Shortened Projective Reed Muller Codes for coded Private Information Retrieval

Myna Vajha, Vinayak Ramkumar and P Vijay Kumar (Indian Institute of Science, Bangalore)

IEEE, International Symposium on Information Theory, 2017.

June 30, 2017

Outline

- Private Information Retrieval (PIR)
- PIR code
- Projective Reed Muller codes as PIR code
- Shortening Algorithm to obtain PIR codes
- Conclusions and Open questions

Private Information Retrieval(PIR): Single Server

Alice

Alice wants to download x_i without revealing any information to server about the index i.

 $(X_{4}, \overline{X_{2}, \ldots, X_{P}})$

- ▶ J is a random variable that represents the index of data in [1, B], and Q(J) be the query sent, then we want I(Q(J); J) = 0.
- Number of bits communicated through Query and Answers to achieve PIR is called as communication complexity of PIR.
- lt was proved in [1] that communication complexity of $\Omega(B)$ is needed to achieve PIR using a single server.
 - B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, "Private information retrieval," Journal of the ACM, 45, 1998

Private Information Retrieval(PIR): Replicated Servers

 It was shown in [1] that the communication complexity can be reduced from Ω(B) to O(B^{1/3}) by introducing a 2-non communicating replicated server model.

• $\tau = \#$ of replicated servers.

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, "Private information retrieval," Journal of the ACM, 45, 1998

PIR protocols so far...

τ	Complexity	Year	Authors		
2	$O(B^{\frac{1}{3}})$	1995	B. Chor, E. Kushilevitz		
			O. Goldreich, and M. Sudan		
au	$O(B^{\frac{1}{\tau}})$	1995	B. Chor, E. Kushilevitz,		
			O. Goldreich, and M. Sudan		
au	$O(B^{rac{1}{2 au-1}})$	1997	A. Ambainis		
au	$O(B^{\frac{\log\log \tau}{\tau\log \tau}})$	2002	A. Beimel, Y. Ishai,		
			E. Kushilevitz, and J.F. Raymond		
$ au \geq 3$	$O(B^{\sqrt{\frac{\log \log B}{\log B}}})$	2008	S. Yekhanin; K. Efremenko		
2	$O(B^{\sqrt{\frac{\log\log B}{\log B}}})$	2014	Z. Dvir and S. Gopi		

Storage Overhead for replicated server $PIR = \tau \ge 2$.

Can one do better ?

Coded PIR

Shah, Rashmi, Ramchandran, ISIT 2014.

Definition

An (n, k) τ -server PIR code, is an (n, k) linear code such that for every message symbol m_i , $i \in [k]$, there are τ disjoint recovery sets R_{it} , $\forall t \in [\tau]$ i.e. $m_i = \sum_{j \in R_{it}} c_j$, $\forall t \in [\tau]$, where $\underline{c} = (c_1, \dots, c_n)$ is a codeword.

A. Fazeli, A. Vardy, and E. Yaakobi, "PIR with low storage overhead: Coding instead of replication," CoRR, vol. abs/1505.06241, 2015.

Figure: An Example (5,4) 2-server PIR code.

Storage overhead = $\frac{5}{4} = 1.25$

- ★ x_i = (x_{ij}), ∀j ∈ [B] for any i ∈ [4] is stored in server i.
- Server 5 stores the parity symbols $x_{5j} = \sum_{i=1}^{4} x_{ij}.$

Figure: An Example (5,4) 2-server PIR code.

Storage overhead = $\frac{5}{4} = 1.25$

- ★ x_i = (x_{ij}), ∀j ∈ [B] for any i ∈ [4] is stored in server i.
- Server 5 stores the parity symbols $x_{5j} = \sum_{i=1}^{4} x_{ij}.$
- To retrieve x_{1j} , generate $q_t = Q_B(t,j)$ $t \in [2]$.

Figure: An Example (5,4) 2-server PIR code.

Storage overhead = $\frac{5}{4} = 1.25$

- ★ x_i = (x_{ij}), ∀j ∈ [B] for any i ∈ [4] is stored in server i.
- Server 5 stores the parity symbols $x_{5j} = \sum_{i=1}^{4} x_{ij}.$
- To retrieve x_{1j} , generate $q_t = Q_B(t,j)$ $t \in [2]$.
- Send q₁ to server 1 and q₂ to servers 2,3,4,5. The answer generated by a server i ∈ [5] on receiving a query q is as shown below:

$$a_i = A(\underline{x_i}, q)$$

Figure: An Example (5,4) 2-server PIR code.

Storage overhead = $\frac{5}{4} = 1.25$

- ★ x_i = (x_{ij}), ∀j ∈ [B] for any i ∈ [4] is stored in server i.
- Server 5 stores the parity symbols $x_{5j} = \sum_{i=1}^{4} x_{ij}.$
- To retrieve x_{1j} , generate $q_t = Q_B(t,j)$ $t \in [2]$.
- Send q₁ to server 1 and q₂ to servers 2,3,4,5. The answer generated by a server i ∈ [5] on receiving a query q is as shown below:

$$a_i = A(\underline{x_i}, q).$$

Query and answer functions (Q, A) are determined by the 2-server PIR algorithm.
 Answers that are seen by 2-server PIR protocol are

$$a_1 = A(\underline{x}_1, q_1) \text{ and}$$

$$a_2 + a_3 + a_4 + a_5 = A(\underline{x}_2, q_2) + A(\underline{x}_3, q_2) + A(\underline{x}_4, q_2) + A(\underline{x}_5, q_2)$$

$$= A(\underline{x}_2 + \underline{x}_3 + \underline{x}_4 + \underline{x}_5, q_2) \text{ (linearity of function A.)}$$

$$= A(\underline{x}_1, q_2)$$

Myna Vajha

Projective Reed Muller (PRM) Code

A code vector in binary PRM(r, m − 1) code corresponds to evaluations of r-degree homogeneous polynomial in m binary variables at points from P^{m−1}(F₂).

$$f(x_1,\cdots,x_m)=\sum_{S\subseteq [m],|S|=r}a_S\prod_{i\in S}x_i,\quad a_S\in \mathbb{F}_2$$

$$n = |\mathbb{P}^{m-1}(F_2)| = 2^m - 1, \ k = \binom{m}{r}.$$

- It is clear to see the above polynomials are evaluated to 0 for all <u>x</u> such that w_H(<u>x</u>) < r.</p>
- Can restrict to evaluations at \underline{x} such that $w_H(\underline{x}) \ge r$.

$$n = \sum_{i=r}^{m} \binom{m}{i}, \quad k = \binom{m}{r}.$$

Projective Reed Muller code for PIR

▶
$$\mathsf{PRM}(2,3)$$
: $r = 2, m = 4$

Any code vector corresponds to the evaluation of polynomials of form

 $f(\underline{x}) = a_{12}x_1x_2 + a_{13}x_1x_3 + a_{14}x_1x_4 + a_{23}x_2x_3 + a_{24}x_2x_4 + a_{34}x_3x_4$

of degree 2 in 4 variables at points $\underline{x} = (x_1, x_2, x_3, x_4)$ such that $w_H(\underline{x}) \ge 2$.

Message symbol recovery

$$\begin{aligned} a_{12} &= \sum_{x_1, x_2} f(x_1 x_2 b_3 b_4) \\ &= f(1100) \\ &= f(0110) + f(1010) + f(1110) \\ &= f(0101) + f(1001) + f(1101) \\ &= f(0011) + f(0111) + f(1011) + f(1111). \end{aligned}$$

• This gives $(n = 11, k = 6), (\tau = 4)$ -server systematic PIR code.

Projective Reed Muller code for PIR

▶
$$\mathsf{PRM}(2,3)$$
: $r = 2, m = 4$

Any code vector corresponds to the evaluation of polynomials of form

 $f(\underline{x}) = a_{12}x_1x_2 + a_{13}x_1x_3 + a_{14}x_1x_4 + a_{23}x_2x_3 + a_{24}x_2x_4 + a_{34}x_3x_4$

of degree 2 in 4 variables at points $\underline{x} = (x_1, x_2, x_3, x_4)$ such that $w_H(\underline{x}) \ge 2$.

Message symbol recovery

$$\begin{aligned} \mathbf{a}_{12} &= \sum_{x_1, x_2} f(x_1 x_2 b_3 b_4) \\ &= f(1100) \\ &= f(0110) + f(1010) + f(1110) \\ &= f(0101) + f(1001) + f(1101) \\ &= f(0011) + f(0111) + f(1011) + f(1111). \end{aligned}$$

• This gives $(n = 11, k = 6), (\tau = 4)$ -server systematic PIR code.

Result

$$\mathsf{PRM}(r, m-1)$$
 code is a $(n = \sum_{i=r}^{m} \binom{m}{i}, \ k = \binom{m}{r}), (\tau = 2^{m-r})$ -server PIR code.

Myna Vajha

Support Set View point of PRM codes

- We now write $f(\underline{x})$ as $f(\text{Supp}(\underline{x}))$
- ▶ Let, R_i for all $i \in \begin{bmatrix} m \\ r \end{bmatrix}$ be the *r*-element subsets.

$$f(S) = \sum_{\forall R_i \subseteq S} f(R_i).$$
 for all $S \subseteq [m]$ such that $|S| \ge r.$

where $f(R_i) = a_{R_i}$.

- Every such set S corresponds to a coordinate of the code vector.
- For example, PRM(2, 4) code has $f(\{1, 2, 3\}) = f(\{1, 2\}) + f(\{1, 3\}) + f(\{2, 3\})$. Setting $a_{12} = a_{13} = a_{23} = 0$, forces f(1, 2, 3) to be zero and hence can be excluded from the code word.

PIR Codes: any k, τ of form 2^{ℓ}

▶ $\tau = 2^{\ell} = 2^{m-r}$. Choose *m* such that $k \leq \binom{m}{\ell} = \binom{m}{r}$.

Shorten PRM(r, m-1) code to obtain the required k. Let,

$$\gamma = \binom{m}{r} - k$$

Pick γ message symbols that can be represented by r-element sets {R_{i1}, R_{i2}, ··· , R_{iγ}} and fix them as 0. This also forces γ code symbols to always be zero.

$$n = \sum_{i=r}^{m} \binom{m}{r} - \gamma'$$

• It is clear that $\gamma' \geq \gamma$.

• How to minimize the *n* i.e., maximize γ' ?

Shortening retains τ

Lemma

On shortening a PRM(r, m-1) code by setting any γ message symbols to zero, the resultant code retains $\tau = 2^{m-r}$ disjoint recovery sets.

Example SPRM code

• Consider $k \in (6, 10)$ and $\tau = 8 = 2^{m-r}$. Pick m = 5, r = 2 i.e., PRM(2, 4) code.

k	γ	message	code coordinate sets	γ'	n
10	0	ϕ	ϕ	0	26
9	1	$\{1, 2\}$	{1,2}	1	25
8	2	{1,3}	{1,3}	2	24
7	3	{2,3}	$\{2,3\},\{1,2,3\}$	4	22
6	4	$\{1, 4\}$	{1,4}	5	21
5	5	{2,4}	$\{2,4\},\{1,2,4\}$	7	19
4	6	{3,4}	$\{3,4\},\{1,3,4\},\{2,3,4\}$	11	15
			$\{1, 2, 3, 4\}$		
3	7	$\{1, 5\}$	$\{1,5\}$	12	14
2	8	$\{2, 5\}$	$\{2,5\},\{1,2,5\}$	14	12
1	9	{3,5}	$\{3,5\},\{1,3,5\},$	18	8
			$\{2,3,5\},\{1,2,3,5\}$		
0	10	$\{4, 5\}$	$\{4,5\},\{1,4,5\},\{2,4,5\},$	26	0
			$\{3,4,5\},\{1,2,4,5\},\{1,3,4,5\},$		
			$\{2,3,4,5\},\{1,2,3,4,5\}$		

► The order in which 2-element message sets are picked above is called co-lexicographic order, where a set A > B iff max $(A\Delta B) \in A$.

Myna Vajha

How to get γ'

$$m = 5, r = 2, \ell = 3.$$

▶ $k < \binom{m}{r} = 10$ can be represented by $\ell = 3$ length vector whose weight is $\leq r = 2$.

γ	$\underline{\rho}$	P	γ'	k	n
0	(0, 0, 0)	ϕ	0	10	26
1	(0, 0, 1)	$\{1, 2\}$	1	9	25
2	(0,0,2)	$\{1,2\},\{1,3\}$	2	8	24
3	(0, 1, 0)	$\{1, 2, 3\}$	4	7	22
4	(0, 1, 1)	$\{1,2,3\},\{1,4\}$	5	6	21
5	(0,2,0)	$\{1,2,3\},\{1,2,4\}$	7	5	19
6	(1, 0, 0)	$\{1, 2, 3, 4\}$	11	4	15
7	(1, 0, 1)	$\{1,2,3,4\},\{1,5\}$	12	3	14
8	(1, 1, 0)	$\{1,2,3,4\},\{1,2,5\}$	14	2	12
9	(2, 0, 0)	$\{1, 2, 3, 4\}, \{1, 2, 3, 5\}$	18	1	8

r-element subsets in P are picked for shortening.

• $\rho = (\rho_{\ell-1}, \cdots, \rho_0)$ where ρ_t represents the number of r + t element sets in \mathbb{P} .

• Count the number of distinct subsets of sets in \mathbb{P} with cardinality $\geq r$ to get γ' .

Myna Vajha

Shortening Algorithm

Theorem

For any $\gamma \in [0, \binom{m}{\ell})$, γ can be uniquely represented using a vector $(\rho_{\ell-1}, \cdots \rho_0)$ with $\rho_i \ge 0, \forall i \in [0, \ell-1]$ and $\sum_{i=0}^{\ell-1} \rho_i \le r$ as

$$\gamma = \sum_{t=0}^{\ell-1} h(\rho_t, r_t, t) \quad \text{where, } h(p, r, t) = \begin{cases} \sum_{i=0}^{p-1} \binom{r+t-i}{r-i} & p > 0\\ 0 & p = 0 \end{cases} \quad \text{and } r_t = r - \sum_{q>t}^{\ell-1} \rho_q.$$

$$m = 5, r = 2, \ell = 3.$$

▶ $k < \binom{m}{r} = 10$ can be represented by $\ell = 3$ length vector whose weight is $\leq r = 2$.

SPRM Codes: Shortening Algorithm

Theorem

For
$$\gamma = \sum_{i=0}^{\rho_t-1} {r+t-i \choose r-i}$$
 for any $t \in [0, \ell-1]$ and $\rho_t \in [1, r]$, $\gamma' = \sum_{j=0}^t \sum_{i=0}^{\rho_t-1} {r+t-i \choose r+j-i}$ is achievable.

Case when $\underline{\rho} = (0, \cdots, \rho_t, \cdots, 0)$.

 $\mathbb{P} = \{S_i \mid 0 \le i < \rho_t\}$

Shortening Algorithm: any γ

Theorem

For any $\gamma \in [0, \binom{m}{\ell})$, represented by vector $(\rho_{\ell-1}, \cdots \rho_0)$ with $\rho_i \ge 0, \forall i \in [0, \ell-1]$ and $\sum_{i=0}^{\ell-1} \rho_i \le r$. Then,

$$\gamma' = \sum_{t=0}^{\ell-1} h_1(r_t, t) \quad \text{where, } h_1(r, t) = \begin{cases} \sum_{j=0}^{t} \sum_{i=0}^{\rho_t - 1} \binom{r+t-i}{r+j-i} & \rho_t > 0\\ 0 & \rho_t = 0 \end{cases}$$

is achievable.

 $S_0^m = [m]$ and define $\rho_\ell = 0$. For the set S_i^j , *j* is the number of elements in the set.

$$\begin{split} S_i^{r+t-1} &= S_{\rho_t}^{r+t} \setminus \{r_{t-1} + t - i\}, \ \forall i \in [0, r_{t-1} + t - 1] \quad \text{for all } t \in [1, \ell] \\ \mathbb{P} &= \left\{ S_i^{r+t} \mid \forall t \in [0, \ell - 1], \ \forall i \in [0, \rho_t - 1] \right\} \end{split}$$

Generalized Hamming Weights for PRM codes

• Generalized Hamming Weights $(d_i), \forall i \in \{1, \dots, k\}.$

 $d_i = \min |\{\operatorname{supp}(D) \mid \forall D \subset C, \operatorname{rank}(D) = i\}|$

where, $supp(D) = \bigcup_{x \in D} supp(x)$.

Shortening of a PRM(r, m-1) by γ gives a sub code of dimension $\binom{m}{r} - \gamma = k - \gamma$.

$$d_{k-\gamma} \leq n-\gamma'$$

where, γ' is given by the shortening algorithm.

Optimal Codes for $\tau = 3, 4$

Theorem

For a (n, k) 3-server systematic PIR code, $n(k, 3) \ge k + \left\lceil \frac{\sqrt{3k+1}+1}{2} \right\rceil$.

▶ $n(k, \tau) - 1 \ge n(k, \tau - 1)$ as puncturing affects at most one recovery set.

- ▶ PRM(m-2, m-1) code is an $(n = k + m + 1, k = \binom{m}{2})$ $\tau = 4$ -server PIR code. This meets the above lower bound.
- ▶ Puncturing PRM(m-2, m-1) at any coordinate gives an $(n = k + m, k = {m \choose 2})$ $\tau = 3$ -server PIR code. This meets the lower bound from the theorem.

Contributions

- Optimal systematic PIR codes for $\tau = 3, 4$.
- Upper bounds on generalized hamming weights for binary PRM codes.
- Smaller block lengths in comparison with existing codes.

$k \setminus \tau$	3*		4*		8		16	
	<i>n</i> ₁	n ₂						
		10	10	1.1	10	10	01	01
5	9	10	10	11	19	19	31	31
6	10	11	11	12	21	21	39	40
7	12	12	13	13	22	23	43	43
8	13	13	14	14	24	28	45	54
9	14	14	15	15	25	30	46	60
10	15	17	16	18	26	35	50	61
15	21	23	22	24	36	44	57	80
16	23	24	24	25	37	45	65	84
20	27	30	28	31	42	49	76	92
25	33	35	34	36	52	54	83	108
30	39	42	40	43	58	59	93	118

Block length for some k, τ .

Here n_1 is the block length of the SPRM constructions and n_2 is the block length of the best known codes.

M. Vajha, V. Ramkumar and P. V. Kumar: Binary, Shortened Projective Reed Muller Codes for Coded Private Information

Retrieval, CoRR, vol. abs/1702.05074, 2017. (Accepted to ISIT 2017)

Myna Vajha

Thanks!