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Private Information Retrieval(PIR): Single Server

Alice (x1, x2, . . ., xB)

Q

A

I Alice wants to download xi without revealing any information to server about the
index i .

I J is a random variable that represents the index of data in [1,B], and Q(J) be the
query sent, then we want I (Q(J); J) = 0.

I Number of bits communicated through Query and Answers to achieve PIR is called
as communication complexity of PIR.

I It was proved in [1] that communication complexity of Ω(B) is needed to achieve
PIR using a single server.

I B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998
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Private Information Retrieval(PIR): Replicated Servers

Alice

(x1, x2, . . ., xB)

(x1, x2, . . ., xB)

Q1

A1

Q2

A2

τ = 2

I τ = # of replicated servers.

I It was shown in [1] that the
communication complexity can be

reduced from Ω(B) to O(B
1
3 ) by

introducing a 2-non communicating
replicated server model.

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998
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PIR protocols so far...

τ Complexity Year Authors

2 O(B
1
3 ) 1995 B. Chor, E. Kushilevitz

O. Goldreich, and M. Sudan

τ O(B
1
τ ) 1995 B. Chor, E. Kushilevitz,

O. Goldreich, and M. Sudan

τ O(B
1

2τ−1 ) 1997 A. Ambainis

τ O(B
loglogτ
τ logτ ) 2002 A. Beimel, Y. Ishai,

E. Kushilevitz, and J.F. Raymond

τ ≥ 3 O(B

√
loglogB
logB ) 2008 S. Yekhanin; K. Efremenko

2 O(B

√
loglogB
logB ) 2014 Z. Dvir and S. Gopi
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Replicated Server PIR

Storage Overhead for replicated server PIR = τ ≥ 2.

Can one do better ?
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Coded PIR

I Shah, Rashmi, Ramchandran, ISIT 2014.

I
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PIR Code

Definition
An (n, k) τ -server PIR code, is an (n, k) linear code such that for every message symbol
mi , i ∈ [k], there are τ disjoint recovery sets Rit , ∀t ∈ [τ ] i.e. mi =

∑
j∈Rit

cj , ∀t ∈ [τ ],

where c = (c1, · · · , cn) is a codeword.

A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead: Coding instead of replication,” CoRR, vol. abs/1505.06241,

2015.
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PIR Code

 1  3  5 4 2

q1

a1

q2

a4
a5a2 a3

2 virtual servers
 

2-server PIR 
Algorithm

q1 a1 a2+a3+a4+a5
q2

Figure: An Example (5,4) 2-server PIR code.

Storage overhead = 5
4

= 1.25

I x i = (xij), ∀j ∈ [B] for any i ∈ [4] is
stored in server i .

I Server 5 stores the parity symbols

x5j =
4∑

i=1

xij .

I To retrieve x1j , generate
qt = QB(t, j) t ∈ [2].

I Send q1 to server 1 and q2 to servers
2, 3, 4, 5. The answer generated by a
server i ∈ [5] on receiving a query q is
as shown below:

ai = A(xi , q).

I Query and answer functions (Q, A) are determined by the 2-server PIR algorithm.

I Answers that are seen by 2-server PIR protocol are

a1 = A(x1, q1) and

a2 + a3 + a4 + a5 = A(x2, q2) + A(x3, q2) + A(x4, q2) + A(x5, q2)

= A(x2 + x3 + x4 + x5, q2) (linearity of function A.)

= A(x1, q2)
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Projective Reed Muller (PRM) Code

I A code vector in binary PRM(r ,m − 1) code corresponds to evaluations of r -degree
homogeneous polynomial in m binary variables at points from Pm−1(F2).

f (x1, · · · , xm) =
∑

S⊆[m],|S|=r

aS
∏
i∈S

xi , aS ∈ F2

n = |Pm−1(F2)| = 2m − 1, k =

(
m

r

)
.

I It is clear to see the above polynomials are evaluated to 0 for all x such that
wH(x) < r .

I Can restrict to evaluations at x such that wH(x) ≥ r .

n =
m∑
i=r

(
m

i

)
, k =

(
m

r

)
.
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Projective Reed Muller code for PIR
I PRM(2, 3): r = 2,m = 4

I Any code vector corresponds to the evaluation of polynomials of form

f (x) = a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a24x2x4 + a34x3x4

of degree 2 in 4 variables at points x = (x1, x2, x3, x4) such that wH(x) ≥ 2.

I Message symbol recovery

a12 =
∑
x1,x2

f (x1x2b3b4)

= f (1100)

= f (0110) + f (1010) + f (1110)

= f (0101) + f (1001) + f (1101)

= f (0011) + f (0111) + f (1011) + f (1111).

I This gives (n = 11, k = 6), (τ = 4)-server systematic PIR code.

Result

PRM(r ,m − 1) code is a (n =
m∑
i=r

(m
i

)
, k =

(m
r

)
), (τ = 2m−r )-server PIR code.
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Support Set View point of PRM codes

I We now write f (x) as f (Supp(x))

I Let, Ri for all i ∈
[(

m
r

)]
be the r -element subsets.

f (S) =
∑
∀Ri⊆S

f (Ri ). for all S ⊆ [m] such that |S | ≥ r .

where f (Ri ) = aRi .

I Every such set S corresponds to a coordinate of the code vector.

I For example, PRM(2, 4) code has f ({1, 2, 3}) = f ({1, 2}) + f ({1, 3}) + f ({2, 3}).
Setting a12 = a13 = a23 = 0, forces f (1, 2, 3) to be zero and hence can be excluded

from the code word.
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PIR Codes: any k , τ of form 2`

I τ = 2` = 2m−r . Choose m such that k ≤
(
m
`

)
=
(
m
r

)
.

I Shorten PRM(r ,m − 1) code to obtain the required k. Let,

γ =

(
m

r

)
− k

I Pick γ message symbols that can be represented by r-element sets
{Ri1 ,Ri2 , · · · ,Riγ} and fix them as 0. This also forces γ code symbols to always be
zero.

n =
m∑
i=r

(
m

r

)
− γ′

.

I It is clear that γ′ ≥ γ.

I How to minimize the n i.e., maximize γ′ ?
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Shortening retains τ

Lemma

On shortening a PRM(r ,m − 1) code by setting any γ message symbols to zero, the
resultant code retains τ = 2m−r disjoint recovery sets.
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Example SPRM code
.

I Consider k ∈ (6, 10) and τ = 8 = 2m−r . Pick m = 5, r = 2 i.e., PRM(2, 4) code.

k γ message code coordinate sets γ′ n

10 0 φ φ 0 26

9 1 {1, 2} {1, 2} 1 25

8 2 {1, 3} {1, 3} 2 24

7 3 {2, 3} {2, 3}, {1, 2, 3} 4 22

6 4 {1, 4} {1, 4} 5 21

5 5 {2, 4} {2, 4}, {1, 2, 4} 7 19

4 6 {3, 4} {3, 4}, {1, 3, 4}, {2, 3, 4} 11 15
{1, 2, 3, 4}

3 7 {1, 5} {1, 5} 12 14

2 8 {2, 5} {2, 5}, {1, 2, 5} 14 12

1 9 {3, 5} {3, 5}, {1, 3, 5}, 18 8
{2, 3, 5}, {1, 2, 3, 5}

0 10 {4, 5} {4, 5}, {1, 4, 5}, {2, 4, 5}, 26 0
{3, 4, 5}, {1, 2, 4, 5}, {1, 3, 4, 5},
{2, 3, 4, 5}, {1, 2, 3, 4, 5}

I The order in which 2-element message sets are picked above is called
co-lexicographic order, where a set A > B iff max(A∆B) ∈ A.
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How to get γ′

m = 5, r = 2, ` = 3.

I k <
(
m
r

)
= 10 can be represented by ` = 3 length vector whose weight is ≤ r = 2.

γ ρ P γ′ k n

0 (0, 0, 0) φ 0 10 26
1 (0, 0, 1) {1, 2} 1 9 25
2 (0, 0, 2) {1, 2}, {1, 3} 2 8 24
3 (0, 1, 0) {1, 2, 3} 4 7 22
4 (0, 1, 1) {1, 2, 3}, {1, 4} 5 6 21
5 (0, 2, 0) {1, 2, 3}, {1, 2, 4} 7 5 19
6 (1, 0, 0) {1, 2, 3, 4} 11 4 15
7 (1, 0, 1) {1, 2, 3, 4}, {1, 5} 12 3 14
8 (1, 1, 0) {1, 2, 3, 4}, {1, 2, 5} 14 2 12
9 (2, 0, 0) {1, 2, 3, 4}, {1, 2, 3, 5} 18 1 8

I r -element subsets in P are picked for shortening.

I ρ = (ρ`−1, · · · , ρ0) where ρt represents the number of r + t element sets in P.

I Count the number of distinct subsets of sets in P with cardinality ≥ r to get γ′.
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Shortening Algorithm

Theorem

For any γ ∈
[
0,
(
m
`

))
, γ can be uniquely represented using a vector (ρ`−1, · · · ρ0) with

ρi ≥ 0,∀i ∈ [0, `− 1] and
`−1∑
i=0

ρi ≤ r as

γ =
`−1∑
t=0

h(ρt , rt , t) where, h(p, r , t) =


p−1∑
i=0

(
r+t−i
r−i

)
p > 0

0 p = 0

and rt = r −
`−1∑
q>t

ρq.

m = 5, r = 2, ` = 3.

I k <
(
m
r

)
= 10 can be represented by

` = 3 length vector whose weight is
≤ r = 2.

k = 10

0 1 2 3 4 5 6 7 8 9

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
2
0

1
0
0

1
0
1

1
1
0

2
0
0
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SPRM Codes: Shortening Algorithm

Theorem

For γ =
ρt−1∑
i=0

(
r+t−i
r−i

)
for any t ∈ [0, `− 1] and ρt ∈ [1, r ], γ′ =

t∑
j=0

ρt−1∑
i=0

(
r+t−i
r+j−i

)
is

achievable.

Case when ρ = (0, · · · , ρt , · · · , 0).

1 2 r+t+1

1 2 r+t

1 2 r+t+1r+t-1

1 2 r+t+1r+tr+t-2

S

S0

S1

S2

P = {Si | 0 ≤ i < ρt}
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Shortening Algorithm: any γ

Theorem

For any γ ∈
[
0,
(
m
`

))
, represented by vector (ρ`−1, · · · ρ0) with ρi ≥ 0, ∀i ∈ [0, `− 1] and

`−1∑
i=0

ρi ≤ r . Then,

γ′ =
`−1∑
t=0

h1(rt , t) where, h1(r , t) =


t∑

j=0

ρt−1∑
i=0

(
r+t−i
r+j−i

)
ρt > 0

0 ρt = 0

is achievable.

Sm
0 = [m] and define ρ` = 0. For the set S j

i , j is the number of elements in the set.

S r+t−1
i = S r+t

ρt \ {rt−1 + t − i}, ∀i ∈ [0, rt−1 + t − 1] for all t ∈ [1, `]

P =
{
S r+t
i | ∀t ∈ [0, `− 1], ∀i ∈ [0, ρt − 1]

}
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Generalized Hamming Weights for PRM codes

I Generalized Hamming Weights (di ), ∀i ∈ {1, · · · , k}.

di = min |{supp(D) | ∀D ⊂ C , rank(D) = i}|

where, supp(D) = ∪x∈Dsupp(x).

I Shortening of a PRM(r ,m− 1) by γ gives a sub code of dimension
(
m
r

)
− γ = k − γ.

dk−γ ≤ n − γ′

where, γ′ is given by the shortening algorithm.
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Optimal Codes for τ = 3, 4

Theorem

For a (n, k) 3-server systematic PIR code, n(k, 3) ≥ k +
⌈√

8k+1+1
2

⌉
.

I n(k, τ)− 1 ≥ n(k, τ − 1) as puncturing affects at most one recovery set.

I n(k, 4) ≥ n(k, 3) + 1 ≥ k +
⌈√

8k+1+1
2

⌉
+ 1

I PRM(m − 2,m − 1) code is an (n = k + m + 1, k =
(
m
2

)
) τ = 4-server PIR code.

This meets the above lower bound.

I Puncturing PRM(m − 2,m − 1) at any coordinate gives an (n = k + m, k =
(
m
2

)
)

τ = 3-server PIR code. This meets the lower bound from the theorem.
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Contributions

I Optimal systematic PIR codes for τ = 3, 4.

I Upper bounds on generalized hamming weights for binary PRM codes.

I Smaller block lengths in comparison with existing codes.

k \ τ 3* 4* 8 16
n1 n2 n1 n2 n1 n2 n1 n2

5 9 10 10 11 19 19 31 31
6 10 11 11 12 21 21 39 40
7 12 12 13 13 22 23 43 43
8 13 13 14 14 24 28 45 54
9 14 14 15 15 25 30 46 60
10 15 17 16 18 26 35 50 61
15 21 23 22 24 36 44 57 80
16 23 24 24 25 37 45 65 84
20 27 30 28 31 42 49 76 92
25 33 35 34 36 52 54 83 108
30 39 42 40 43 58 59 93 118

Block length for some k, τ .
Here n1 is the block length of the SPRM constructions and n2 is the block length of the best known codes.

M. Vajha, V. Ramkumar and P. V. Kumar: Binary, Shortened Projective Reed Muller Codes for Coded Private Information

Retrieval, CoRR, vol. abs/1702.05074, 2017. (Accepted to ISIT 2017)
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Thanks!
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