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The Setting: Delay-Constrained Decoding of Packets

I A stream of packets sent over a network

I Some packets are dropped or lost (packet erasure)

I congestion, deep fade in wireless link, arriving after deadline
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I Latency gaurantees can be provided by allowing atmost τ future packets to be used
in packet erasure recovery.

I This has applications in interactive voice & video, AR, VR, 5G URLLC etc
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Modeling Packet Erasures

I Gilbert Elliot (GE) Channel is a

commonly-accepted model

I Not tractable, difficult to
design codes

BEC(𝜖) BEC(1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

I Delay Constrained Sliding Window (DCSW) channel has been used a proxy to a GE
channel 1

1
Badr et al., “Layered Constructions for Low-Delay Streaming Codes”, IEEE Trans. Info. Theory, 2017.
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DCSW Channel

I Admissible erasure patterns (AEP) of {a, b,w , τ} DCSW channel

I within every sliding window of size w :
either ≤ a random erasures or a burst of ≤ b erasures

I decoding delay constraint τ

9 10

a = 2 random erasures

0 1 2 3 4 6 7 85

w = 5

burst of b = 4 erasures

w = 5
i erased pkt

(a = 2, b = 4,w = 5, τ = 4)

I DCSW Channel is deterministic. A recent analytical work on how well DCSW
channel approximates the erasures in GE channel can be found at 2.

2
M. Vajha, V. Ramkumar, M. Jhamtani, and P. V. Kumar, “On Sliding Window Approximation of Gilbert-Elliott Channel for

Delay Constrained Setting,” CoRR, vol. abs/2005.06921, 2020.
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Streaming Code

I Streaming code is a packet-level code that can correct from all AEP of DCSW
channel within the decoding delay constraint τ .

I Non-trivial only if a ≤ b ≤ τ .

I Turns out WOLOG we can set w = τ + 1. This reduces parameter set from
{a, b,w , τ} to {a, b, τ}.

b b b𝜏+1-a 𝜏+1-a

I The optimal rate of an (a, b, τ) streaming code is given by 3, 4.

Ropt =
τ + 1− a

τ + 1− a + b
.

3
Badr et al., “Layered Constructions for Low-Delay Streaming Codes”, IEEE Trans. Info. Theory, 2017.

4
M. N. Krishnan, P. V. Kumar “Rate-optimal streaming codes for channels with burst and isolated erasures”, ISIT 2018.
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Redundancy through Packet Expansion Framework
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I Can use scalar codes to come up with streaming codes.

6/21



Diagonal Embedding (DE)

I Codewords of [n, k] scalar block code are diagonally placed in the packet stream.

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

m5 m5 m5

m6 m6 m6

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

p5 p5 p5

p6 p6 p6

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10)𝑥(11)𝑥(12)𝑥(13)

DE of [12, 6] scalar code
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Prior Work on Streaming Codes

Burst Only Burst and Random Erasures
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Krishnan-Shukla-
Kumar 

(ISIT 2019)
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DE based Streaming Code Construction
I This approach results in a rate-optimal {a, b, τ} streaming code only if:

I n − k ≥ b
I n ≥ τ + 1− a + b

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

m5 m5 m5

m6 m6 m6

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

p5 p5 p5

p6 p6 p6

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10)𝑥(11)𝑥(12)𝑥(13)

DE of [12, 6] scalar code where a = 3, b = 6, τ = 8

I To recover symbol m1, symbols p4, p5 and p6 are not available.
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Scalar Code Properties
For a given {a, b, τ}

n = τ + 1 + δ, k = n − b where δ = b − a

I For i ∈ [0 : δ − 1], to recover ci :

c0 ---- ci-1 ci ---- c𝜏+i c𝜏+i+1 ---- c𝜏+𝛿
a random erasures 
or burst of size b

available

Not accessible

I Let E ⊂ [δ : τ + δ] be either the set of a random erasures or a set of consecutive b
erasures. To recover {cj | j ∈ E}:

c0 c1 ---- c𝛿-1 c𝛿 c𝛿+1 ---- c𝜏+𝛿-1 c𝜏+𝛿

a random erasures or 
burst of size b

available

10/21



Parity Check Properties

H =
[
h0 h1 · · · hτ+δ

]
is an (b × τ + δ + 1) matrix .

I For i ∈ [0 : δ − 1], to recover ci :

c0 ---- ci-1 ci ---- c𝜏+i c𝜏+i+1 ---- c𝜏+𝛿
a random erasures 
or burst of size b

available

Not accessible

I Let H(i) =
[

h
(i)
0 h

(i)
1 · · · h

(i)
τ+i

]
be pc-matrix of scalar code punctured at

indices [τ + i + 1 : τ + δ].

R1: To recover from a erasures E ⊂ [i : τ + i ] such that i ∈ E .

h
(i)
i /∈ Span

(
h
(i)
j | j ∈ E \ {i}

)
B1: Given b length burst starting at i :

h
(i)
i /∈ Span

(
h
(i)
j | j ∈ [i + 1 : i + b − 1]

)
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Parity Check Properties

I For E ⊆ [δ : τ + δ], to recover {cj | j ∈ E}:

c0 c1 ---- c𝛿-1 c𝛿 c𝛿+1 ---- c𝜏+𝛿-1 c𝜏+𝛿

a random erasures or 
burst of size b

available

R2: To recover from |E | = a random erasures,

(hj | j ∈ E) have to be linearly independant

B2: Given b length burst starting at i , E = [i : i + b − 1]:

(hj | j ∈ E) have to be linearly independant
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Our Explicit Construction

I For all valid {a, b, τ}, we present parity check matrix of [n = τ + 1 + δ, k = n − b]
scalar code where δ = b − a satisfying the properties.
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Parity Check Matrix Design

First δ = b − a rows

H([0 : δ − 1], [0 : τ + δ]) =


α

0︸︷︷︸
(δ×a)

Pa
δ,τ−b︸ ︷︷ ︸

(δ×(τ−b))

α 0
α 1 0

. . .
. . .

...
α 1 0

 ,

Last a rows

H([δ : b − 1], [0 : τ + δ]) =


1

C︸︷︷︸
(a×(τ+1−a))

0︸︷︷︸
(a×(δ−1))

1
1 0

. . .
...

1 0

 .

I The last a rows are the same as in construction by Krishnan et al 5 whereas the first
δ rows support is changed along with explicit assignment of coefficients.

I C is a Cauchy matrix with elements in Fq such that q ≥ τ and α ∈ Fq2 \ Fq.

5
M. Nikhil Krishnan, Deeptanshu Shukla and P. Vijay Kumar, “Rate-Optimal Streaming Codes for Channels With Burst and

Random Erasures”, IEEE Trans. Info. Theory, 2020
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Parity Check Matrix Design
I The definition of (u × v) matrix Pa

u,v is recursive.

Pa
u,v =



[
Iu 0︸︷︷︸

(u×a)

Pa
u,v−u−a

]
u + a < v

[
Iu 0︸︷︷︸

(u×(v−u))

]
u ≤ v ≤ u + a

[
Iv

Pa
u−v,v

]
v < u

For (a = 3, b = 6, τ = 8), δ = 3, τ − b = 2

H =



α 0 0 0 0 0 1 0 α 0 0 0
0 α 0 0 0 0 0 1 0 1 0 0
0 0 α 0 0 0 1 0 0 0 1 0

1 0 0
C︸︷︷︸

(3×6)

0 0 1
0 1 0 0 0 0
0 0 1 0 0 0

 as P3
3,2 =

 1 0
0 1
1 0

 .
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Example (a = 3, b = 6, τ = 8) R1 and B1

H(0) =


0 1 2 3 4 5 6 7 8

α 0 0 0 0 0 1 0 α
0 1 0 C([1 : 2], [0 : 5])︸ ︷︷ ︸

(2×6)
0 0 1

 B1 Can use 0-th row to recover c0

R1 No two columns in [1 : 8] can linearly combine
to give 0’s in last two rows.

H(2) =



0 1 2 3 4 5 6 7 8 9 10

α 0 0 0 0 0 1 0 α
α 0 0 0 0 0 1 0 1

α 0 0 0 1 0 0 0 1
0 1 0 C([1 : 2], [0 : 5])︸ ︷︷ ︸

(2×6)

0 0
0 0 1 0 0



B1 Can recover c2 using 2-nd row combined with 0-th row

R1 No two columns in [3 : 10] can linearly combine to give 2-nd column.
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Example (a = 3, b = 6, τ = 8) B2
E = [i : i + 5] be the burst erasures starting at index i . b × b submatrix of HE is as
shown below:



3 4 5 6 7 8

0 0 0 1 0 α
0 0 0 0 1 0
0 0 0 1 0 0

C([0 : 2, 0 : 5])


|HE | = α|(C [0 : 2], [0 : 2])|



4 5 6 7 8 9

0 0 1 0 α
0 0 0 1 0 1
0 0 1 0 0 0

C([0 : 2], [1 : 5]) 0


|HE | = α|(C [0 : 2], {1, 2, 4})|



5 6 7 8 9 10

0 1 0 α
0 0 1 0 1
0 1 0 0 0 1

C([0 : 2], [2 : 5]) 0


|HE | = |C [0 : 2], {2, 4, 5}|+α|C [0 : 2], [2 : 4]|



6 7 8 9 10 11

1 0 α
0 1 0 1
1 0 0 0 1

C([0 : 2], [3 : 5]) 0
1
0
0


|HE | = |C [1 : 2], {4, 5}|+ α|C [1 : 2], {3, 4}|
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Example (a = 3, b = 6, τ = 8) R2

E ⊆ [3 : 11] such that |E | = 3.

H =



0 1 2 3 4 5 6 7 8 9 10 11

α 0 0 0 0 0 1 0 α 0 0 0
0 α 0 0 0 0 0 1 0 1 0 0
0 0 α 0 0 0 1 0 0 0 1 0
1 0 0

C︸︷︷︸
(3×6)

0 0 1
0 1 0 0 0 0
0 0 1 0 0 0


I E ⊂ [3 : 8] than by cauchy property can recover |E | = 3 erasures

I Otherwise i.e, |E ∩ [3 : 8]| < 3 then by the cauchy property, can recover E ∩ [3 : 8]
using last 2 rows. Remaining erasures E \ [3 : 8] recovery follows from B2 property.
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Comparison to a Related Work

I Hollmann-Tolhuizen 6 have come up with burst only correcting streaming codes i.e.,
(a = 1, b, τ).

I The parity check of construction by Hollmann-Tolhuizen is given by

H =
[
Ib Pb,τ−b Ib

]
, Pu,v =



[
Iu Pu,v−u

]
v > u

Iu v = u[
Iv

Pu−v,v

]
v < u

I Notice that the Pa
δ,τ−b follows similar structure but introduces a zero columns in the

column-wise expansion.

6
H. D. Hollmann and L. M. Tolhuizen, “Optimal Codes for Correcting a Single (wrap-around) Burst of Erasures,” Trans. in

Information Theory, 2008
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Summary

I We provide explicit rate-optimal streaming code construction for any {a, b, τ} with
field size q2 where q ≥ τ .

I This is an improvement over the best known explicit construction by Domanovitz et
al. 7 where q ≥ τ + b − a.

I Our construction has the same field size requirement as the best known non-explicit
construction by Krishnan et al. 8.

7
E. Domanovitz, S. L. Fong, and A. Khisti, “An Explicit Rate-Optimal Streaming Code for Channels with Burst and

Arbitrary Erasures”, ITW 2019
8
M. Nikhil Krishnan, Deeptanshu Shukla and P. Vijay Kumar, “Rate-Optimal Streaming Codes for Channels With Burst and

Random Erasures”, Trans. in Information Theory, 2020
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Thanks!
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