Shortened Projective Reed Muller Codes for coded Private Information Retrieval

Myna Vajha, Vinayak Ramkumar and P Vijay Kumar (Indian Institute of Science, Bangalore)

IEEE, International Symposium on Information Theory, 2017.
June 30, 2017

Outline

- Private Information Retrieval (PIR)
- PIR code
- Projective Reed Muller codes as PIR code
- Shortening Algorithm to obtain PIR codes
- Conclusions and Open questions

Private Information Retrieval(PIR): Single Server

- Alice wants to download x_{i} without revealing any information to server about the index i.
- J is a random variable that represents the index of data in $[1, B]$, and $Q(J)$ be the query sent, then we want $I(Q(J) ; J)=0$.
- Number of bits communicated through Query and Answers to achieve PIR is called as communication complexity of PIR.
- It was proved in [1] that communication complexity of $\Omega(B)$ is needed to achieve PIR using a single server.
- B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, "Private information retrieval," Journal of the ACM, 45, 1998

Private Information Retrieval(PIR): Replicated Servers

$$
\tau=2
$$

- It was shown in [1] that the communication complexity can be reduced from $\Omega(B)$ to $O\left(B^{\frac{1}{3}}\right)$ by introducing a 2-non communicating replicated server model.
- $\tau=\#$ of replicated servers.

[^0]
PIR protocols so far...

τ	Complexity	Year	Authors
2	$O\left(B^{\frac{1}{3}}\right)$	1995	B. Chor, E. Kushilevitz O. Goldreich, and M. Sudan
τ	$O\left(B^{\frac{1}{\tau}}\right)$	1995	B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan
τ	$O\left(B^{\frac{1}{2 \tau-1}}\right)$	1997	A. Ambainis
τ	$O\left(B^{\frac{\log \log \tau}{\tau \log \tau}}\right)$	2002	A. Beimel, Y. Ishai, E. Kushilevitz, and J.F. Raymond
$\tau \geq 3$	$O\left(B^{\sqrt{\frac{\log \log B}{\log B}}}\right)$	2008	S. Yekhanin; K. Efremenko
2	$O\left(B^{\sqrt{\frac{\log \log B}{\log B}}}\right)$	2014	Z. Dvir and S. Gopi

Replicated Server PIR

Storage Overhead for replicated server PIR $=\tau \geq 2$.

Can one do better ?

Coded PIR

- Shah, Rashmi, Ramchandran, ISIT 2014.

PIR Code

Definition

An (n, k) τ-server PIR code, is an (n, k) linear code such that for every message symbol $m_{i}, i \in[k]$, there are τ disjoint recovery sets $R_{i t}, \forall t \in[\tau]$ i.e. $m_{i}=\sum_{j \in R_{i t}} c_{j}, \forall t \in[\tau]$, where $\underline{c}=\left(c_{1}, \cdots, c_{n}\right)$ is a codeword.
A. Fazeli, A. Vardy, and E. Yaakobi, "PIR with low storage overhead: Coding instead of replication," CoRR, vol. abs/1505.06241, 2015.

PIR Code

- $\underline{x}_{i}=\left(x_{i j}\right), \forall j \in[B]$ for any $i \in[4]$ is stored in server i.

- Server 5 stores the parity symbols $x_{5 j}=\sum_{i=1}^{4} x_{i j}$.

Figure: An Example $(5,4)$ 2-server PIR code.
Storage overhead $=\frac{5}{4}=1.25$

PIR Code

- $\underline{x}_{i}=\left(x_{i j}\right), \forall j \in[B]$ for any $i \in[4]$ is stored in server i.

- Server 5 stores the parity symbols $x_{5 j}=\sum_{i=1}^{4} x_{i j}$.
- To retrieve $x_{1 j}$, generate $q_{t}=Q_{B}(t, j) \quad t \in[2]$.

Figure: An Example $(5,4)$ 2-server PIR code.
Storage overhead $=\frac{5}{4}=1.25$

PIR Code

- $\underline{x}_{i}=\left(x_{i j}\right), \forall j \in[B]$ for any $i \in[4]$ is stored in server i.

Figure: An Example $(5,4)$ 2-server PIR code.
Storage overhead $=\frac{5}{4}=1.25$

- Server 5 stores the parity symbols $x_{5 j}=\sum_{i=1}^{4} x_{i j}$.
- To retrieve $x_{1 j}$, generate $q_{t}=Q_{B}(t, j) \quad t \in[2]$.
- Send q_{1} to server 1 and q_{2} to servers $2,3,4,5$. The answer generated by a server $i \in[5]$ on receiving a query q is as shown below:

$$
a_{i}=A\left(\underline{x_{i}}, q\right)
$$

PIR Code

- $\underline{x}_{i}=\left(x_{i j}\right), \forall j \in[B]$ for any $i \in[4]$ is stored in server i.

Figure: An Example (5,4) 2-server PIR code.
Storage overhead $=\frac{5}{4}=1.25$

- Server 5 stores the parity symbols

$$
x_{5 j}=\sum_{i=1}^{4} x_{i j}
$$

- To retrieve $x_{1 j}$, generate $q_{t}=Q_{B}(t, j) \quad t \in[2]$.
- Send q_{1} to server 1 and q_{2} to servers $2,3,4,5$. The answer generated by a server $i \in$ [5] on receiving a query q is as shown below:

$$
a_{i}=A\left(\underline{x_{i}}, q\right)
$$

- Query and answer functions (Q, A) are determined by the 2-server PIR algorithm.
- Answers that are seen by 2-server PIR protocol are

$$
\begin{aligned}
a_{1} & =A\left(\underline{x}_{1}, q_{1}\right) \text { and } \\
a_{2}+a_{3}+a_{4}+a_{5} & =A\left(\underline{x}_{2}, q_{2}\right)+A\left(\underline{x}_{3}, q_{2}\right)+A\left(\underline{x}_{4}, q_{2}\right)+A\left(\underline{x}_{5}, q_{2}\right) \\
& =A\left(\underline{x}_{2}+\underline{x}_{3}+\underline{x}_{4}+\underline{x}_{5}, q_{2}\right) \text { (linearity of function A.) } \\
& =A\left(\underline{x}_{1}, q_{2}\right)
\end{aligned}
$$

Projective Reed Muller (PRM) Code

- A code vector in binary $\operatorname{PRM}(r, m-1)$ code corresponds to evaluations of r-degree homogeneous polynomial in m binary variables at points from $\mathbb{P}^{m-1}\left(F_{2}\right)$.

$$
\begin{gathered}
f\left(x_{1}, \cdots, x_{m}\right)=\sum_{S \subseteq[m],|S|=r} a_{S} \prod_{i \in S} x_{i}, \quad a_{S} \in \mathbb{F}_{2} \\
n=\left|\mathbb{P}^{m-1}\left(F_{2}\right)\right|=2^{m}-1, \quad k=\binom{m}{r} .
\end{gathered}
$$

- It is clear to see the above polynomials are evaluated to 0 for all \underline{x} such that $w_{H}(\underline{x})<r$.
- Can restrict to evaluations at \underline{x} such that $w_{H}(\underline{x}) \geq r$.

$$
n=\sum_{i=r}^{m}\binom{m}{i}, \quad k=\binom{m}{r} .
$$

Projective Reed Muller code for PIR

- $\operatorname{PRM}(2,3): r=2, m=4$
- Any code vector corresponds to the evaluation of polynomials of form

$$
f(\underline{x})=a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{14} x_{1} x_{4}+a_{23} x_{2} x_{3}+a_{24} x_{2} x_{4}+a_{34} x_{3} x_{4}
$$

of degree 2 in 4 variables at points $\underline{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $w_{H}(\underline{x}) \geq 2$.

- Message symbol recovery

$$
\begin{aligned}
a_{12} & =\sum_{x_{1}, x_{2}} f\left(x_{1} x_{2} b_{3} b_{4}\right) \\
& =f(1100) \\
& =f(0110)+f(1010)+f(1110) \\
& =f(0101)+f(1001)+f(1101) \\
& =f(0011)+f(0111)+f(1011)+f(1111)
\end{aligned}
$$

- This gives $(n=11, k=6),(\tau=4)$-server systematic PIR code.

Projective Reed Muller code for PIR

- $\operatorname{PRM}(2,3): r=2, m=4$
- Any code vector corresponds to the evaluation of polynomials of form

$$
f(\underline{x})=a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{14} x_{1} x_{4}+a_{23} x_{2} x_{3}+a_{24} x_{2} x_{4}+a_{34} x_{3} x_{4}
$$

of degree 2 in 4 variables at points $\underline{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ such that $w_{H}(\underline{x}) \geq 2$.

- Message symbol recovery

$$
\begin{aligned}
a_{12} & =\sum_{x_{1}, x_{2}} f\left(x_{1} x_{2} b_{3} b_{4}\right) \\
& =f(1100) \\
& =f(0110)+f(1010)+f(1110) \\
& =f(0101)+f(1001)+f(1101) \\
& =f(0011)+f(0111)+f(1011)+f(1111)
\end{aligned}
$$

- This gives $(n=11, k=6),(\tau=4)$-server systematic PIR code.

Result

$\operatorname{PRM}(r, m-1)$ code is a $\left(n=\sum_{i=r}^{m}\binom{m}{i}, k=\binom{m}{r}\right),\left(\tau=2^{m-r}\right)$-server PIR code.

Support Set View point of PRM codes

- We now write $f(\underline{x})$ as $f(\operatorname{Supp}(\underline{x}))$
- Let, R_{i} for all $i \in\left[\binom{m}{r}\right]$ be the r-element subsets.

$$
f(S)=\sum_{\forall R_{i} \subseteq S} f\left(R_{i}\right) . \text { for all } S \subseteq[m] \text { such that }|S| \geq r .
$$

where $f\left(R_{i}\right)=a_{R_{i}}$.

- Every such set S corresponds to a coordinate of the code vector.
- For example, $\operatorname{PRM}(2,4)$ code has $f(\{1,2,3\})=f(\{1,2\})+f(\{1,3\})+f(\{2,3\})$.

Setting $a_{12}=a_{13}=a_{23}=0$, forces $f(1,2,3)$ to be zero and hence can be excluded from the code word.

PIR Codes: any k, τ of form 2^{ℓ}

$-\tau=2^{\ell}=2^{m-r}$. Choose m such that $k \leq\binom{ m}{\ell}=\binom{m}{r}$.

- Shorten $\operatorname{PRM}(r, m-1)$ code to obtain the required k. Let,

$$
\gamma=\binom{m}{r}-k
$$

- Pick γ message symbols that can be represented by r -element sets $\left\{R_{i_{1}}, R_{i_{2}}, \cdots, R_{i_{\gamma}}\right\}$ and fix them as 0 . This also forces γ code symbols to always be zero.

$$
n=\sum_{i=r}^{m}\binom{m}{r}-\gamma^{\prime}
$$

- It is clear that $\gamma^{\prime} \geq \gamma$.
- How to minimize the n i.e., maximize γ^{\prime} ?

Shortening retains τ

Lemma

On shortening a $P R M(r, m-1)$ code by setting any γ message symbols to zero, the resultant code retains $\tau=2^{m-r}$ disjoint recovery sets.

Example SPRM code

- Consider $k \in(6,10)$ and $\tau=8=2^{m-r}$. Pick $m=5, r=2$ i.e., $\operatorname{PRM}(2,4)$ code.

k	γ	message	code coordinate sets	γ^{\prime}	n
10	0	ϕ	ϕ	0	26
9	1	\{1,2\}	\{1,2\}	1	25
8	2	\{1,3\}	\{1,3\}	2	24
7	3	\{2, 3\}	$\{2,3\},\{1,2,3\}$	4	22
6	4	\{1, 4\}	$\{1,4\}$	5	21
5	5	\{2, 4\}	\{2, 4\}, \{1, 2, 4\}	7	19
4	6	$\{3,4\}$	$\begin{gathered} \{3,4\},\{1,3,4\},\{2,3,4\} \\ \{1,2,3,4\} \end{gathered}$	11	15
3	7	\{1,5\}	$\{1,5\}$	12	14
2	8	$\{2,5\}$	$\{2,5\},\{1,2,5\}$	14	12
1	9	$\{3,5\}$	$\begin{gathered} \{3,5\},\{1,3,5\}, \\ \{2,3,5\},\{1,2,3,5\} \end{gathered}$	18	8
0	10	$\{4,5\}$	$\begin{gathered} \{4,5\},\{1,4,5\},\{2,4,5\} \\ \{3,4,5\},\{1,2,4,5\},\{1,3,4,5\} \\ \{2,3,4,5\},\{1,2,3,4,5\} \end{gathered}$	26	0

- The order in which 2-element message sets are picked above is called co-lexicographic order, where a set $A>B$ iff $\max (A \Delta B) \in A$.

How to get γ^{\prime}

$$
m=5, r=2, \ell=3
$$

- $k<\binom{m}{r}=10$ can be represented by $\ell=3$ length vector whose weight is $\leq r=2$.

γ	ρ	\mathbb{P}	γ^{\prime}	k	n
0	$(0,0,0)$	ϕ	0	10	26
1	$(0,0,1)$	$\{1,2\}$	1	9	25
2	$(0,0,2)$	$\{1,2\},\{1,3\}$	2	8	24
3	$(0,1,0)$	$\{1,2,3\}$	4	7	22
4	$(0,1,1)$	$\{1,2,3\},\{1,4\}$	5	6	21
5	$(0,2,0)$	$\{1,2,3\},\{1,2,4\}$	7	5	19
6	$(1,0,0)$	$\{1,2,3,4\}$	11	4	15
7	$(1,0,1)$	$\{1,2,3,4\},\{1,5\}$	12	3	14
8	$(1,1,0)$	$\{1,2,3,4\},\{1,2,5\}$	14	2	12
9	$(2,0,0)$	$\{1,2,3,4\},\{1,2,3,5\}$	18	1	8

- r-element subsets in \mathbb{P} are picked for shortening.
- $\underline{\rho}=\left(\rho_{\ell-1}, \cdots, \rho_{0}\right)$ where ρ_{t} represents the number of $r+t$ element sets in \mathbb{P}.
- Count the number of distinct subsets of sets in \mathbb{P} with cardinality $\geq r$ to get γ^{\prime}.

Shortening Algorithm

Theorem

For any $\gamma \in\left[0,\binom{m}{\ell}\right.$), γ can be uniquely represented using a vector $\left(\rho_{\ell-1}, \cdots \rho_{0}\right)$ with $\rho_{i} \geq 0, \forall i \in[0, \ell-1]$ and $\sum_{i=0}^{\ell-1} \rho_{i} \leq r$ as
$\gamma=\sum_{t=0}^{\ell-1} h\left(\rho_{t}, r_{t}, t\right) \quad$ where, $h(p, r, t)=\left\{\begin{array}{ll}\sum_{i=0}^{p-1}\binom{r+t-i}{r-i} & p>0 \\ 0 & p=0\end{array}\right.$ and $r_{t}=r-\sum_{q>t}^{\ell-1} \rho_{q}$.

$$
m=5, r=2, \ell=3
$$

- $k<\binom{m}{r}=10$ can be represented by $\ell=3$ length vector whose weight is $\leq r=2$.

SPRM Codes: Shortening Algorithm

Theorem
For $\gamma=\sum_{i=0}^{\rho_{t}-1}\binom{r+t-i}{r-i}$ for any $t \in[0, \ell-1]$ and $\rho_{t} \in[1, r], \gamma^{\prime}=\sum_{j=0}^{t} \sum_{i=0}^{\rho_{t}-1}\binom{r+t-i}{r+j-i}$ is achievable.

Case when $\underline{\rho}=\left(0, \cdots, \rho_{t}, \cdots, 0\right)$.

Shortening Algorithm: any γ

Theorem

For any $\gamma \in\left[0,\binom{m}{\ell}\right.$), represented by vector $\left(\rho_{\ell-1}, \cdots \rho_{0}\right)$ with $\rho_{i} \geq 0, \forall i \in[0, \ell-1]$ and $\sum_{i=0}^{\ell-1} \rho_{i} \leq r$. Then,

$$
\gamma^{\prime}=\sum_{t=0}^{\ell-1} h_{1}\left(r_{t}, t\right) \quad \text { where, } h_{1}(r, t)= \begin{cases}\sum_{j=0}^{t} \sum_{i=0}^{\rho_{t}-1}\binom{r+t-i}{r+j-i} & \rho_{t}>0 \\ 0 & \rho_{t}=0\end{cases}
$$

is achievable.
$S_{0}^{m}=[m]$ and define $\rho_{\ell}=0$. For the set S_{i}^{j}, j is the number of elements in the set.

$$
\begin{aligned}
S_{i}^{r+t-1} & =S_{\rho_{t}}^{r+t} \backslash\left\{r_{t-1}+t-i\right\}, \forall i \in\left[0, r_{t-1}+t-1\right] \quad \text { for all } t \in[1, \ell] \\
\mathbb{P} & =\left\{S_{i}^{r+t} \mid \forall t \in[0, \ell-1], \forall i \in\left[0, \rho_{t}-1\right]\right\}
\end{aligned}
$$

Generalized Hamming Weights for PRM codes

- Generalized Hamming Weights $\left(d_{i}\right), \forall i \in\{1, \cdots, k\}$.

$$
d_{i}=\min |\{\operatorname{supp}(D) \mid \forall D \subset C, \quad \operatorname{rank}(D)=i\}|
$$

where, $\operatorname{supp}(D)=\cup_{x \in D} \operatorname{supp}(x)$.

- Shortening of a $\operatorname{PRM}(r, m-1)$ by γ gives a sub code of dimension $\binom{m}{r}-\gamma=k-\gamma$.

$$
d_{k-\gamma} \leq n-\gamma^{\prime}
$$

where, γ^{\prime} is given by the shortening algorithm.

Optimal Codes for $\tau=3,4$

Theorem

For a (n, k) 3-server systematic PIR code, $n(k, 3) \geq k+\left\lceil\frac{\sqrt{8 k+1}+1}{2}\right\rceil$.

- $n(k, \tau)-1 \geq n(k, \tau-1)$ as puncturing affects at most one recovery set.
- $n(k, 4) \geq n(k, 3)+1 \geq k+\left\lceil\frac{\sqrt{8 k+1}+1}{2}\right\rceil+1$
- $\operatorname{PRM}(m-2, m-1)$ code is an $\left(n=k+m+1, k=\binom{m}{2}\right) \tau=4$-server PIR code. This meets the above lower bound.
- Puncturing $\operatorname{PRM}(m-2, m-1)$ at any coordinate gives an $\left(n=k+m, k=\binom{m}{2}\right)$ $\tau=3$-server PIR code. This meets the lower bound from the theorem.

Contributions

- Optimal systematic PIR codes for $\tau=3,4$.
- Upper bounds on generalized hamming weights for binary PRM codes.
- Smaller block lengths in comparison with existing codes.

| $\mathrm{k} \backslash \tau$ | 3^{*} | | 4^{*} | | 8 | | 16 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | n_{1} | n_{2} | n_{1} | n_{2} | n_{1} | n_{2} | n_{1} | n_{2} |
| 5 | 9 | 10 | 10 | 11 | 19 | 19 | 31 | 31 |
| 6 | 10 | 11 | 11 | 12 | 21 | 21 | 39 | 40 |
| 7 | 12 | 12 | 13 | 13 | 22 | 23 | 43 | 43 |
| 8 | 13 | 13 | 14 | 14 | 24 | 28 | 45 | 54 |
| 9 | 14 | 14 | 15 | 15 | 25 | 30 | 46 | 60 |
| 10 | 15 | 17 | 16 | 18 | 26 | 35 | 50 | 61 |
| 15 | 21 | 23 | 22 | 24 | 36 | 44 | 57 | 80 |
| 16 | 23 | 24 | 24 | 25 | 37 | 45 | 65 | 84 |
| 20 | 27 | 30 | 28 | 31 | 42 | 49 | 76 | 92 |
| 25 | 33 | 35 | 34 | 36 | 52 | 54 | 83 | 108 |
| 30 | 39 | 42 | 40 | 43 | 58 | 59 | 93 | 118 |

Block length for some k, τ.
Here n_{1} is the block length of the SPRM constructions and n_{2} is the block length of the best known codes.

[^1]
Thanks!

[^0]: [1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, "Private information retrieval," Journal of the ACM, 45, 1998

[^1]: M. Vajha, V. Ramkumar and P. V. Kumar: Binary, Shortened Projective Reed Muller Codes for Coded Private Information Retrieval, CoRR, vol. abs/1702.05074, 2017. (Accepted to ISIT 2017)

