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MOTIVATION
1. Recently identified a family of codes that are capacity-achieving in erasure channel:                    

Berman codes and their dual codes [Natarajan & Krishnan, T-IT ‘23]


• Possess several properties (but not all) required to achieve capacity of all 
binary-input memoryless symmetric (BMS) channels [Reeves & Pfister, T-IT ‘24]


• Can these codes be decoded efficiently in the AWGN channel? Performance? 

2. Identify codes that share the structure of Reed-Muller codes 


• Especially the ones that are needed to prove capacity-achievability  
[Reeves & Pfister, T-IT ’24]


• A ‘projection’ property that can be exploited for iterative decoding


• Block lengths other than 2m
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Recursive Subproduct Codes

Dual Berman Codes

Reed-Muller Codes

➤ Wider range of rates and 
block lengths compared to 
Reed-Muller (RM) codes 

➤ First-order codes can be 
ML decoded efficiently 
(similar to RM codes) 

➤ BP decoding and a local 
graph search decoder for 
second-order codes 
(similar to RM codes) 

➤ CER comparable to RM 
codes and Polar codes
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SUMMARY OF THE FAMILY OF CODES
➤ Choose any  ‘base code’  that contains the all-ones codeword 

➤ Pick  such that 


•  is the ‘order’ of the recursive subproduct code 

➤ Recursive Subproduct Code  has parameters  
 

                                         

[n, k, d] 𝒞

r, m 0 ≤ r ≤ m

r

𝒞⊗[r,m]

[ nm,
r

∑
ℓ=0

(m
ℓ)(k − 1)ℓ, drnm−r ]
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SUMMARY OF THE FAMILY OF CODES

➤
Recursive Subproduct Code   =  

➤ Chain of codes:  

•  is the -dimensional product code with parameters 


•
Codewords are  arrays 


• each length-  vector along any of the  dimensions belongs to  

•  is a subcode of the product code (subproduct code)

𝒞⊗[r,m] [ nm,
r

∑
ℓ=0

(m
ℓ)(k − 1)ℓ, drnm−r ]

{0, 1} = 𝒞⊗[0,m] ⊂ 𝒞⊗[1,m] ⊂ ⋯ ⊂ 𝒞⊗[m,m] = 𝒞⊗m

𝒞⊗m m [nm, km, dm]

n × ⋯ × n
m times

n m 𝒞

𝒞⊗[r,m]
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SUMMARY OF THE FAMILY OF CODES

➤
Recursive Subproduct Code   =   

➤ Reed-Muller Codes: 


• Choose , which is a  code 

➤ Dual Berman Codes:


• Choose , which is a  code

𝒞⊗[r,m] [ nm,
r

∑
ℓ=0

(m
ℓ)(k − 1)ℓ, drnm−r ]

𝒞 = 𝔽2
2 = {(0,0), (0,1), (1,0), (1,1)} [n, k, d] = [2,2,1]

𝒞 = 𝔽n
2 [n, k, d] = [n, n,1]
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SIMULATION RESULTS



FIRST-ORDER CODES UNDER ML DECODING

➤ ‘DB’ is Dual Berman with 
 

➤  Hamming 
code

𝒞 = 𝔽 3
2

ℋ = [7,4,3]



SECOND-ORDER CODES
➤ ‘DB’ is Dual Berman with 

 

➤ ‘CA-DB’ is CRC-aided DB 
with 4-bit CRC 

➤ ‘CA-Polar’ is CRC-aided 
Polar with 8-bit CRC, 
SCL decoding with list 
size 32

𝒞 = 𝔽 3
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SECOND-ORDER CODES

➤ DB is the [9,5,3] Dual 
Berman code


• used as the base code 

➤ 5G NR Polar code uses 
11-bit CRC,  
rate-matching to get 
length 729,  
SCL with list size 32



SECOND-ORDER CODES

➤ Both codes have length 
343 and dimension 37 

➤  is the base 
code 

➤ 5G NR Polar code uses 
11-bit CRC,  
rate-matching to get 
length 343,  
SCL with list size 32

ℋ = [7,4,3]



CONSTRUCTION OF RECURSIVE SUBPRODUCT CODES



CONSTRUCTION
➤ Start with a generator matrix for the  code  with first row being all-ones 

 

                                               


➤ For each , where , define  
 
                                       


➤ Define Hamming weight  as number of non-zero entries in 

[n, k, d] 𝒞

G =

g0 = 1
g1
⋮

gk−1

j = ( j0, …, jm−1) ∈ [k]m [k] = {0,1,…, k − 1}

bj = gj0 ⊗ gj1 ⊗ ⋯ ⊗ gjm−1
∈ 𝔽nm

2

w(j) j
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EXAMPLE
➤ Suppose  code with 

 

                                             

➤ If        then  
 
                   

𝒞 = [4,3,2]

G = [
1 1 1 1
1 1 0 0
0 1 1 0]

j = ( j0, j1, j2, j3) = (1,0,2,0) ∈ [k]m = [3]4

bj = (1,1,0,0) ⊗ (1,1,1,1) ⊗ (0,1,1,0) ⊗ (1,1,1,1) ∈ 𝔽256
2
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CONSTRUCTION OF RECURSIVE SUBPRODUCT CODES
➤ For  define  

 

                            

➤ The vectors  are linearly independent


• They are the rows of the matrix ,  
which is the generator matrix of the product code 


• Subproduct codes are constructed by choosing a submatrix of  as gen. mat.

0 ≤ r ≤ m

𝒞⊗[r,m] = span ( { bj : j ∈ [k]m, w(j) ≤ r } )
bj : j ∈ [k]m

G⊗m = G ⊗ ⋯ ⊗ G
𝒞⊗m

G⊗m
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RECURSIVE STRUCTURE
➤ Construct length-  codes via length-  codes: 

 
 

                                                                

➤  yields the famous  Plotkin design of RM codes 

 

➤ Useful in identifying the min. distance, puncturing and ‘projection’ properties

nm nm−1

𝒞⊗[r,m] = { d0 ⊗ g0 + d1 ⊗ g1 + ⋯ + dk−1 ⊗ gk−1 :

d0 ∈ 𝒞⊗[r,m−1], d1, …, dk−1 ∈ 𝒞⊗[r−1,m−1] }

G = [1 1
0 1] (u |u + v)
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FAST ML DECODING OF FIRST-ORDER CODES



RECURSIVE STRUCTURE OF FIRST-ORDER CODES
➤ Construct length-  codes via length-  codes: 

 
 

                                                                

➤ BPSK-modulated version:     and  
 
                             

 
where 

nm nm−1

𝒞⊗[1,m] = { d0 ⊗ g0 + d1 ⊗ g1 + ⋯ + dk−1 ⊗ gk−1 :

d0 ∈ 𝒞⊗[1,m−1], d1, …, dk−1 ∈ 𝒞⊗[0,m−1] }
0 → + 1 1 → − 1

𝒞⊗[1,m] = { db ⊗ ab : d ∈ 𝒞⊗[1,m−1], a ∈ 𝒞sub}
𝒞sub = span(g1, …, gk−1) ⊂ 𝒞
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RECURSIVE ML DECODING OF FIRST-ORDER CODES

                             

➤ For a given  the best choice of  can be found by calling  
the ML decoder of  

➤ Call the ML decoder of  totally  times to find best choices of  

➤ Define . Complexity order (in terms of block length ) is  

 
                                  and      

𝒞⊗[1,m] = { db ⊗ ab : d ∈ 𝒞⊗[1,m−1], a ∈ 𝒞sub}
a ∈ 𝒞sub d

𝒞⊗[1,m−1]

𝒞⊗[1,m−1] 2k−1 d, a

α =
k − 1
log2 n

N = nm

max{N, Nα} if α ≠ 1 N log N if α = 1
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SOFT-OUTPUT DECODER FOR FIRST-ORDER CODES
➤ We need a soft-output decoder for use with iterative decoding of second-order codes 

➤ Identified a recursive version of max-log-MAP decoder


• Numerically stable (operates in the log domain)


• Avoids costly operations ( ) 


• Good approximation to the optimal decoder (soft-output MAP) 

➤ Complexity order is same as that of the recursive ML decoder 
 
                                  and      

exp, log

max{N, Nα} if α ≠ 1 N log N if α = 1
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BELIEF PROPAGATION DECODER 

FOR SECOND-ORDER CODES



INDEXING USING BASE-  EXPANSIONn
➤ Instead of indexing length  vectors using  use  

 
                            
 

➤ Indices are vectors  
 

➤ Codeword  where 


• Codewords are -dimensional arrays/tensors

nm i ∈ {1,2,…, nm}

(i − 1) = i0 nm−1 + i1 nm−2 + ⋯ + im−2 n + im−1

i = (i0, …, im−1) ∈ [n]m

c = (ci : i ∈ [n]m) ci ∈ 𝔽2

m
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PUNCTURING AND PROJECTION TO LENGTH nm−1

➤ Pick any coordinate  of   and fix it to some value  
 
                             

➤ Similarly, for the same , fix this coordinate to some other value  
 
                             

➤ Puncture a codeword  by retaining only the coordinates in  and  
 
                                         

k i = (i0, …, im−1) u ∈ [n]

ℋ = {(i0, …, im−1) ∈ [n]m : ik = u}

k u′￼ ∈ [n]

ℋ′￼ = {(i0, …, im−1) ∈ [n]m : ik = u′￼}

c ℋ ℋ′￼

𝒫ℋ (c)  and  𝒫ℋ′￼
(c)
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PUNCTURING AND PROJECTION TO LENGTH nm−1

 
 

Puncture a codeword  :   

➤ Puncturing Property:   
 
                            for every  

➤ Projection Property: 
 
                        for every  

ℋ = {(i0, …, im−1) ∈ [n]m : ik = u}
ℋ′￼ = {(i0, …, im−1) ∈ [n]m : ik = u′￼}

c 𝒫ℋ (c)  and 𝒫ℋ′￼
(c)

𝒫ℋ(c), 𝒫ℋ′￼
(c) ∈ 𝒞⊗[r,m−1] c ∈ 𝒞⊗[r,m]

𝒫ℋ(c) + 𝒫ℋ′￼
(c) ∈ 𝒞⊗[r−1,m−1] c ∈ 𝒞⊗[r,m]
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BELIEF PROPAGATION DECODER FOR SECOND-ORDER CODES
➤ Projections of second-order codewords yields first-order codewords


• These can be ‘soft-in soft-out’ decoded efficiently 


• Can be used as generalised check nodes in a factor graph


➤ Since 


• Every second-order codeword is also a codeword in the product code


• When viewed as  array,  
length-  vectors along each dimension belong to the base code 


• These criteria can also be used as generalised check nodes

𝒞⊗[2,m] ⊂ 𝒞⊗m

n × ⋯ × n
n 𝒞
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BELIEF PROPAGATION DECODER FOR SECOND-ORDER CODES



BP DECODER FOR SECOND-ORDER CODES
➤ We use all possible projections ( to  ) and puncturing ( to  ) in the factor 

graph 

➤ Puncturings to  are useful only when  is non-trivial (  )  

➤ Complexity order per BP iteration 
 
                           and   

𝒞⊗[1,m−1] 𝒞

𝒞 𝒞 𝒞 ≠ 𝔽 n
2

max{N, Nα}log N  if  α ≠ 1 N log2 N  if  α = 1
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IMPROVING  DECODER PERFORMANCE VIA 

LOCAL GRAPH SEARCH



LOCAL GRAPH SEARCH [KAMENEV, T-COM ’22]
➤ Consider a graph  with


• Vertex set: all codewords in 


• Edge set: two codewords are neighbours if their Hamming distance is  

➤ Degree of each node is small:   if   

➤ Starting from the output of BP decoder trace a path in  of some length, say 


• At each step, pick the neighbor with the largest likelihood  

➤ Among all  codewords visited in the path, choose the one with largest likelihood

𝒢

𝒞⊗[r,m]

drnm−r

𝒪 (logr N) n ≠ 2d

𝒢 P

P
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LOCAL GRAPH SEARCH [KAMENEV, T-COM ’22]
➤ Complexity order for second-order codes 

 
                                        

➤ If we use CRC for the recursive subproduct codes,  
we can ignore the codewords in the path that do not satisfy the CRC

P log2 N max {N, log2 N log P}
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