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MOTIVATION

1. Recently identified a family of codes that are capacity-achieving in erasure channel:
Berman codes and their dual codes [Natarajan & Krishnan, T-IT 23]

Possess several properties (but not all) required to achieve capacity of all
binary-input memoryless symmetric (BMS) channels [Reeves & Pfister, T-IT ‘24]

Can these codes be decoded efficiently in the AWGN channel? Performance?

2. Identify codes that share the structure of Reed-Muller codes

Especially the ones that are needed to prove capacity-achievability
|[Reeves & Pfister, T-IT ’24]

- A ‘projection’ property that can be exploited for iterative decoding

Block lengths other than 2™



Recursive Subproduct Codes

Dual Berman Codes

» Wider range of rates and

block lengths compared to
Reed-Muller (RM) codes

» First-order codes can be
ML decoded efficiently

(similar to RM codes)

» BP decoding and a local
graph search decoder for
second-order codes
(similar to RM codes)

» CER comparable to RM

codes and Polar codes :



SUMMARY OF THE FAMILY OF CODES

» Choose any [n, k, d] ‘base code’ ¢ that contains the all-ones codeword

» Pick r,msuch that O <r <m

- r1is the ‘order’ of the recursive subproduct code

> Recursive Subproduct Code €®\""™ has parameters

lnm, y ('Z)(k— 1y, d’”nm"’]

=



SUMMARY OF THE FAMILY OF CODES
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. r.m m - m Vo, m—r
.. Recursive Subproduct Code Eolrml = [n : Z ( )(k — 1), d'n ]
=0

> Chain of codes: {0,1} = g®0m c gdlml ... c g®lnml — gdmn

. %" is the m-dimensional product code with parameters [n™, k™, d™]

Codewords are n X --- X n arrays

m times

- each length-n vector along any of the m dimensions belongs to €

. @®"l s a subcode of the product code (subproduct code) 5



SUMMARY OF THE FAMILY OF CODES

S (m
.. Recursive Subproduct Code &Rl = lnm, Z ( p ) (k= 1), drnm—"]
=0

» Reed-Muller Codes:
. Choose € = 5 = {(0,0),(0,1), (1,0), (1,1)}, which is a [n, k,d] = [2,2,1] code

» Dual Berman Codes:

+ Choose € = [, whichis a [n, k,d] = [n,n,1] code



SIMULATION RESULIS




CER

FIRST-ORDER CODES UNDER ML DECODING

1071
1072 » ‘DB’ is Dual Berman with
€ =T,
107° .
» # = [7,4,3] Hamming
| . code
_4 | |=—@=— DB, N=2187, Rate=0.00685 N\ %
10 C | @ ®|1, 4] -
: 7, N=2401, R=0.00541 \
[ | === RM, N = 2048, R=0.00586
. |=-@- DB, N=81, R=0.11111 o
A~ RM, N=64, R=0.10937
107>
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CER

SECOND-ORDER CODES

107! ¢ » ‘DB’ is Dual Berman with
i T3
C = [I:2
10 ~~ ‘ , . :
. » ‘CA-DB’ i1s CRC-aided DB
S - with 4-bit CRC
N NN
_3 ~N S
10 ~ N
~_ . » ‘CA-Polar’ is CRC-aided
~ . "~ Polar with 8-bit CRC,
~ O . : :

1074 f+{—O— DB, BP, N = 243, R = 0.209 ~ 23 SCL decoding with list

—@ DB, BP + LGS, N = 243, R = 0.209 S °

—@ CA-DB, BP + LGS, N = 243, R = 0.193 ~\N size 32

—& — ML Bound, CA-DB ™~ N

==& CA-Polar, SCL, N = 256, R = 0.195 [

==\ RM, RPA-List, N = 256, R = 0.144
10—5 | | | | | | | | | | | | | | | |

1.0 1.5 2.0 2.5 3.0

Eb/No in dB



SECOND-ORDER CODES

10 1
» DB is the [9,5,3] Dual
- Berman code
used as the base code
o3
L 10
O » 5G NR Polar code uses
11-bit CRC,
rate-matching to get

®[2, 3
—e— p° ], BP+LGS, N=729, R=0.0837

2023
=<9 ML Bound, DB %3
=3¢ 5G NR CA-Polar, SCL, N=729, R=0.0837

e=gr—= RM, RPA-List, N=512, R=0.0898

length 729,
SCL with list size 32
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CER

SECOND-ORDER CODES

1071
» Both codes have length
343 and dimension 37
10 °
» # =1[7,4,3]is the base
code
1073
» 5G NR Polar code uses
4 11-bit CRC,
10 .
oy ~_ ® rate-matching to get
_‘.—)(— E/I;L EIOR(JSE'I}[II@%%SCL e length 343,
s Bk SCL with list size 32

10 15 20 25 T 30
Eb/No in dB
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CONSTRUCTION OF RECURSIVE SUBPRODUCT CODES




CONSTRUCTION

» For each J = (Jy, ..-»J,,—1) € [k]", where [k] = {0,1,...,k — 1}, define

bj=g ®g Q- ®g €

» Define Hamming weight w(jJ) as number of non-zero entries in )
13



EXAMPLE

1 1 1 1
1 1T 0 0O
0O 1 1 O

> If j — (j09j19j29j3) — (1909290) S [k]m — [3]4 then

» Suppose € = [4,3,2] code with

G

b, = (1,1,00®(1,1,1,) ®(0,1,1,0) ® (1,1,1,1) € F>*°

14



CONSTRUCTION OF RECURSIVE SUBPRODUCT CODES

» For O < r < m define

g OLrml — span ( { bj  JE K], w()) L<r } )

> The vectors b; : J € [k]™ are linearly independent

. They are the rows of the matrix G®" =G Q® --- ® G,

which is the generator matrix of the product code €%

. Subproduct codes are constructed by choosing a submatrix of G®™ as gen. mat.

15



RECURSIVE STRUCTURE

> Construct length-n" codes via length-n""! codes:

g®lrml — { dQgy+d, g, +--+d,_, g, :
d, € €®rm-1 g ...d_, €g®r-tmll }

> G = [(1) }] yields the famous (u# | u + v) Plotkin design of RM codes

» Useful in identifying the min. distance, puncturing and ‘projection’ properties

16
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FAST ML DECODING OF FIRST-ORDER CODES




RECURSIVE STRUCTURE OF FIRST-ORDER CODES

> Construct length-n" codes via length-n""! codes:

e = { dy®gy+d, ®g + - +d;_; &g :
d, € @871 d, ... d_, e g®0m1l }

» BPSK-modulated version: 0 — +1land1 — —1
1.m] _ b b . 1.m—1
‘5®[m]_{d®a . d e g®lm ],ae%sub}

where €, = span(g;, ...,8,_1) C €

18



RECURSIVE ML DECODING OF FIRST-ORDER CODES

g®llml — { d’®a’ : deg®lnll a¢e %sub}

» For a given a € €, the best choice of d can be found by calling
the ML decoder of &®!1-"~11

> Call the ML decoder of €®!"~! totally 2¥~! times to find best choices of d, a

k—1
» Define a = oz, Complexity order (in terms of block length N = n™) is
2

max{N,N%} ifa # 1 and NlogNifa=1

19



SOFT-OUTPUT DECODER FOR FIRST-ORDER CODES

» We need a soft-output decoder for use with iterative decoding of second-order codes

» Identified a recursive version of max-log-MAP decoder

- Numerically stable (operates in the log domain)

- Avoids costly operations (exp, log)

+ Good approximation to the optimal decoder (soft-output MAP)

» Complexity order is same as that of the recursive ML decoder

max{N,N%} ifa # 1 and NlogNifa=1

20
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BELIEF PROPAGATION DECODER
FOR SECOND-ORDER CODES




INDEXING USING BASE-7 EXPANSION

» Instead of indexing length n™ vectors using i € {1,2,...,n"} use

(l — 1) — i()nm_l + il nm_2 + eee + im_zn + lm—l
» Indices are vectors 1 = (io, . im—l) e [n]™
» Codeword ¢ = (ci 1 E [n]m) where ¢; € I

- Codewords are m-dimensional arrays/tensors

22



PUNCTURING AND PROJECTION TO LENGTH 72~

» Pick any coordinate k of 1 = (io, . im_l) and fix it to some value u € [n]
% — {(lo, “"im—l) = [n]m . lk — l/l}

» Similarly, for the same k, fix this coordinate to some other value u’ € [n]
H'={ gy .osiy_y) € [N]" : i =u'}

» Puncture a codeword ¢ by retaining only the coordinates in # and #Z

Poy(c) and Py (c)

23



PUNCTURING AND PROJECTION TO LENGTH 72~

H = {(p...siy_y) € [n]" : i, =u}
H'={(gy-oriy_y) € [0]" ¢ G =u
Puncture a codeword ¢ : &4, (¢) and P4, (c)

» Puncturing Property:

P (), Pople) € €81 for every ¢ € €OV

> Projection Property:

Pa(€) + Pylc) € g®lr-lm=1l for every ¢ € Ll

24



BELIEF PROPAGATION DECODER FOR SECOND-ORDER CODES

» Projections of second-order codewords yields first-order codewords
- These can be ‘soft-in soft-out’ decoded efficiently

- Can be used as generalised check nodes in a factor graph

» Since €®%m c g®m

- Every second-order codeword is also a codeword in the product code

- When viewed as n X --- X n array,
length-n vectors along each dimension belong to the base code &

- These criteria can also be used as generalised check nodes

25



BELIEF PROPAGATION DECODER FOR SECOND-ORDER CODES

e@[l,m—l] e@[l,m—l]

26



BP DECODER FOR SECOND-ORDER CODES

» We use all possible projections ( to &®!1'"=11) and puncturing ( to € ) in the factor
graph

> Puncturings to € are useful only when € is non-trivial (¢ # ')

» Complexity order per BP iteration

max{N, N®}logN if a# 1 and Nlog’N if a =1

27
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IMPROVING DECODER PERFORMANCE VIA
LOCAL GRAPH SEARCH




LOCAL GRAPH SEARCH [KAMENEV, -COM "22]

» Consider a graph & with
. Vertex set: all codewords in €%V~

- Edge set: two codewords are neighbours if their Hamming distance is d'n™™"
» Degree of each node is small: © (log” N ) if n # 2d

» Starting from the output of BP decoder trace a path in & of some length, say P

- At each step, pick the neighbor with the largest likelihood

» Among all P codewords visited in the path, choose the one with largest likelihood
29



LOCAL GRAPH SEARCH [KAMENEV, -COM "22]

» Complexity order for second-order codes

Plog” N max {N, log® N log P}

» If we use CRC for the recursive subproduct codes,
we can ignore the codewords in the path that do not satisty the CRC

30
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