National Supermodel of COVID-19 with Projections

- Robust models allow predictions based
 - Short/medium term planning and decisions
- Scenario testing & simulations based on thought experiments
- Training of model requires robust data
- Models should be as simple as possible (parameter estimations)
Covid-19 Supermodel Committee

- Professor M Vidyasagar, FRS (IIT Hyderabad), Chairman
- Professor M Agrawal (IIT Kanpur)
- Dr G Kang, FRS (CMC Vellore)
- Lt Gen M Kanitkar (Dy Chief, Integrated Defence Staff (Medical))
- Professor A Bose (ISI Kolkata)
- Professor B Bagchi (IISc Bangalore)
- Professor S K Pal (ISI Kolkata)
- Dr M Murhekar (NIE Chennai)
- Dr Priya Abraham (NIV Pune)
- Dr S Vaidya-Gupta (PSA Office)

MANDATE
- Aggregate successful evidence-based mathematical and statistical forecasting models
- Create a Supermodel to include best predictive analytics for robust forecasting of COVID-19 spread
- Quantify the effects of lockdown, migrations and preventive measures
- Economic optimization
Supermodel (SAIR)—Susceptible, Asymptomatic, Infected, Removed

VARIABLES

\(S_I \): Uninfected fraction of population that transitions to I after infection

\(S_A \): Uninfected fraction of population that transitions to A after infection

\(I \): Infected fraction of population with significant symptoms

\(A \): Infected fraction of population with little or no symptoms

\(R_I \): Removed fraction of population from I

\(R_A \): Removed fraction of population from A

\(D \): Fraction of deaths

GOVERNING EQUATIONS

\[
\frac{dS_I}{dt} = -\beta S_I (A + I)
\]

\[
\frac{dS_A}{dt} = -\beta S_A (A + I)
\]

\[
\frac{dI}{dt} = \beta S_I (A + I) - \gamma I
\]

\[
\frac{dA}{dt} = \beta S_A (A + I) - \gamma A
\]

\[
\frac{dR_I}{dt} = \gamma I
\]

\[
\frac{dR_A}{dt} = \gamma A
\]

\[
\frac{dD}{dt} = \eta I, \quad \varepsilon = \frac{S_I(0)}{S_I(0) + S_A(0)}
\]

PARAMETERS

\(\beta \): Rate at which people are getting infected

\(\gamma \): Rate at which infected people recover/die

\(\eta \): Rate at which infected people die

\(\varepsilon \): Fraction of infected population that has significant symptoms
Pandemic has peaked, but only if sufficient protective measures continue

~30% population projected to have antibodies at present, ~14% in Aug-end

Cumulative mortality projected to be less than 0.04% of total infected

Total Projected Symptomatic Infections: 106 Lakhs

ICMR Survey (Aug-end): ~7% population with antibodies
Model: ~14% population with antibodies in Aug-end

India: Active Symptomatic Infections (in Lakhs)
Lockdown Alternatives: Active Infections

Projected Active Symptomatic Infections for Alternative Lockdown Scenarios (in Lakhs)
Lockdown Alternatives: Deaths

Projected Mortalities for Alternative Lockdown Scenarios
(in Lakhs)
Lockdown Alternatives: Analysis

Scenario 1: No Lockdown
- Number of active symptomatic cases peak in June at: 140+ Lakhs
- Total symptomatic infections by February 2021: 204+ Lakhs
- Number of deaths by August: 25+ Lakhs

Scenario 2: Lockdown between April 1- May 1
- Number of active symptomatic cases peak by July at: 40-50 Lakhs
- Total symptomatic infections by February 2021: 150-170 Lakhs
- Number of deaths by August: 6-10 Lakhs

Scenario 3: Actual Lockdown
- Number of active symptomatic cases peak in September at: 10 Lakhs
- Total symptomatic infections by February 2021: 106 Lakhs
- Number of deaths by September: 1 Lakh

Initial lockdown saved large number of lives and avoided creating widespread panic
Early Exponential Growth in Infections

Model projection curve captures exponential nature of growth

India: Active Infections in March

Cases increase 10+ times in 14 days

India: Active Infections in April-June

1 Apr-12 Jun:
Cases increase 100+ times in 73 days

Without lockdown:
10000+ times in 73 days!!!!

18 Mar-31 Mar:
Cases increase 10+ times in 14 days
Labour Migration in May-June

- No sharp rise seen, actual curve almost stays below projected
- Significant adverse impact if migration was permitted before lockdown (slide #5)
- Demonstrates effectiveness of migrant quarantine
Future Trajectories

- **No measures**: Sharp rise to ~26 lakh peak active cases in Oct
- **Reduced measures**: Rise limited to ~13 lakh
- **Stricter measures**: Do not help much

Lockdowns now undesirable, move towards full resumption

Total Projected Infections
- No measures: 176 Lakhs
- Reduced measures: 137 Lakhs
- Current measures: 105 Lakhs
- Strong measures: 92 Lakhs
- Stronger measures: 83 Lakhs

Personal protection measures essential, otherwise blows up....
There is some evidence that the virus is more active in cooler climate:

- See https://aem.asm.org/content/76/9/2712

There is some evidence that large gatherings cause rapid spread:

- Kerala celebrated Onam festival during Aug 22 – Sep 2. It registered a sharp rise from Sep 8th
- Infection probability increased by \(\sim32\% \) and effectiveness of medical response dropped by \(\sim22\% \) for Kerala in September
Key Conclusions: Past

- Delaying initial lockdown would have caused more difficulties
- **Actual Lockdown:** 10+ lakh peak active symptomatic cases by end September, ~1 lakh deaths by the end September
- **No Lockdown:** 140+ lakh peak active symptomatic cases by June, 26+ lakh deaths by end August
- **Lockdown during Apr 01-May 01:** 40-50 lakh peak active cases by June, 7-10 lakh deaths by end August
- Migration in May-June did not significantly alter the outcomes
Upcoming festival and winter seasons may increase the susceptibility to infection.

Relaxation in protective measures can lead to a significant rise: up to 26 lakh infections within a month.

District and higher level lockdowns not much effective now.

All activities can be resumed provided proper safety protocols continue to be followed.

If all of us follow these protocols, the pandemic can be controlled by early next year with minimal active symptomatic infections by February-end.

Key Conclusions:
Future is What We Will Make It