
Codes for distributed storage, private information retrieval
and low-latency streaming

Myna Vajha Advisor: Prof. P Vijay Kumar

Department of Electrical Communications Engineering,
Indian Institute of Science, Bangalore

PhD Thesis Defence

Date: 2nd December, 2020
1/66

Codes for reliable and efficient distributed storage
Joint work with:

Birenjith Sasidharan, Balaji S. B (MSR constructions)

Vinayak Ramkumar, Bhagyasree Puranik, Ganesh Kini and Elita Lobo(Systems
implementation and evaluation)

Srinivas Narayanamurthy, Syed Hussain, Siddhartha Nandi (Netapp team on
Systems work)

Min Ye and Alexandar Barg (University of Maryland team on Systems work)
2/66

Erasure Coding for Fault Tolerance

Disk/node/rack failures are common in distributed storage

Erasure coding is used to provide fault tolerance

File or Object

Split it into
chunks

Ak

Store the n chunks in different
nodes of the storage network

A2A1

(n,k) erasure code
n=k+m

P1 P2 Pm

k data chunks m parity chunks

The n chunks taken together, form

a stripe.

Two Key Performance Measures

1 Storage Overhead n
k

2 Fault Tolerance - at most m storage units

MDS Codes

1 For given (n, k), MDS erasure codes have the
maximum-possible fault tolerance

2 RAID 6 and Reed-Solomon codes are examples
of MDS codes.

3/66

Erasure Codes and Node Failures

A median of 50 nodes are unavailable
per day.

98% of the failures are single node
failures.

A median of 180TB of network traffic
per day is generated in order to
reconstruct the RS coded data
corresponding to unavailable
machines.

Thus there is a strong need for
erasure codes that can efficiently
recover from single-node failures.

Image courtesy: Rashmi et al.: “A Solution to the Network Challenges of Data Recovery in Erasure-coded Distributed Storage

Systems: A Study on the Facebook Warehouse Cluster,” USENIX Hotstorage, 2013.

4/66

Conventional Node Repair of an RS Code

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

10 X 100MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

In the example (14, 10) RS code,

1 the amount of data downloaded to repair 100MB of data equals 1GB.

clearly, there is room for improvement...

5/66

Regenerating Codes

Parameters: ((n, k, d), (α, β), B, Fq)

1

2

k

n

Data
Collector

 capacity nodes

k+1

1

2

n

3

1’

 capacity nodes

d+1

Data (of size B) can be recovered by connecting to any k of n nodes

A failed node can be repaired by connecting to any d nodes, downloading β
symbols from each node; (dβ << file size B)

A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran, “Network coding for distributed storage systems”, IEEE

Transactions on Information Theory, 2010

6/66

Regenerating Codes

1 File size B possible by an (n, k, d , α, β) regenerating code:

B ≤
k−1∑
i=0

min(α, (d − i)β)

= kα (when storage α is minimized)

2 Minimum storage regenerating (MSR) codes are a subclass of regenerating codes
such that:

α =
B

k
, β =

α

d − k + 1

3 We restrict to Minimum-Storage-Regenerating (MSR) codes – repair-optimal MDS
codes.

7/66

MSR Code

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

100
MB

13 X 25MB

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Data Chunk Parity Chunk Erased Chunk

1 Size of failed node’s contents: 100MB

2 RS repair BW: 1 GB

3 MSR Repair BW: 325 MB

8/66

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

9/66

Key to the Impressive, Low-Repair BW of MSR Codes

In a nutshell: sub-packetization... we explain...

9/66

n = k+m

Chunk

k data chunks m parity chunks

n = k+m

Chunk

k data chunks m parity chunks

k

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level < α

 d
k<d<n

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level < α

 d
k<d<n

kα
(1GB)

d
<< kα

(325MB)

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level < α

 d
k<d<n

kα
(1GB)

d
<< kα

(325MB)

 = α/(d-k+1)
 is a fraction of α

Repair BW = d
We consider d=n-1, then
Repair BW = (n-1)α/(n-k)

n = k+m

Chunk

k data chunks m parity chunks

k

sub-chunk
α

sub-packetization level < α

 d
k<d<n

kα
(1GB)

d
<< kα

(325MB)

Larger the m=n-k, larger the savings!!

 = α/(d-k+1)
 is a fraction of α

Repair BW = d
We consider d=n-1, then
Repair BW = (n-1)α/(n-k)

Additional Properties Desired of an MSR Code

1 Minimal Disk Read (IO Optimality): Read exactly what is needed to be transferred

2 Minimize sub-packetization level α

I sub-chunk size = chunk size
α

= N bytes.
I During repair, β sub-chunks are read.
I If sub-chunks are not contiguous, only N bytes are read sequentially.
I Smaller the α better the sequentiality!!

3 Small field size, low-complexity implementation.

4 Two family of constructions

I Coupled Layer (CLay) MSR code (d = n − 1)
I Small d MSR code (d = k + 1, k + 2, k + 3)

10/66

4-way Optimality of Clay code

Least possible storage overhead
(MDS Codes)

Least possible repair bandwidth
(MSR Codes)

Least possible disk read
(Optimal access MSR Codes)

Least possible sub-packetization
(Clay Codes)

Image courtesy: denverpost.com

11/66

Putting Clay codes in perspective

s = d − k + 1, r = n − k

MSR Code Parameters α Field Size (q) All Node Optimal
Repair Access

Shah et al. (n, k , d = n − 1 ≥ 2k − 1) r 2r No Yes

Suh et al. (n, k , d ≥ 2k − 1) s 2r Yes No
(n, k ≤ 3, d)

Rashmi et al. (n ≥ 2k − 1, k , d) r n Yes No

Papailiopoulos et al. (n, k , d = n − 1) rk non-explicit No No

Tamo et al. (n, k , d = n − 1) rk+1 ≤ 4 when r ≤ 3, Yes Yes
Wang et al. else non-explicit

Cadambe et al. (n ≥ 3k
2 , k, d = n − 1) O(k2) non-explicit No Yes

Sasidharan et al. (n, k , d = n − 1) rd
n
r e O(nr) Yes Yes

Goparaju et al. (n, k , d) sk(rs) - No Yes

Rawat et al. (n, k , d) sd
n
s e O(nr) Yes Yes

Ye & Barg (1a) (n, k , d) sn sn Yes No

Ye & Barg (1b) (n, k , d) sn−1 n + 1 Yes Yes

12/66

Literature on High-Rate, OA MSR Codes with Optimum α

(n, k, d = n − 1, α = rd
n
r
e), q ≥ rdn

r
e

Three teams independently discovered the Clay code construction with slight
variations. Ours being one team and the others by (1) Ye & Barg and (2) Li, Tang
& Tian.

Sub-packetization bounds for optimal access MSR codes

I Shown to be α ≥ r
k
r for d = n − 1 by Tamo et al.

I This bound is tightened to α ≥ r
n
r by Balaji et al.

13/66

Systems Implementations of Bandwidth Efficient MDS
codes

Code MDS
Least

Repair
BW

Least
Disk
Read

Least
α Restrictions

Implemented
Distributed

Systems

Piggybacked RS
(Sigcomm 2014)

✔ ✗ ✗ - None HDFS

Product Matrix
(FAST 2015)

✔ ✔ ✔ ✔ Limited to
Storage

Overhead > 2

Own System

Butterfly Code
(FAST 2016)

✔ ✔ ✗ ✗ Limited to the 2
parity nodes

HDFS, Ceph

HashTag Code
(Trans. on Big Data

2017)

✔ ✗ ✗ - Only
systematic node

repair

HDFS

Clay
(FAST 2018)

✔ ✔ ✔ ✔ None! Ceph

The Butterfly, HashTag codes have least disk read for systematic node repair.

14/66

Moulding an MDS Code to Yield the Clay Code

(n = 4, k = 2) MDS code with optimal repair of systematic nodes, α = 2

C

C*U*
U

Coupled CodeUnCoupled Code[
C
C∗

]
=

[
1 γ
γ 1

] [
U
U∗

]

Uncoupled code has 2 planes, where each plane
corresponds to an [4, 2] MDS code

Coupled code symbols are obtained by:

I Copying symbols with red dots
I Pair of yellow symbols {C ,C∗} are

obtained by transformation

Note that recovery of any failed node in Uncoupled code requires 4 symbols

15/66

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

16/66

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

16/66

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

16/66

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

16/66

Repair from single node loss

C

C*

symbols that are available as part of helper
information

symbols that are computable in uncoupled
cube

U*

symbols recovered after using the [4, 2]
MDS code

C

C*

C recovered from C∗,U∗

16/66

Clay Code

(n = 4, k = 2, d = 3) MSR code with all node optimal repair

C

C*

Coupled Code

U

U*

Uncoupled Code

The same construction extends to any (n, k, d)
17/66

Ceph: Contributions

A popular opensource distributed
storage system used by CERN,

Flipkart, Cisco etc

”Us (+Vinayak) pitching Clay codes to Ceph in April
2017”

We have introduced Clay code as erasure code plugin. It is part of Ceph’s Nautilus
release (March 2019). As part of this we also introduced support for vector codes in
Ceph.

18/66

Ceph: Contributions

A popular opensource distributed
storage system used by CERN,

Flipkart, Cisco etc

”Us (+Vinayak) pitching Clay codes to Ceph in April
2017”

We have introduced Clay code as erasure code plugin. It is part of Ceph’s Nautilus
release (March 2019). As part of this we also introduced support for vector codes in
Ceph.

18/66

Clay Code Summary

The open-source implementation of Clay code that we provide is for any (n, k, d)
parameters.

In comparison to (20, 16) RS code, for Workloads with large sized objects (64MB),

the Clay code (20, 16, 19):

I resulted in repair time reduction by 3X .
I Improved degraded read and write performance by 27.17% and 106.68%

respectively.

For the case when d < n − 1, the clay codes are not exactly MSR, though they
have optimal repair bandwidth. (few compulsory helper nodes (d − k) need to be
contacted during a node’s recovery).

19/66

Second MSR Constructions

MSR Construction (d < n − 1) with parameters:

(n = st, k, d), (α = st , β = st−1, Fq)

for any s ∈ {2, 3, 4}, t ≥ 2, where s = d − k + 1.

(n, k, d) MSR codes for d ∈ {k + 1, k + 2, k + 3} can be obtained by
shortening

20/66

MSR Construction: 3D Representation of a Codeword

(n = st, k, d), (α = s t , β = s t−1, Fq), s = d − k + 1, r = n − k

s = 4, t = 5

Plane dot representation
y=0 1 2 3 4

x=0
1
2
3

z = (3, 2, 3, 1, 0)

There are nα = s × t × s t code symbols in Fq.

They can be indexed by 3-tuple (x , y ; z) where x ∈ Zs ,
y ∈ Zt , z ∈ Zt

s .

(x , y) tuple indicates node, z index the symbols index
within α symbols.

The code is described by rα parity check equations over

nα symbols.

I This can be viewed as r equations per plane.

21/66

MSR Construction: 3D Representation of a Codeword

(n = st, k, d), (α = s t , β = s t−1, Fq), s = d − k + 1, r = n − k

s = 4, t = 5

Plane dot representation
y=0 1 2 3 4

x=0
1
2
3

z = (3, 2, 3, 1, 0)

There are nα = s × t × s t code symbols in Fq.

They can be indexed by 3-tuple (x , y ; z) where x ∈ Zs ,
y ∈ Zt , z ∈ Zt

s .

(x , y) tuple indicates node, z index the symbols index
within α symbols.

The code is described by rα parity check equations over

nα symbols.

I This can be viewed as r equations per plane.

21/66

MSR Construction: Parity Checks

The r parity check equations corresponding to plane z are given by:∑
y∈Zt

∑
x∈Zs

θ`x,y ;zyC(x , y , z)

︸ ︷︷ ︸
in-plane symbols

+
∑
y∈Zt

∑
x 6=zy

γθ`zy ,y ;xC(zy , y , z(y , x))

︸ ︷︷ ︸
out-of-plane symbols

= 0

for all ` ∈ [0, r − 1], where z = (z0, z1, · · · , zt−1) and

z(y , x) = (z0, · · · , zy−1, x , zy+1, · · · , zt−1), γ2 6= 0, 1.

The in-plane symbols and out-of plane symbols

{C(x , y , z) | x ∈ Zs ,Zt}, {C(zy , y , z(y , x)), y ∈ Zt , x ∈ Zs \ {zy}}

together form a GRS code that can correct from any r erasures.

GRS type property is not needed when d = n − 1 i.e. for the Clay codes (hence
θ’s) repeat for clay codes.

22/66

MSR Construction: Parity Checks

The r parity check equations corresponding to plane z are given by:∑
y∈Zt

∑
x∈Zs

θ`x,y ;zyC(x , y , z)

︸ ︷︷ ︸
in-plane symbols

+
∑
y∈Zt

∑
x 6=zy

γθ`zy ,y ;xC(zy , y , z(y , x))

︸ ︷︷ ︸
out-of-plane symbols

= 0

for all ` ∈ [0, r − 1], where z = (z0, z1, · · · , zt−1) and

z(y , x) = (z0, · · · , zy−1, x , zy+1, · · · , zt−1), γ2 6= 0, 1.

The in-plane symbols and out-of plane symbols

{C(x , y , z) | x ∈ Zs ,Zt}, {C(zy , y , z(y , x)), y ∈ Zt , x ∈ Zs \ {zy}}

together form a GRS code that can correct from any r erasures.

GRS type property is not needed when d = n − 1 i.e. for the Clay codes (hence
θ’s) repeat for clay codes.

22/66

MSR Construction: Out of Plane Symbols

s = 2, t = 3

Circled symbols are involved in parity checks of plane z = (1, 1, 0)

Blue circles are in-plane and Red are out-of-plane

y=0 1 2
x=0

1
z = (1, 1, 0)

z(0, 0) = (0, 1, 0) z(1, 0) = (1, 0, 0) z(2, 1) = (1, 1, 1)

23/66

MSR Construction: Theta Assignment

The θ’s that appear in parity checks of plane z are:

{θx,y,zy | x ∈ Zs , y ∈ Zt}︸ ︷︷ ︸
in-plane θ’s

∪{θzy ,y,x | x ∈ Zs \ {zy}, y ∈ Zt}︸ ︷︷ ︸
out-of-plane θ’s

Need that collection to have distinct θ’s for GRS property.

We define Θy for every y ∈ Zt :

Θy (x , x ′) = θx,y,x′ , ∀x , x ′ ∈ Zs

The collection of elements in i-th row, i-th column {Θy (i , x),Θy (x , i) | x ∈ Zs}
are all distinct for every i ∈ Zs =⇒ to get the GRS code for plane where zy = i

θx,y,x = θy for all x ∈ Zs =⇒ to satisfy MDS property

For s = 2

Θy =

[
θy θ1,y

θ2,y θy

]

For s = 2, need q ≥ 3t = 3n
2

24/66

An Example: s = 2, r = 3

(n = 2t, k = n − 3, d = n − 2)

Node Repair:

During node repair n − 2 nodes are contacted out of the n − 1 remaining nodes.

1 node remains aloof during repair process.

Let (x0, y0) be the lost node, (x1, y1) be the aloof node.

Helper information sent by node (x , y) is given by:

{C(x , y , z) | zy0 = x0} =⇒ β = 2t−1

There are two possibilities for aloof node: 1) y1 = y0, 2) y1 6= y0.

y=0 1 2 3 4
x=0

1

(x0, y0) = (1, 0), (x1, y1) = (0, 0)

y=0 1 2 3 4
x=0

1

(x0, y0) = (1, 0), (x1, y1) = (1, 1)

25/66

An Example: s = 2, r = 3

(n = 2t, k = n − 3, d = n − 2)

Node Repair:

During node repair n − 2 nodes are contacted out of the n − 1 remaining nodes.

1 node remains aloof during repair process.

Let (x0, y0) be the lost node, (x1, y1) be the aloof node.

Helper information sent by node (x , y) is given by:

{C(x , y , z) | zy0 = x0} =⇒ β = 2t−1

There are two possibilities for aloof node: 1) y1 = y0, 2) y1 6= y0.

y=0 1 2 3 4
x=0

1

(x0, y0) = (1, 0), (x1, y1) = (0, 0)

y=0 1 2 3 4
x=0

1

(x0, y0) = (1, 0), (x1, y1) = (1, 1)

25/66

An Example: s = 2, r = 3

y1 = y0, for all ` ∈ [0, 2],

θ`x0,y0,x0
C(x0, y0, z) + θ`x1,y1,zy1

C(x1, y1, z) + γθ`x0,y0,x̄0
C(x0, y0, z(y0, x̄0)) = κ∗

For each z such that zy0 = x0, two lost node symbols with indices z , z(y0, x̄0) are
obtained.

There are 2t−1 planes with zy0 = x0, therefore 2× 2t−1 = α symbols are recovered.

26/66

An Example: s = 2, r = 3

MDS Property:

The code should be able to recover from any r = 3 erasure patterns.

Given an r erasure pattern E , each plane is associated with a score called
Intersection Score (IS).

IS(E , z) = |{(zy , y) ∈ E |y ∈ Zt}|

For, E = {(0, 0), (1, 1), (1, 2)}

IS = 0 IS = 1 IS = 2
Intersection score is number of hole-dot pairs in the plane-dot representation.

27/66

An Example: s = 2, r = 3

Planes are ordered by their intersection score and erased symbols are recovered
sequentially.

Sometimes few planes with same intersection scores are to be solved together.

We will look at an erasure pattern of the form:

I Two erasures with same y value i.e., E = {(0, y1), (1, y1), (x2, y2)}

For this case, planes can have intersection scores 1, 2

28/66

An Example: s = 2, r = 3

Planes are ordered by their intersection score and erased symbols are recovered
sequentially.

Sometimes few planes with same intersection scores are to be solved together.

We will look at an erasure pattern of the form:

I Two erasures with same y value i.e., E = {(0, y1), (1, y1), (x2, y2)}

For this case, planes can have intersection scores 1, 2

28/66

An Example: s = 2, r = 3
Two erasures with same y value i.e., E = {(0, y1), (1, y1), (x2, y2)}∑

y∈Zt

∑
x∈Zs

θ`x,y ;zyC(x , y , z) +
∑
y∈Zt

∑
x 6=zy

γx,zy θ
`
zy ,y ;xC(zy , y , z(y , x)) = 0

IS(E , z) = 1, zy1 = 0, zy2 6= x2 reduces to:∑
(x,y)∈E

θ`x,y ;zyC(x , y , z) + γ1,0θ
`
0,y1,1C(0, y1, z(y1, 1)) = κ∗

Look at plane z ′ = z(y1, 1), IS(E , z) = 1 and∑
(x,y)∈E

θ`x,y,z′yC(x , y , z ′) + γ0,1θ
`
1,y1,0C(1, y1, z) = κ∗

6 equations and 6 unknowns.

29/66

An Example: s = 2, r = 3

HE ,z =

1 1 1 γ
θ0,y1,0 θ1,y1,0 θx2,y2,zy2

γθ0,y1,1

θ2
0,y1,0 θ2

1,y1,0 θ2
x2,y2,zy2

γθ2
0,y1,1

γ 1 1 1
γθ1,y1,0 θ0,y1,1 θ1,y1,1 θx2,y2,zy2

γθ2
1,y1,0 θ2

0,y1,1 θ2
1,y1,1 θ2

x2,y2,zy2

Let v = (f0, f1, f2, g0, g1, g2)T be an vector in left null space of HS . Let,

f (x) =
2∑

j=0

fjx
j and g(x) =

2∑
j=0

gjx
j .

vHs = 0 implies that

f (θy1) = f (θx2,y2,zy2
) = g(θy1) = g(θx2,y2,zy2

) = 0 where θ0,y1,0 = θ1,y1,1 = θy1

f (θ1,y1,0) + γg(θ1,y1,0) = 0, γf (θ0,y1,1) + g(θ0,y1,1) = 0

Substituting f (x) = f2(x − θy1)(x − θx2,y2,zy2
) and g(x) = g2(x − θy1)(x − θx2,y2,zy2

)
we get [

1 γ
γ 1

] [
f2
g2

]
= 0 =⇒ f2 = g2 = 0 =⇒ f = g = 0

30/66

An Example: s = 2, r = 3

HE ,z =

1 1 1 γ
θ0,y1,0 θ1,y1,0 θx2,y2,zy2

γθ0,y1,1

θ2
0,y1,0 θ2

1,y1,0 θ2
x2,y2,zy2

γθ2
0,y1,1

γ 1 1 1
γθ1,y1,0 θ0,y1,1 θ1,y1,1 θx2,y2,zy2

γθ2
1,y1,0 θ2

0,y1,1 θ2
1,y1,1 θ2

x2,y2,zy2

Let v = (f0, f1, f2, g0, g1, g2)T be an vector in left null space of HS . Let,

f (x) =
2∑

j=0

fjx
j and g(x) =

2∑
j=0

gjx
j .

vHs = 0 implies that

f (θy1) = f (θx2,y2,zy2
) = g(θy1) = g(θx2,y2,zy2

) = 0 where θ0,y1,0 = θ1,y1,1 = θy1

f (θ1,y1,0) + γg(θ1,y1,0) = 0, γf (θ0,y1,1) + g(θ0,y1,1) = 0

Substituting f (x) = f2(x − θy1)(x − θx2,y2,zy2
) and g(x) = g2(x − θy1)(x − θx2,y2,zy2

)
we get [

1 γ
γ 1

] [
f2
g2

]
= 0 =⇒ f2 = g2 = 0 =⇒ f = g = 0

30/66

MSR Codes: Summary

Clay code construction for d = n − 1

Systems implementation and evaluation of Clay codes over Ceph.

Small d constructions for d ∈ {k + 1, k + 2, k + 3}.

Our follow up work proves that the parity check support seen in the constructions
is forced due to the optimal access, optimal sub-packetization properties of the
codes.

31/66

Codes for Private Information Retrieval

Joint Work with Vinayak Ramkumar

32/66

PIR: Motivation

User accessing some
critical/confidential data.

How to retrieve information from a database without allowing the
server to learn the identity of retrieved item ?

I Example: Financial Records (Stock Prices)

Image courtesy: https://pxhere.com/en/photo/1435307

33/66

PIR: Single Server

x

q a

Server 1

Alice

Alice wants xj from database x (of size B bits) without revealing
any information to server about the index j .

Privacy constraint : Information theoretic

I (Q; J) = 0︸ ︷︷ ︸
privacy

, H(xJ |A)︸ ︷︷ ︸
information retrieval

= 0

PIR protocol is comprised of (Q,A,R), query, answer and
reconstruction functions.

Performance metric : Communication complexity

I Number of bits communicated through query and answers to achieve PIR

It was shown in [1] that Ω(B) bits need to be communicated to achieve PIR using
a single server.

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998

34/66

PIR: Single Server

x

q a

Server 1

Alice

Alice wants xj from database x (of size B bits) without revealing
any information to server about the index j .

Privacy constraint : Information theoretic

I (Q; J) = 0︸ ︷︷ ︸
privacy

, H(xJ |A)︸ ︷︷ ︸
information retrieval

= 0

PIR protocol is comprised of (Q,A,R), query, answer and
reconstruction functions.

Performance metric : Communication complexity

I Number of bits communicated through query and answers to achieve PIR

It was shown in [1] that Ω(B) bits need to be communicated to achieve PIR using
a single server.

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998

34/66

PIR: τ Non-communicating Replicated Servers

I (Qt ; J) = 0,∀t ∈ [τ]︸ ︷︷ ︸
privacy

, H(xJ |A1,A2 · · ·Aτ) = 0︸ ︷︷ ︸
information retrieval

An example PIR protocol with τ = 2 replicated servers:

x x

q1=u q2=u+ei

a1 = uTx a2 = (u+ei)
Tx

Server 1 Server 2

Alice
a1+ a2= ei

Tx = xi
I want

xi

Communication complexity C(B, 2) = 2B+2 = O(B).

A 2-replicated server PIR protocol with communication complexity O(B
1
3) is given

in [1].

In general communication complexity C(B, τ) reduces with increase in τ .

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998

35/66

PIR: τ Non-communicating Replicated Servers

I (Qt ; J) = 0,∀t ∈ [τ]︸ ︷︷ ︸
privacy

, H(xJ |A1,A2 · · ·Aτ) = 0︸ ︷︷ ︸
information retrieval

An example PIR protocol with τ = 2 replicated servers:

x x

q1=u q2=u+ei

a1 = uTx a2 = (u+ei)
Tx

Server 1 Server 2

Alice
a1+ a2= ei

Tx = xi
I want

xi

Communication complexity C(B, 2) = 2B+2 = O(B).

A 2-replicated server PIR protocol with communication complexity O(B
1
3) is given

in [1].

In general communication complexity C(B, τ) reduces with increase in τ .

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998

35/66

PIR: τ Non-communicating Replicated Servers

I (Qt ; J) = 0,∀t ∈ [τ]︸ ︷︷ ︸
privacy

, H(xJ |A1,A2 · · ·Aτ) = 0︸ ︷︷ ︸
information retrieval

An example PIR protocol with τ = 2 replicated servers:

x x

q1=u q2=u+ei

a1 = uTx a2 = (u+ei)
Tx

Server 1 Server 2

Alice
a1+ a2= ei

Tx = xi
I want

xi

Communication complexity C(B, 2) = 2B+2 = O(B).

A 2-replicated server PIR protocol with communication complexity O(B
1
3) is given

in [1].

In general communication complexity C(B, τ) reduces with increase in τ .

[1] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information retrieval,” Journal of the ACM, 45, 1998
35/66

Can one do better in terms of storage overhead than
replication?

Yes by Coding!!

36/66

Can one do better in terms of storage overhead than
replication?

Yes by Coding!!

36/66

Coded PIR : History

N. Shah, K. V. Rashmi, K. Ramchandran, “One extra bit of download ensures

perfectly private information retrieval”, 2014.

I Introduced coded PIR.
I PIR protocol specific to the code used.

TH Chan, SW Ho, H Yamamoto, “Private information retrieval for coded
storage”, 2015

I Studied trade-off between storage-overhead and communication complexity
for large file sizes.

37/66

There’s so much of work on replicated server protocols!! Can one use the
replicated protocols over coded databases?

Yes!!

How?

PIR Code

[1] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with low storage overhead”, ISIT 2015.

38/66

There’s so much of work on replicated server protocols!! Can one use the
replicated protocols over coded databases?

Yes!!

How?

PIR Code

[1] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with low storage overhead”, ISIT 2015.

38/66

Coded PIR: An Example

x1 x2 x3 x4 x5

x5=x1 +x2 +x3 +x4

2 virtual servers
uu+ei

(u+ei)
Tx1

uTx1

uTx5uTx4
uTx3

uTx2
(u+ei)

Tx1

Retrieving x1,i

B
4

bits stored in each server

Storage overhead is 1.25

Communication complexity is 5 ∗ (B
4

+ 1)

39/66

(n, k), τ - server PIR Code

τ disjoint recovery sets for each message symbol.

Single parity check code shown is a τ = 2 PIR code.

(n, k), τ -server PIR code helps to emulate any τ−replicated-server PIR protocol on

coded servers.

I This assumes the answer function A is linear in the database content X.
I n ∗ C(B

k
, τ) is the communication complexity.

To minimize storage overhead, we want to have smallest possible n for a given k, τ .

[1] A. Fazeli, A. Vardy, and E. Yaakobi, “PIR with low storage overhead: Coding instead of replication,” CoRR, vol.

abs/1505.06241, 2015.

40/66

Reed Muller Codes & Disjoint Recovery Set Property

(r ,m) Reed Muller (RM) codes are generated by evaulations of polynomials in m
variables of degree ≤ r in Fm

2

f (x1, · · · , xm) =
∑

S⊆[m],|S|≤r

aS
∏
i∈S

xi , aS ∈ F2

n = |Fm
2 | = 2m, k =

r∑
i=0

(
m

i

)
.

Majority Logic Decoding of aS where |S | = r

aS =
∑
xS∈F r

2

f (xS , b) for any b ∈ Fm−r
2

Smaller degree monomial coefficients decoded sequentially

41/66

Shortened Reed Muller (SRM) Code

A code vector in binary SRM(r ,m) code corresponds to evaluations of r -degree
homogeneous polynomial in m binary variables at points from Fm

2 .

f (x1, · · · , xm) =
∑

S⊆[m],|S|=r

aS
∏
i∈S

xi , aS ∈ F2

n = |Fm
2 | = 2m, k =

(
m

r

)
.

It is clear to see the above polynomials are evaluated to 0 for all x such that
wH(x) < r .

Can restrict to evaluations at x such that wH(x) ≥ r .

n =
m∑
i=r

(
m

i

)
, k =

(
m

r

)
.

42/66

Shortened Reed Muller (SRM) code for PIR
SRM(2, 4): r = 2,m = 4

I Any code vector corresponds to the evaluation of polynomials of form

f (x) = a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a24x2x4 + a34x3x4

of degree 2 in 4 variables at points x = (x1, x2, x3, x4) such that wH(x) ≥ 2.

I Message symbol recovery (Majority Logic Decoding)

a12 =
∑
x1,x2

f (x1x2b3b4)

= f (1100)

= f (0110) + f (1010) + f (1110)

= f (0101) + f (1001) + f (1101)

= f (0011) + f (0111) + f (1011) + f (1111).

I This gives (n = 11, k = 6), (τ = 4)-server systematic PIR code.

Theorem

SRM(r ,m) code is a (n =
m∑
i=r

(m
i

)
, k =

(m
r

)
), (τ = 2m−r)-server PIR code.

43/66

Shortened Reed Muller (SRM) code for PIR
SRM(2, 4): r = 2,m = 4

I Any code vector corresponds to the evaluation of polynomials of form

f (x) = a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a24x2x4 + a34x3x4

of degree 2 in 4 variables at points x = (x1, x2, x3, x4) such that wH(x) ≥ 2.

I Message symbol recovery (Majority Logic Decoding)

a12 =
∑
x1,x2

f (x1x2b3b4)

= f (1100)

= f (0110) + f (1010) + f (1110)

= f (0101) + f (1001) + f (1101)

= f (0011) + f (0111) + f (1011) + f (1111).

I This gives (n = 11, k = 6), (τ = 4)-server systematic PIR code.

Theorem

SRM(r ,m) code is a (n =
m∑
i=r

(m
i

)
, k =

(m
r

)
), (τ = 2m−r)-server PIR code.

43/66

PIR Code for any k
For any k <

(
m
r

)
, set γ =

(
m
r

)
− k.

Shorten SRM(m, r) by setting γ message symbols to 0. This retains τ

Use the Support-Set Viewpoint of SRM Code to pick the γ message symbols

carefully

f (x) ≡ f (Supp(x))

Each code symbol can be indexed by a subset of [m] with size ≥ r .

Each message symbol (& its corresponding monomial) can be indexed by a subset
of [m] with size r .

f (S) =
∑
Ri⊆S

f (Ri), where Ri ⊆ [m] with |Ri | = r .

For example SRM(2, 4) code has, f ({1, 3, 4}) = f ({1, 3}) + f ({1, 4}) + f ({3, 4}).

44/66

Shortening SRM Code

Assume that we set aRi = f (Ri) = 0, ∀Ri ⊆ S .

f (S) =
∑
Ri⊆S

f (Ri), where Ri ⊆ [m] with|Ri | = r .

Then, f (S) =
∑

Ri⊆S

f (Ri) = 0 in all codewords.

Key Idea

If we shorten the SRM(r,m) code by setting all the message symbols correspond-
ing to r -element subsets of a fixed set S to zero, then we can delete the code
coordinate corresponding to S .

45/66

Shortened SRM Code

γ message symbols of SRM(r ,m) code set to zero.

Γ(r ,m, γ): Block length reduction when γ message symbols are set to zero.

Clearly, Γ(r ,m, γ) ≥ γ.

Dimension k =

(
m

r

)
− γ,

Block Length n =
m∑
i=r

(
m

i

)
− Γ(r ,m, γ).

How to maximize Γ(r ,m, γ) for a given r , m, γ ?

Aim: Algorithm to carefully pick γ message symbols to set to zero so that
Γ(r ,m, γ) is large.

46/66

Shortening Algorithm: Example
r=2, m=5.

k γ S Γ(2, 5, γ) n

10 0 φ 0 26

9 1 {1, 2} 1 25

8 2 {1, 3} 2 24

7 3 {2, 3} 4 22

6 4 {1, 4} 5 21

5 5 {2, 4} 7 19

4 6 {3, 4} 11 15

3 7 {1, 5} 12 14

2 8 {2, 5} 14 12

1 9 {3, 5} 18 8

0 10 {4, 5} 26 0

Yellow: code-symbol corresponding to 3-element set {1, 2, 3} also becomes 0.

I results in reduction of 1 + 3 = 4

Green: code-symbol corresponding to 4-element set {1, 2, 3, 4} also becomes 0.

I results in reduction of 1 +
(

4
3

)
+
(

4
2

)
= 11

Red: code-symbol corresponding to 5-element set {1, 2, 3, 4, 5} also become 0.

47/66

Order of picking

The order in which the r-element subsets are picked here is called co-lexicographic

order, where a set A > B iff max(A∆B) ∈ A.

I {1, 2}, {1, 3}, {2, 3}, {1, 4}, {2, 4}, {3, 4}, {1, 5}, {2, 5}, {3, 5}, {4, 5} are

in co-lexicographic order.

Shortening algorithm: The
(
m
r

)
r -element sets are arranged in co-lexicographic

order and first γ sets are picked as message symbols that are set to 0.

48/66

Obtaining Γ(r ,m, γ) from γ

1 Unique ρ representation of γ

I ρ is of length (m − r) and has weight ≤ r .

2 Γ(r ,m, γ) is computed from ρ

γ =⇒ ρ =⇒ Γ(r ,m, γ)

M. Vajha, V. Ramkumar, P. V. Kumar, “Binary, Shortened Projective Reed Muller Codes for Coded Private Information

Retrieval”, ISIT 2017

49/66

Summary

PIR code constructions

I Binary Shortened Reed Muller(SRM) code as PIR code.

I Shortening Algorithm to get PIR codes for τ of form 2`, 2` − 1 and any k.

F Upper bounds on GHW of binary SRM codes.
F We prove that this shortening algorithm is optimal by showing a lower

bound resulting in Complete weight hierarchy of SRM codes

These constructions have smaller block length in comparison to known codes in
literature for small k.

Optimality

I One bit improvement from Rao-Vardy lower bound for n(k, τ) assuming
systematic PIR code.

I Optimal systematic PIR codes for τ = 3, 4.

I These codes are optimal batch codes for τ = 3, 4 as well.

50/66

Streaming Codes for Low Latency

Joint work with Nikhil Krishnan, Vinayak Ramkumar
and Mayank Jhamtani

51/66

Setting: Packet Erasures Over a Network

51 2 3 4 6 7 8 9 ….

51 2 3 4 6 7 8 9

51 2 3 4 6 7 8 9

51 2 3 4 6 7 8 9Network

….

….

….

Stream of Packets

Packet erasures caused by dropped
packets, slow fading, etc . . .

Strict decoding delay constraint of τ

Goal: Communication with low
latency, high throughput, high
reliability

ARQ scheme results in large delays.

FECs are therefore preferred method for interactive voice-video (like Skype,
Hangouts, Facetime, Zoom). FECs used in practise are either designed for burst
alone or random erasures alone.

Need FECs that can guarantee small delay along with burst and random erasure
correctability.

52/66

Gilbert-Elliott (GE) Channel Model

α

1-α 1-β

β

G
PEC(ε0)

B
PEC(ε1)

ε0 << ε1

Commonly-accepted channel model

But less tractable: harder to design codes for this channel to ensure desired
reliability levels

53/66

Delay-Constrained Sliding-Window (DC-SW) Channel Model

Channel model characterized by:

(i) Admissible erasure patterns (AEP): within a sliding window of size w :

either ≤ a random erasures, or a burst of ≤ b erasures

(ii) Decoding-Delay Parameter: τ

5 6 7 9

burst of 4 erasures 2 random erasures

(a = 2, b = 4,w = 5, τ = 4)

54/66

Upper Bound on Code Rate

A code C is said to be streaming code if it can correct all AEPs of the DC-SW
channel with decoding delay ≤ τ .

We can assume WOLOG that w = τ + 1.

Shown below is an admissible erasure pattern.

b b b𝜏+1-a 𝜏+1-a

It follows that the rate R of (a, b, τ) streaming code C satisfies:

R ≤ (τ + 1)− a

(τ + 1) + b − a
, Ropt.

Badr et al., “Layered Constructions for Low-Delay Streaming Codes,” Trans. IT, 2017.

55/66

Prior Work on Streaming Codes

Martinian-
Sundberg

[2004]

Martinian-
Trott

[ISIT 2007]

Badr et al.
[2017]

Krishnan-
Shukla-Kumar

[Jan 2019]

Burst-only Burst and Random Erasures

Near
Rate-Optimal

Rate-Optimal Rate-Optimal &
Quadratic Field-size

Domanovitz-
Fong-Khisti
[April 2019]

Fong et al.
[ISIT 2018]

Krishnan-
Kumar

[ISIT 2018]

Rate-Optimal, Explicit
& Quadratic Field-size

56/66

Diagonal Embedding (DE)
Codewords of [n, k] scalar block code are diagonally placed in the packet stream.

This approach results in a rate-optimal {a, b, τ} streaming code only if:
I n − k ≥ b
I n ≥ τ + 1− a + b

Clearly, MDS code won’t work

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

m5 m5 m5

m6 m6 m6

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

p5 p5 p5

p6 p6 p6

	(0) 	(1) 	(2) 	(3) 	(4) 	(5) 	(6) 	(7) 	(8) 	(9) 	(10)	(11)	(12)	(13)

DE of [12, 6] scalar code where a = 4, b = 6, τ = 9
57/66

Diagonal Embedding (DE)

Since the block length n = (τ + 1 + b − a) exceeds the delay constraint,
partial-knowledge decoding is needed:

!0 !1 !$ - 1 !$!$ + 1 !$ + 2 !$ + % !$+%+1 !& - 1.

known past:
previously decoded

symbols

Inaccessible future:
delay constraint

window '$ of size (% + 1)

Best known explicit construction requires field-size > (τ + b − a)2

58/66

Staggered Diagonal Embedding(SDE)
Codewords of an [n, k] scalar block code are embedded diagonally with gaps in the
packet stream as shown below.

This approach lowers the needed number of parities and block length.

I n − k ≥ a
I n ≥ a

b
(τ + b − a + 1) for rate-optimal streaming code

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

SDE of [8, 4] scalar code where a = 4, b = 6, τ = 9

59/66

Staggered Diagonal Embedding(SDE)

Let N be the span of codewords of the [n, k] scalar block code.

Setting N ≤ τ + 1, ensures that no partial knowledge decoding is needed..

m1 m1 m1

m2 m2 m2

m3 m3 m3

m4 m4 m4

p1 p1 p1

p2 p2 p2

p3 p3 p3

p4 p4 p4

𝑥(0) 𝑥(1) 𝑥(2) 𝑥(3) 𝑥(4) 𝑥(5) 𝑥(6) 𝑥(7) 𝑥(8) 𝑥(9) 𝑥(10) 𝑥(11)

SDE of [8, 4] scalar code where N = 10, τ = 9

60/66

Simple Streaming Codes

N ≤ τ + 1

SDE of MDS code with a parities where a consecutive symbols are followed by
b − a gaps.

Block length n is given by:

n = ma + min{δ1, a} where τ + 1 = mb + δ1.

These codes are rate optimal when b|(τ + 1− a) and have rate of form R = m
m+1

.

61/66

Simulation over GE channel with α = 10−4, β = 0.6

0.004 0.008 0.012 0.016 0.02

Epsilon

10-6

10-5

10-4

F
a
ilu

re
 P

ro
b
a
b
ili

ty

Martinian-Trott Code

Domanovitz et al. Code

Krishnan et al. Code

MDS Code

MDS-base-code

Binary, MBER-base-code

All the codes are rate 0.5 and have decoding delay constraint τ = 9.

62/66

Streaming Codes Summary and Followup Work

For N ≤ τ + 1 we have provided constructions that are optimal within this setting.
We also prove that the only optimal streaming code under this setting is when
b|τ + 1− a.

In a follow up, we were able to generalize this construction to the case when
gcd(τ + 1− a, b) ≥ a by relaxing the N ≤ τ + 1 restriction to N < τ + 1 + b − a.

To provide an explicit streaming code construction with field size of τ 2 for any
(a, b, τ).

Analysing the approximation of sliding window channel to GE channel, we were

able to give close upper and lower bounds to the probability of admissible erasure

patterns of an DCSW channel over GE channel.

I This helps in choosing a streaming code with performance guarantees over
GE channel.

Design and implementation of an adaptive video streaming application.

63/66

Other Results: Decoding Algorithms for Polar Codes

We introduced Successive Cancellation Backtracking (SCBT) and Successive
Cancellation Look Ahead (SCLA) decoding of Polar codes that improve upon
Successive Cancellation (SC) decoding while using O(N) memory.

These algorithms are a result of an observation, that the decoding of polar codes is
a binary search over tree with noisy metric information.

UA Metric vs Actual Metric (under Max Metric)

64/66

Video Demo Setting

The Channels:

I C0: perfect channel (no erasures)
I C1: GE (α = 0.01, β = 0.5, ε = 0.001)

BEC(𝜖) BEC(1)

G B

𝛼

𝛽

(1 − 𝛼) (1 − 𝛽)

τ is set to 9

Video1: We set (a = 0, b = 0) at the start of experiment and move from C0 to C1

Video2: After the adaptation converges

65/66

Acknowledgements

My heartfelt thanks to

PVK and Sudha Maam

My Thesis reviewers Prasad Krishnan and Xiaohu Tang

Professors Navin Kashyap, Himanshu Tyagi and ECE faculty in general

Professors at Math, CSA departments

Srinivasa Murthy

Labmates Nikhil, Birenjith, Lalitha, Vinayak, Balaji, Tarun, Bhagya, Ganesh,
Pallavi, Mayank, Elita, Chaitanya, Deeptanshu

ECEmates Vinay B R and Sahasranand for awesome time spent organising student
seminar series

My friends Krishna, Priya and Bala who are always up for a conversation over
coffee

My friends Jolie, Shravya, Karthik, Saraswati, Gouthami and Sawan for constantly
inspiring me

My parents, grandparents, Chinnu, Shilpakka and Vinay for the unconditional love.

66/66

Publications and Preprints

Codes for distributed storage

M. Vajha, B. S. Babu and P. V. Kumar, “Explicit MSR Codes with Optimal Access,
Optimal Sub-Packetization and Small Field Size for d=k+1, k+2, k+3”, ISIT 2018.

M. Vajha, V. Ramkumar, B. Puranik, G. Kini, E. Lobo, B. Sasidharan, P. V. Kumar, A.
Barg, M. Ye, S. Narayanamurthy, S. Hussain, and S. Nandi,“Clay Codes: Moulding MDS
Codes to Yield an MSR Code”, in USENIX, Files and Storage Technologies, FAST 2018.

S. B. Balaji, M. N. Krishnan, M. Vajha, V. Ramkumar, B. Sasidharan and P. V. Kumar,
“Erasure coding for distributed storage: an overview”, Science China Information
Sciences, 2018.

B. Sasidharan, M. Vajha and P. V. Kumar, “An explicit, coupled-layer construction of a
high-rate MSR code with low sub-packetization level, small field size and all-node repair”,
arXiv preprint arXiv:1607.07335, 2016

B. Sasidharan, N. Prakash, M. N. Krishnan, M. Vajha, K. Senthoor and P. V. Kumar,
”Outer bounds on the storage-repair bandwidth trade-off of exact-repair regenerating
codes”, in International Journal of Information and Coding Theory, 2016.

67/66

Publications and Preprints

Codes for Private Information Retrieval

M. Vajha, V. Ramkumar, and P. V. Kumar, “Binary, shortened projective reed muller
codes for coded private information retrieval”, in IEEE International Symposium on
Information Theory, ISIT, 2017.

V. Ramkumar, M. Vajha, and P. V. Kumar, “Determining the Generalized Hamming
Weight Hierarchy of the Binary Projective Reed-Muller Code”, in National Conference on
Communications, NCC, 2018.

Polar Codes

Myna Vajha, V. S. Chaitanya Mukka and P Vijay Kumar, “Backtracking and Look-Ahead
Decoding Algorithms for Improved Successive Cancellation Decoding Performance of Polar
Codes”, ISIT 2019.

68/66

Publications and Preprints

Low Latency Streaming

M. N. Krishnan*, V. Ramkumar*, M. Vajha*, P. V. Kumar*, “Simple Streaming Codes
for Reliable, Low-Latency Communication”, IEEE Communications Letters, 2019

Vinayak Ramkumar*, Myna Vajha*, M. Nikhil Krishnan*, P. Vijay Kumar*, “Staggered
Diagonal Embedding Based Linear Field Size Streaming Codes”, ISIT, 2020.

Myna Vajha, Vinayak Ramkumar, Mayank Jhamtani, P Vijay Kumar, “ On Sliding
Window Approximation of Gilbert-Elliott Channel for Delay Constrained Setting”, arxiv,
2020.

* indicates equal contribution

69/66

Thanks!

70/66

Outer Bounds for Exact Repair Regenerating Codes

0.145 0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19
0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

ᾱ −→

β̄
−
→

FR tradeoff

Repair−Matrix Bound
(Thm III.4)

Mohajer−Tandon Bound

Improved Mohajer−Tandon
Bound (Thm. V.1)

Figure: (n = 13, k = 7, d = 12).

0.2 0.22 0.24 0.26 0.28 0.3 0.32

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ᾱ −→

β̄
−
→

FR tradeoff

Repair−Matrix Bound
(Thm III.IV)

Mohajer−Tandon Bound
(Coincides with Improved
Mohajer−Tandon)

Figure: (n = 6, k = 5, d = 5).

Improved outer bounds for the case of d > k.

B. Sasidharan, N. Prakash, M. Nikhil Krishnan, M Vajha, K Senthoor, P V Kumar: Outer bounds on the storage-repair
bandwidth trade-off of exact-repair regenerating codes, IJICoT 3(4): 255-298 (2016).

71/66

Updates in the Thesis

We have added a description to the introduction that provides perspective on the
four areas considered in the thesis.

We have also added a conclusion.

72/66

Fragmented Read

Best and worst case, disk read
during repair of (20,16,19) code for

stripe sizes 1MB, 64MB

During repair of a chunk only β < α
sub-chunks are read from each helper nodes.

During worst case failures, the sub-chunks
needed in repair are not located contiguously.

sub-chunk size = stripe size/kα

For (20,16,19) code α = 1024, k = 16.
Therefore, for stripe sizes 64MB and 1MB, the
sub-chunk sizes are 4KB, 64B

W1 has 448GB with each node storing 28GB.

W2 has 512GB data with each node storing 32GB.

Theoretical reads for W1 and W2 should be 7GB and 8 GB respectively for Clay
code.

In the case of RS codes, the disk reads are 28GB and 32GB for W1 and W2
respectively.

73/66

Binary MSR Constructions

nα uncoupled code symbols in this case belong to Q = Fm
2 .

For any z ∈ Zt
s . The n symbols {U(x , y ; z) | x ∈ Zs , y ∈ Zt} are a codeword of

[n, k] MDS code CMDS defined over alphabet Q.

For any (x , y , z) such that zy 6= x

(U(x , y , z),U(x , y , z(y , x)),C(x , y , z),C(x , y , z(y , x)))

is codeword of [4, 2] MDS code, Ccoup defined over alphabet Q.

Node repair, decode, encode operations use the decode, encode operations of
binary MDS codes CMDS and Ccoup. Therefore all the operations are XOR based.

74/66

PIR Capacity: Retrieving files under Replicated server
setting

Here the servers store m files (each of size s bits) and Alice wants to retrieve a file
without revealing any information about file index to the servers.

Two possible ways

1 Efficiently amortize bit PIR protocols.

F 2-server file PIR can be achieved with communication complexity of
2m + 2s bits. 1

2 Develop PIR protocols specifically for large files.

1B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, 1998
75/66

PIR over Files : Replicated server setting
Consider m = 2 files X ,Y , each of size s = 4GB, represented as 8× 1G matrix:

M =
[
X1 X2 X3 X4 Y1 Y2 Y3 Y4

]T
To retrieve file X from 2-replicated servers:

M M

e1, e5, e3+e6

a1 = x1, y1, x3+y2 a2=x2, y2, x4+y1

Server 1 Server 2

Alice

e2, e6, e4+e5

By viewing a1 or a2, one
cannot figure out which of
the 2 files is being
requested.

Upload complexity is
3× 8× 2 = 48 whereas
the download is 6GB.

48 + 1.5s < 4 + 2s

Tradeoff upload cost to gain on download cost!!!

Measure of performance of PIR protocol is given by communication Price of
Privacy (cPoP)

cPoP =
bits downloaded

bits recovered
.

76/66

Coded PIR over Files : Some known protocols

PIR protocol specific to the code used.

Framework to emulate replication based protocols on coded database not known.

Notation: n servers, m files, each file divided into kα sub-files

H. Sun and S. A. Jafar: n replication, α = nm, cPoP = 1 + 1
n

+ 1
n2 + · · ·+ 1

nm−1

(optimal) .

K. Banawan and S. Ulukus: (n,k) MDS code, α = knm,
cPoP = 1 + R + R2 + · · ·+ Rm−1; R = k

n
(optimal).

R. Tajeddine, O. W. Gnilke and S. El Rouayheb: (n, k) MDS code, α = n − k,
cPoP= n

n−k
(not optimal)

S. Kumar, E. Rosnes and A. G. Amat: (n, k, dmin) linear code, α ≤ dmin − 1,
cPoP≤ n

dmin−1

77/66

Explaining the Simulation over GE channel with
α = 10−4, β = 0.6

0.004 0.008 0.012 0.016 0.02

Epsilon

10-6

10-5

10-4

F
a
ilu

re
 P

ro
b
a
b
ili

ty

Martinian-Trott Code

Domanovitz et al. Code

Krishnan et al. Code

MDS Code

MDS-base-code

Binary, MBER-base-code

When ε = 0, the GE channel introduces burst erasures and as ε
increases random erasures are seen.

78/66

Guaranteed rate under a BEP threshold

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

 (1,4)

 4

 (2,4)

 5

 9

 11

 (3,4)

 (1,7)

 6

 (3,7)

 11

 (4,7)
 (4,8) (5,7)

 7

MDS, P
Th

=10
-4

Burst, P
Th

=10
-4

Streaming,P
Th

=10
-4

MDS, P
Th

=10
-5

Burst, P
Th

=10
-5

Streaming, P
Th

=10
-5

GE(α = 10−4, β = 0.5, ε0 = ε, ε1 = 1)

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

 (5,5)

 11

 (2,2)

 10

 (2,3)

 3

 11

 (3,3)

MDS, P
Th

=0.01

Burst, P
Th

=0.01

Streaming, P
Th

=0.01

MDS, P
Th

=0.1

Burst, P
Th

=0.1

Streaming, P
Th

=0.1

5

GE(α = 0.1, β = 0.5, ε0 = ε, ε1 = 1)

τ = 10. Best rate possible under streaming code setting, MDS setting and burst only
setting when BEP is bounded by PTh = 10−5.

79/66

