nodes 5

STACK

1
2
3
4
5

3 REGISTERS
Simple Example – Colour Node 5

STACK

3
4
2
1

3 REGISTERS

COLOURS

5
Simple Example – Colour Node 3

STACK

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

3 REGISTERS

<table>
<thead>
<tr>
<th>3</th>
</tr>
</thead>
</table>

COLOURS

<table>
<thead>
<tr>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
</table>
Simple Example – Colour Node 4

STACK

3 REGISTERS

COLOURS

3

4

5

2

1

Y.N. Srikant
Simple Example – Colour Node 2

STACK

COLOURS

3 REGISTERS

1
Simple Example – Colour Node 1

STACK

COLOURS

3 REGISTERS

1 2 3

4 5

IISc
Steps in Chaitin’s Algorithm

- Identify units for allocation
 - Renames variables/symbolic registers in the IR such that each live range has a unique name (number)
- Build the interference graph
- Coalesce by removing unnecessary move or copy instructions
- Colour the graph, thereby selecting registers
- Compute spill costs, simplify and add spill code till graph is colourable
The Chaitin Framework

- RENUMBER
- BUILD
- COALESCE
- SPILL CODE
- SPILL COST
- SIMPLIFY
- SELECT
Example of Renaming

\[a = a = a = a = a \]

\[s1 = s1 = s1 = s2 = s2 \]

Renaming
An Example

<table>
<thead>
<tr>
<th>Original code</th>
<th>Code with symbolic registers</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = 2$</td>
<td>1. $s1=2; \text{ (lv of } s1: 1-5)$</td>
</tr>
<tr>
<td>$y = 4$</td>
<td>2. $s2=4; \text{ (lv of } s2: 2-5)$</td>
</tr>
<tr>
<td>$w = x + y$</td>
<td>3. $s3=s1+s2; \text{ (lv of } s3: 3-4)$</td>
</tr>
<tr>
<td>$z = x + 1$</td>
<td>4. $s4=s1+1; \text{ (lv of } s4: 4-6)$</td>
</tr>
<tr>
<td>$u = x \times y$</td>
<td>5. $s5=s1\times s2; \text{ (lv of } s5: 5-6)$</td>
</tr>
<tr>
<td>$x = z \times 2$</td>
<td>6. $s6=s4\times 2; \text{ (lv of } s6: 6- ...)$</td>
</tr>
</tbody>
</table>
INTERFERENCE GRAPH
HERE ASSUME VARIABLE Z (s4) CANNOT OCCUPY r1
Example (continued)

Final register allocated code

\[
\begin{align*}
 r_1 &= 2 \\
r_2 &= 4 \\
r_3 &= r_1 + r_2 \\
r_3 &= r_1 + 1 \\
r_1 &= r_1 \times r_2 \\
r_2 &= r_3 + r_2
\end{align*}
\]

Three registers are sufficient for no spills
The definition points and the use points for each variable v are assumed to be known.

Each definition with its set of uses for v is a du-chain.

A web is a maximal union of du-chains such that, for each definition d and use u, either u is in the du-chain of d, or there exists a sequence $d = d_1, u_1, d_2, u_2, \ldots, d_n, u_n$ such that for each i, u_i is in the du-chains of both d_i and d_{i+1}.
Each web is given a unique symbolic register.
Webs arise when variables are redefined several times in a program.
Webs have intersecting du-chains, intersecting at the points of join in the control flow graph.
Example of Webs

W1: def x in B2, def x in B3, use x in B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3
Build Interference Graph

- Create a node for each web and for each physical register in the interference graph.
- If two distinct webs interfere, that is, a variable associated with one web is live at a definition point of another add an edge between the two webs.
- If a particular variable cannot reside in a register, add an edge between all webs associated with that variable and the register.
Copy Subsumption or Coalescing

- Consider a copy instruction: \(b := e \) in the program
- If the live ranges of \(b \) and \(e \) do not overlap, then \(b \) and \(e \) can be given the same register (colour)
 - Implied by lack of any edges between \(b \) and \(e \) in the interference graph
- The copy instruction can then be removed from the final program
- Coalesce by merging \(b \) and \(e \) into one node that contains the edges of both nodes
Copy Subsumption or Coalescing

Copy subsumption is not possible; \(\text{l.r}(e) \) and \(\text{l.r}(\text{new } b) \) interfere

Copy subsumption is possible; \(\text{l.r}(e) \) and \(\text{l.r}(\text{new } b) \) do not interfere
Example of coalescing

Copy inst: $b := e$

BEFORE

AFTER

b

f

d

e

c

be

da

c

d

a

f
Copy Subsumption Repeatedly

- l.r of x
- l.r of b
- l.r of a
- l.r of e

b = e

a = b

copy subsumption happens twice - once between b and e, and second time between a and b. e, b, and a are all given the same register.
Coalescing

- Coalesce all possible copy instructions
 - Rebuild the graph
 - may offer further opportunities for coalescing
 - build-coalesce phase is repeated till no further coalescing is possible.

- Coalescing reduces the size of the graph and possibly reduces spilling
Simple fact

- Suppose the no. of registers available is R.
- If a graph G contains a node n with fewer than R neighbors then removing n and its edges from G will not affect its R-colourability.
- If $G' = G - \{n\}$ can be coloured with R colours, then so can G.
- After colouring G', just assign to n, a colour different from its R-1 neighbours.
Simplification

- If a node n in the interference graph has degree less than R, remove n and all its edges from the graph and place n on a colouring stack.

- When no more such nodes are removable then we need to spill a node.

- Spilling a variable x implies
 - loading x into a register at every use of x
 - storing x from register into memory at every definition of x
Spilling Cost

- The node to be spilled is decided on the basis of a spill cost for the live range represented by the node.
- Chaitin’s estimate of spill cost of a live range v

 \[
 \text{cost}(v) = \sum_{\text{all load or store operations in a live range } v} c \times 10^d
 \]

 - where c is the cost of the op and d, the loop nesting depth.
 - 10 in the eqn above approximates the no. of iterations of any loop.
 - The node to be spilled is the one with $\text{MIN}(\text{cost}(v)/\text{deg}(v))$
Multiple heuristic functions are available for making spill decisions (cost(v) as before)

1. \(h_0(v) = \frac{\text{cost}(v)}{\text{degree}(v)} \): Chaitin’s heuristic
2. \(h_1(v) = \frac{\text{cost}(v)}{[\text{degree}(v)]^2} \)
3. \(h_2(v) = \frac{\text{cost}(v)}{[\text{area}(v) \times \text{degree}(v)]} \)
4. \(h_3(v) = \frac{\text{cost}(v)}{[\text{area}(v) \times (\text{degree}(v))^2]} \)

where \(\text{area}(v) = \sum \text{width}(v, I) \times 5^{\text{depth}(v, I)} \)

- \(\text{width}(v, I) \) is the number of live ranges overlapping with instruction I and \(\text{depth}(v, I) \) is the depth of loop nesting of I in v
Spilling Heuristics

- **area(v)** represents the global contribution by v to register pressure, a measure of the need for registers at a point.
- Spilling a live range with high area releases register pressure; i.e., releases a register when it is most needed.
- Choose v with MIN($h_i(v)$), as the candidate to spill, if h_i is the heuristic chosen.
- It is possible to use different heuristics at different times.
Here $R = 3$ and the graph is 3-colourable
No spilling is necessary
A 3-colourable graph which is not 3-coloured by colouring heuristic

Example
Spilling a Node

- To spill a node we remove it from the graph and represent the effect of spilling as follows (It cannot just be removed from the graph).
 - Reload the spilled object at each use and store it in memory at each definition point
 - This creates new webs with small live ranges but which will need registers.
- After all spill decisions are made, insert spill code, rebuild the interference graph and then repeat the attempt to colour.
- When simplification yields an empty graph then select colours, that is, registers
Effect of Spilling

W1: def x in B2, def x in B3, use x in B4, Use x in B5
W2: def x in B5, use x in B6
W3: def y in B2, use y in B4
W4: def y in B1, use y in B3

x is spilled in web W1
Effect of Spilling

Def x store x Def y

load x Use x Use y

load x Use x Def x

Use x

Def x store x Use y

Def y

Interference Graph

W1

W4

W6

W7

W3

W5

W2

B1

B3

B2

B4

B5

B6

w4

w5

w3

w1

w2

w7

Y.N. Srikant
Colouring the Graph (selection)

Repeat

v = pop(stack).

Colours_used(v) = colours used by neighbours of v

Colours_free(v) = all colours - Colours_used(v).

Colour (v) = any colour in Colours_free(v).

Until stack is empty

- Convert the colour assigned to a symbolic register to the corresponding real register’s name in the code.
A Complete Example

1. \(t1 = 202 \)
2. \(i = 1 \)
3. L1: \(t2 = i > 100 \)
4. if \(t2 \) goto L2
5. \(t1 = t1 - 2 \)
6. \(t3 = \text{addr}(a) \)
7. \(t4 = t3 - 4 \)
8. \(t5 = 4 * i \)
9. \(t6 = t4 + t5 \)
10. \(*t6 = t1 \)
11. \(i = i + 1 \)
12. goto L1
13. L2:

<table>
<thead>
<tr>
<th>variable</th>
<th>live range</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1-10</td>
</tr>
<tr>
<td>i</td>
<td>2-11</td>
</tr>
<tr>
<td>t2</td>
<td>3-4</td>
</tr>
<tr>
<td>t3</td>
<td>6-7</td>
</tr>
<tr>
<td>t4</td>
<td>7-9</td>
</tr>
<tr>
<td>t5</td>
<td>8-9</td>
</tr>
<tr>
<td>t6</td>
<td>9-10</td>
</tr>
</tbody>
</table>
A Complete Example

<table>
<thead>
<tr>
<th>variable</th>
<th>live range</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>1-10</td>
</tr>
<tr>
<td>i</td>
<td>2-11</td>
</tr>
<tr>
<td>t2</td>
<td>3-4</td>
</tr>
<tr>
<td>t3</td>
<td>6-7</td>
</tr>
<tr>
<td>t4</td>
<td>7-9</td>
</tr>
<tr>
<td>t5</td>
<td>8-9</td>
</tr>
<tr>
<td>t6</td>
<td>9-10</td>
</tr>
</tbody>
</table>
A Complete Example

Assume 3 registers. Nodes t6, t2, and t3 are first pushed onto a stack during reduction.

This graph cannot be reduced further. Spilling is necessary.
A Complete Example

<table>
<thead>
<tr>
<th>Node V</th>
<th>Cost(v)</th>
<th>deg(v)</th>
<th>h₀(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t1</td>
<td>31</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>i</td>
<td>41</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>t4</td>
<td>20</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>t5</td>
<td>20</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

t1: 1+(1+1+1)*10 = 31
i : 1+(1+1+1+1)*10 = 41
t4: (1+1)*10 = 20
t5: (1+1)*10 = 20
t5 will be spilled. Then the graph can be coloured.

1. t1 = 202
2. i = 1
3. L1: t2 = i>100
4. if t2 goto L2
5. t1 = t1-2
6. t3 = addr(a)
7. t4 = t3 - 4
8. t5 = 4*i
9. t6 = t4 + t5
10. *t6 = t1
11. i = i+1
12. goto L1
13. L2:
A Complete Example

1. \[R_1 = 202 \]
2. \[R_2 = 1 \]
3. \[L1: \quad R_3 = i > 100 \]
4. \[\text{if } R_3 \text{ goto } L2 \]
5. \[R_1 = R_1 - 2 \]
6. \[R_3 = \text{addr}(a) \]
7. \[R_3 = R_3 - 4 \]
8. \[t_5 = 4 \times R_2 \]
9. \[R_3 = R_3 + t_5 \]
10. \[*R_3 = R_1 \]
11. \[R_2 = R_2 + 1 \]
12. \[\text{goto } L1 \]
13. \[L2: \]

\(t_5 \): spilled node, will be provided with a temporary register during code generation
Drawbacks of the Algorithm

- Constructing and modifying interference graphs is very costly as interference graphs are typically huge.

- For example, the combined interference graphs of procedures and functions of gcc in mid-90’s have approximately 4.6 million edges.
Some modifications

- **Careful coalescing**: Do not coalesce if coalescing increases the degree of a node to more than the number of registers.

- **Optimistic colouring**: When a node needs to be spilled, push it onto the colouring stack instead of spilling it right away.
 - spill it only when it is popped and if there is no colour available for it.
 - this could result in colouring graphs that need spills using Chaitin’s technique.
A 3-colourable graph which is not 3-coloured by colouring heuristic, but coloured by optimistic colouring.

Example

Say, 1 is chosen for spilling. Push it onto the stack, and remove it from the graph. The remaining graph (2,3,4,5) is 3-colourable. Now, when 1 is popped from the colouring stack, there is a colour with which 1 can be coloured. It need not be spilled.