Explicit Rate-Optimal Streaming Codes with Smaller Field Size

Myna Vajha^{*}, Vinayak Ramkumar^{*}, M. Nikhil Krishnan[†], P. Vijay Kumar^{*}

* Department of Electrical Communication Engineering, IISc Bangalore † Department of Electrical and Computer Engineering, University of Toronto

> IEEE International Symposium on Information Theory 2021 Melbourne, Victoria, Australia

> > 12-20 July 2021

The Setting: Delay-Constrained Decoding of Packets

- A stream of packets sent over a network
- Some packets are dropped or lost (packet erasure)
 - congestion, deep fade in wireless link, arriving after deadline

- Latency gaurantees can be provided by allowing atmost \(\tau\) future packets to be used in packet erasure recovery.
- ▶ This has applications in interactive voice & video, AR, VR, 5G URLLC etc

Modeling Packet Erasures

- Gilbert Elliot (GE) Channel is a commonly-accepted model
 - Not tractable, difficult to design codes

Delay Constrained Sliding Window (DCSW) channel has been used a proxy to a GE channel ¹

¹Badr et al., "Layered Constructions for Low-Delay Streaming Codes", IEEE Trans. Info. Theory, 2017.

DCSW Channel

- Admissible erasure patterns (AEP) of $\{a, b, w, \tau\}$ DCSW channel
 - ▶ within every sliding window of size w: either ≤ a random erasures or a burst of ≤ b erasures
 - decoding delay constraint au

DCSW Channel is deterministic. A recent analytical work on how well DCSW channel approximates the erasures in GE channel can be found at ².

²M. Vajha, V. Ramkumar, M. Jhamtani, and P. V. Kumar, "On Sliding Window Approximation of Gilbert-Elliott Channel for Delay Constrained Setting," CoRR, vol. abs/2005.06921, 2020.

Streaming Code

- Streaming code is a packet-level code that can correct from all AEP of DCSW channel within the decoding delay constraint *τ*.
- Non-trivial only if $a \leq b \leq \tau$.
- ▶ Turns out WOLOG we can set $w = \tau + 1$. This reduces parameter set from $\{a, b, w, \tau\}$ to $\{a, b, \tau\}$.

• The optimal rate of an (a, b, τ) streaming code is given by ³, ⁴.

$$R_{opt} = rac{ au+1-a}{ au+1-a+b}$$

³Badr et al., "Layered Constructions for Low-Delay Streaming Codes", IEEE Trans. Info. Theory, 2017.

⁴M. N. Krishnan, P. V. Kumar "Rate-optimal streaming codes for channels with burst and isolated erasures", ISIT 2018.

Redundancy through Packet Expansion Framework

Can use scalar codes to come up with streaming codes.

Diagonal Embedding (DE)

• Codewords of [n, k] scalar block code are diagonally placed in the packet stream.

m_1	m1	m1											
	m ₂	m ₂	m ₂										
		m ₃	m ₃	m ₃									
			m ₄	m ₄	m4								
				m ₅	m ₅	m ₅							
					m ₆	m ₆	m ₆						
						\mathbf{p}_1	\mathbf{p}_1	\mathbf{p}_1					
							p ₂	\mathbf{p}_2	\mathbf{p}_2				
								\mathbf{p}_3	\mathbf{p}_3	p ₃			
									p_4	p_4	p_4		
										p ₅	p ₅	p ₅	
											p ₆	p ₆	p ₆

 $\underline{x}(0) \ \underline{x}(1) \ \underline{x}(2) \ \underline{x}(3) \ \underline{x}(4) \ \underline{x}(5) \ \underline{x}(6) \ \underline{x}(7) \ \underline{x}(8) \ \underline{x}(9) \ \underline{x}(10) \underline{x}(11) \underline{x}(12) \underline{x}(13)$

DE of [12, 6] scalar code

Prior Work on Streaming Codes

DE based Streaming Code Construction

This approach results in a rate-optimal $\{a, b, \tau\}$ streaming code only if:

•
$$n-k \ge b$$

$$n \ge \tau + 1 - a + b$$

DE of [12, 6] scalar code where $a = 3, b = 6, \tau = 8$

To recover symbol m_1 , symbols p_4 , p_5 and p_6 are not available.

Scalar Code Properties

For a given $\{a, b, \tau\}$

$$n = \tau + 1 + \delta$$
, $k = n - b$ where $\delta = b - a$

Let E ⊂ [δ : τ + δ] be either the set of a random erasures or a set of consecutive b erasures. To recover {c_j | j ∈ E}:

Parity Check Properties

 $H = \left[egin{array}{ccc} h_0 & h_1 & \cdots & h_{ au+\delta} \end{array}
ight]$ is an $(b imes au + \delta + 1)$ matrix .

For
$$i \in [0 : \delta - 1]$$
, to recover c_i :

B1: Given *b* length burst starting at *i*:

$$h_i^{(i)}
otin \mathsf{Span}\left(h_j^{(i)} \mid j \in [i+1:i+b-1]
ight)$$

Parity Check Properties

R2: To recover from |E| = a random erasures,

 $(h_j \mid j \in E)$ have to be linearly independent

B2: Given *b* length burst starting at *i*, E = [i : i + b - 1]:

 $(h_j \mid j \in E)$ have to be linearly independent

Our Explicit Construction

For all valid {a, b, τ}, we present parity check matrix of [n = τ + 1 + δ, k = n − b] scalar code where δ = b − a satisfying the properties.

Parity Check Matrix Design

First $\delta = b - a$ rows

$$H([0:\delta-1],[0:\tau+\delta]) = \begin{bmatrix} \alpha & & & & \\ & \alpha & & & \\ & & \ddots & & \\ & & & \alpha & & \\ \end{bmatrix} \begin{pmatrix} \mathbf{P}^{a}_{\delta,\tau-b} & \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{0} \end{bmatrix},$$

Last *a* rows
$$H([\delta:b-1],[0:\tau+\delta]) = \begin{bmatrix} \mathbf{1} & & & \\ & \mathbf{1} & & \\ & & \mathbf{1} & \\ & & & \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{C} \\ \mathbf{C} \\ \mathbf{C} \\ (a\times(\tau+1-a)) \\ (a\times(\delta-1)) \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}.$$

The last a rows are the same as in construction by Krishnan et al ⁵ whereas the first δ rows support is changed along with explicit assignment of coefficients.

▶ C is a Cauchy matrix with elements in \mathbb{F}_q such that $q \ge \tau$ and $\alpha \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q$.

⁵M. Nikhil Krishnan, Deeptanshu Shukla and P. Vijay Kumar, "Rate-Optimal Streaming Codes for Channels With Burst and Random Erasures", IEEE Trans. Info. Theory, 2020

Parity Check Matrix Design

• The definition of $(u \times v)$ matrix $P_{u,v}^a$ is recursive.

$$\mathsf{P}_{u,v}^{\mathfrak{s}} = \begin{cases} \begin{bmatrix} I_u & \underbrace{0}_{(u \times \mathfrak{s})} & \mathsf{P}_{u,v-u-\mathfrak{s}}^{\mathfrak{s}} \\ \\ I_u & \underbrace{0}_{(u \times (v-u))} \end{bmatrix} & u \leq v \leq u+\mathfrak{s} \\ \\ \begin{bmatrix} I_v \\ \mathsf{P}_{u-v,v}^{\mathfrak{s}} \end{bmatrix} & v < u \end{cases}$$

For $(a = 3, b = 6, \tau = 8)$, $\delta = 3, \tau - b = 2$

$$H = \begin{bmatrix} \alpha & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \alpha & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & \alpha & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & & & \\ 0 & 1 & 0 & & & \\ 0 & 0 & 1 & & & (3 \times 6) & & & 0 & 0 & 0 \end{bmatrix} \text{ as } P_{3,2}^3 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Example ($a = 3, b = 6, \tau = 8$) R1 and B1

$$H^{(0)} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \alpha & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \alpha \\ \hline 0 & 1 & 0 & & \underbrace{C([1:2], [0:5])}_{(2 \times 6)} \end{bmatrix}$$

B1 Can use 0-th row to recover c₀
R1 No two columns in [1 : 8] can linearly combine to give 0's in last two rows.

B1 Can recover c_2 using 2-nd row combined with 0-th row

R1 No two columns in [3 : 10] can linearly combine to give 2-nd column.

Example $(a = 3, b = 6, \tau = 8)$ B2

E = [i : i + 5] be the burst erasures starting at index *i*. $b \times b$ submatrix of H_E is as shown below:

	3	4	5	6	7	8					4	5	6	7	8		9	
[0	0	0	1	0	α				Γ	0	0	1	0	α	!		
	0	0	0	0	1	0					0	0	0	1	0		1	
	0	0	0	1	0	0					0	0	1	0	0		0	
	_	C(0:2	2,0 :	5])						C([0 :	2],	[1:!	5])		0	
	$ H_E $	=	α ((C[0	: 2],	[0:2	2])			H	e =	= α	(C	[0 :	2],	{1,	2,	4})
	5	6	7	8	9	10				6	7		8		9	10	1	1
Γ	0	1	0	α			1		Г	1	0		α					1
	0	0	1	0	1					0	1		0		1			
I	0	1	0	0	0	1			İ	1	0		0	(0	1		
																	1	
	C([0):2], [2	: 5]))	0				C([():2	2], [3:5	5])	0)	(
L																	()]

 $|H_E| = |C[0:2], \{2,4,5\}| + \alpha |C[0:2], [2:4]| \quad |H_E| = |C[1:2], \{4,5\}| + \alpha |C[1:2], \{3,4\}|$

Example ($a = 3, b = 6, \tau = 8$) R2

 $E \subseteq [3:11]$ such that |E| = 3.

	0	1	2	3	4	5	6	7	8	9	10	11
	α	0	0	0	0	0	1	0	α	0	0	0]
	0	α	0	0	0	0	0	1	0	1	0	0
н —	0	0	α	0	0	0	1	0	0	0	1	0
<i>11 –</i>	1	0	0					0	0	1		
	0	1	0			5		0	0	0		
	0	0	1			(3)	< 6)			0	0	0

• $E \subset [3:8]$ than by cauchy property can recover |E| = 3 erasures

Otherwise i.e, |E ∩ [3 : 8]| < 3 then by the cauchy property, can recover E ∩ [3 : 8] using last 2 rows. Remaining erasures E \ [3 : 8] recovery follows from B2 property.</p>

Comparison to a Related Work

- ► Hollmann-Tolhuizen ⁶ have come up with burst only correcting streaming codes i.e., $(a = 1, b, \tau)$.
- The parity check of construction by Hollmann-Tolhuizen is given by

$$H = \begin{bmatrix} I_b & P_{b,\tau-b} & I_b \end{bmatrix}, \quad P_{u,v} = \begin{cases} \begin{bmatrix} I_u & P_{u,v-u} \end{bmatrix} & v > u \\ I_u & v = u \\ \begin{bmatrix} I_v \\ P_{u-v,v} \end{bmatrix} & v < u \end{cases}$$

Notice that the P^a_{δ,τ-b} follows similar structure but introduces a zero columns in the column-wise expansion.

⁶H. D. Hollmann and L. M. Tolhuizen, "Optimal Codes for Correcting a Single (wrap-around) Burst of Erasures," Trans. in Information Theory, 2008

Summary

- We provide explicit rate-optimal streaming code construction for any {a, b, τ} with field size q² where q ≥ τ.
- ▶ This is an improvement over the best known explicit construction by Domanovitz et al. ⁷ where $q \ge \tau + b a$.
- Our construction has the same field size requirement as the best known non-explicit construction by Krishnan et al.⁸.

⁷ E. Domanovitz, S. L. Fong, and A. Khisti, "An Explicit Rate-Optimal Streaming Code for Channels with Burst and Arbitrary Erasures", ITW 2019

⁸M. Nikhil Krishnan, Deeptanshu Shukla and P. Vijay Kumar, "Rate-Optimal Streaming Codes for Channels With Burst and Random Erasures", Trans. in Information Theory, 2020

Thanks!