
RECURSIVE SUBPRODUCT CODES

Supported by Qualcomm 6G University Research India Program

09 Feb 2024

Siddheshwar, Natarajan and Krishnan, https://arxiv.org/abs/2401.15678

https://arxiv.org/abs/2401.15678

MOTIVATION
1. Recently identified a family of codes that are capacity-achieving in erasure channel:

Berman codes and their dual codes [Natarajan & Krishnan, T-IT ‘23]

• Possess several properties (but not all) required to achieve capacity of all 
binary-input memoryless symmetric (BMS) channels [Reeves & Pfister, T-IT ‘24]

• Can these codes be decoded efficiently in the AWGN channel? Performance? 

2. Identify codes that share the structure of Reed-Muller codes

• Especially the ones that are needed to prove capacity-achievability  
[Reeves & Pfister, T-IT ’24]

• A ‘projection’ property that can be exploited for iterative decoding

• Block lengths other than 2m

2

Recursive Subproduct Codes

Dual Berman Codes

Reed-Muller Codes

➤ Wider range of rates and
block lengths compared to
Reed-Muller (RM) codes 

➤ First-order codes can be
ML decoded efficiently 
(similar to RM codes) 

➤ BP decoding and a local
graph search decoder for
second-order codes 
(similar to RM codes) 

➤ CER comparable to RM
codes and Polar codes

3

SUMMARY OF THE FAMILY OF CODES
➤ Choose any ‘base code’ that contains the all-ones codeword 

➤ Pick such that

• is the ‘order’ of the recursive subproduct code 

➤ Recursive Subproduct Code has parameters  
 

[n, k, d] 𝒞

r, m 0 ≤ r ≤ m

r

𝒞⊗[r,m]

[nm,
r

∑
ℓ=0

(m
ℓ)(k − 1)ℓ, drnm−r]

4

SUMMARY OF THE FAMILY OF CODES

➤
Recursive Subproduct Code =  

➤ Chain of codes:  

• is the -dimensional product code with parameters

•
Codewords are arrays

• each length- vector along any of the dimensions belongs to  

• is a subcode of the product code (subproduct code)

𝒞⊗[r,m] [nm,
r

∑
ℓ=0

(m
ℓ)(k − 1)ℓ, drnm−r]

{0, 1} = 𝒞⊗[0,m] ⊂ 𝒞⊗[1,m] ⊂ ⋯ ⊂ 𝒞⊗[m,m] = 𝒞⊗m

𝒞⊗m m [nm, km, dm]

n × ⋯ × n
m times

n m 𝒞

𝒞⊗[r,m]
5

SUMMARY OF THE FAMILY OF CODES

➤
Recursive Subproduct Code =  

➤ Reed-Muller Codes:

• Choose , which is a code 

➤ Dual Berman Codes:

• Choose , which is a code

𝒞⊗[r,m] [nm,
r

∑
ℓ=0

(m
ℓ)(k − 1)ℓ, drnm−r]

𝒞 = 𝔽2
2 = {(0,0), (0,1), (1,0), (1,1)} [n, k, d] = [2,2,1]

𝒞 = 𝔽n
2 [n, k, d] = [n, n,1]

6

SIMULATION RESULTS

FIRST-ORDER CODES UNDER ML DECODING

➤ ‘DB’ is Dual Berman with
 

➤ Hamming
code

𝒞 = 𝔽 3
2

ℋ = [7,4,3]

SECOND-ORDER CODES
➤ ‘DB’ is Dual Berman with

 

➤ ‘CA-DB’ is CRC-aided DB
with 4-bit CRC 

➤ ‘CA-Polar’ is CRC-aided
Polar with 8-bit CRC,
SCL decoding with list
size 32

𝒞 = 𝔽 3
2

SECOND-ORDER CODES

➤ DB is the [9,5,3] Dual
Berman code

• used as the base code 

➤ 5G NR Polar code uses
11-bit CRC,  
rate-matching to get
length 729,  
SCL with list size 32

SECOND-ORDER CODES

➤ Both codes have length
343 and dimension 37 

➤ is the base
code 

➤ 5G NR Polar code uses
11-bit CRC,  
rate-matching to get
length 343,  
SCL with list size 32

ℋ = [7,4,3]

CONSTRUCTION OF RECURSIVE SUBPRODUCT CODES

CONSTRUCTION
➤ Start with a generator matrix for the code with first row being all-ones 

 

➤ For each , where , define  
 

➤ Define Hamming weight as number of non-zero entries in

[n, k, d] 𝒞

G =

g0 = 1
g1
⋮

gk−1

j = (j0, …, jm−1) ∈ [k]m [k] = {0,1,…, k − 1}

bj = gj0 ⊗ gj1 ⊗ ⋯ ⊗ gjm−1
∈ 𝔽nm

2

w(j) j
13

EXAMPLE
➤ Suppose code with 

 

  

➤ If then  
 

𝒞 = [4,3,2]

G = [
1 1 1 1
1 1 0 0
0 1 1 0]

j = (j0, j1, j2, j3) = (1,0,2,0) ∈ [k]m = [3]4

bj = (1,1,0,0) ⊗ (1,1,1,1) ⊗ (0,1,1,0) ⊗ (1,1,1,1) ∈ 𝔽256
2

14

CONSTRUCTION OF RECURSIVE SUBPRODUCT CODES
➤ For define  

 

  

➤ The vectors are linearly independent

• They are the rows of the matrix ,  
which is the generator matrix of the product code

• Subproduct codes are constructed by choosing a submatrix of as gen. mat.

0 ≤ r ≤ m

𝒞⊗[r,m] = span ({ bj : j ∈ [k]m, w(j) ≤ r })
bj : j ∈ [k]m

G⊗m = G ⊗ ⋯ ⊗ G
𝒞⊗m

G⊗m

15

RECURSIVE STRUCTURE
➤ Construct length- codes via length- codes: 

 
 

  

➤ yields the famous Plotkin design of RM codes 

 

➤ Useful in identifying the min. distance, puncturing and ‘projection’ properties

nm nm−1

𝒞⊗[r,m] = { d0 ⊗ g0 + d1 ⊗ g1 + ⋯ + dk−1 ⊗ gk−1 :

d0 ∈ 𝒞⊗[r,m−1], d1, …, dk−1 ∈ 𝒞⊗[r−1,m−1] }

G = [1 1
0 1] (u |u + v)

16

FAST ML DECODING OF FIRST-ORDER CODES

RECURSIVE STRUCTURE OF FIRST-ORDER CODES
➤ Construct length- codes via length- codes: 

 
 

  

➤ BPSK-modulated version: and  
 
  

 
where

nm nm−1

𝒞⊗[1,m] = { d0 ⊗ g0 + d1 ⊗ g1 + ⋯ + dk−1 ⊗ gk−1 :

d0 ∈ 𝒞⊗[1,m−1], d1, …, dk−1 ∈ 𝒞⊗[0,m−1] }
0 → + 1 1 → − 1

𝒞⊗[1,m] = { db ⊗ ab : d ∈ 𝒞⊗[1,m−1], a ∈ 𝒞sub}
𝒞sub = span(g1, …, gk−1) ⊂ 𝒞

18

RECURSIVE ML DECODING OF FIRST-ORDER CODES

  

➤ For a given the best choice of can be found by calling  
the ML decoder of  

➤ Call the ML decoder of totally times to find best choices of  

➤ Define . Complexity order (in terms of block length) is  

 
 and

𝒞⊗[1,m] = { db ⊗ ab : d ∈ 𝒞⊗[1,m−1], a ∈ 𝒞sub}
a ∈ 𝒞sub d

𝒞⊗[1,m−1]

𝒞⊗[1,m−1] 2k−1 d, a

α =
k − 1
log2 n

N = nm

max{N, Nα} if α ≠ 1 N log N if α = 1
19

SOFT-OUTPUT DECODER FOR FIRST-ORDER CODES
➤ We need a soft-output decoder for use with iterative decoding of second-order codes 

➤ Identified a recursive version of max-log-MAP decoder

• Numerically stable (operates in the log domain)

• Avoids costly operations ()

• Good approximation to the optimal decoder (soft-output MAP) 

➤ Complexity order is same as that of the recursive ML decoder 
 
 and

exp, log

max{N, Nα} if α ≠ 1 N log N if α = 1

20

BELIEF PROPAGATION DECODER

FOR SECOND-ORDER CODES

INDEXING USING BASE- EXPANSIONn
➤ Instead of indexing length vectors using use  

 
  
 

➤ Indices are vectors  
 

➤ Codeword where

• Codewords are -dimensional arrays/tensors

nm i ∈ {1,2,…, nm}

(i − 1) = i0 nm−1 + i1 nm−2 + ⋯ + im−2 n + im−1

i = (i0, …, im−1) ∈ [n]m

c = (ci : i ∈ [n]m) ci ∈ 𝔽2

m

22

PUNCTURING AND PROJECTION TO LENGTH nm−1

➤ Pick any coordinate of and fix it to some value  
 
  

➤ Similarly, for the same , fix this coordinate to some other value  
 
  

➤ Puncture a codeword by retaining only the coordinates in and  
 

k i = (i0, …, im−1) u ∈ [n]

ℋ = {(i0, …, im−1) ∈ [n]m : ik = u}

k u′￼ ∈ [n]

ℋ′￼ = {(i0, …, im−1) ∈ [n]m : ik = u′￼}

c ℋ ℋ′￼

𝒫ℋ (c) and 𝒫ℋ′￼
(c)

23

PUNCTURING AND PROJECTION TO LENGTH nm−1

 
 

Puncture a codeword :  

➤ Puncturing Property:  
 
 for every  

➤ Projection Property: 
 
 for every  

ℋ = {(i0, …, im−1) ∈ [n]m : ik = u}
ℋ′￼ = {(i0, …, im−1) ∈ [n]m : ik = u′￼}

c 𝒫ℋ (c) and 𝒫ℋ′￼
(c)

𝒫ℋ(c), 𝒫ℋ′￼
(c) ∈ 𝒞⊗[r,m−1] c ∈ 𝒞⊗[r,m]

𝒫ℋ(c) + 𝒫ℋ′￼
(c) ∈ 𝒞⊗[r−1,m−1] c ∈ 𝒞⊗[r,m]

24

BELIEF PROPAGATION DECODER FOR SECOND-ORDER CODES
➤ Projections of second-order codewords yields first-order codewords

• These can be ‘soft-in soft-out’ decoded efficiently

• Can be used as generalised check nodes in a factor graph

➤ Since

• Every second-order codeword is also a codeword in the product code

• When viewed as array,  
length- vectors along each dimension belong to the base code

• These criteria can also be used as generalised check nodes

𝒞⊗[2,m] ⊂ 𝒞⊗m

n × ⋯ × n
n 𝒞

25

26

BELIEF PROPAGATION DECODER FOR SECOND-ORDER CODES

BP DECODER FOR SECOND-ORDER CODES
➤ We use all possible projections (to) and puncturing (to) in the factor

graph 

➤ Puncturings to are useful only when is non-trivial ()  

➤ Complexity order per BP iteration 
 
 and

𝒞⊗[1,m−1] 𝒞

𝒞 𝒞 𝒞 ≠ 𝔽 n
2

max{N, Nα}log N if α ≠ 1 N log2 N if α = 1

27

IMPROVING DECODER PERFORMANCE VIA

LOCAL GRAPH SEARCH

LOCAL GRAPH SEARCH [KAMENEV, T-COM ’22]
➤ Consider a graph with

• Vertex set: all codewords in

• Edge set: two codewords are neighbours if their Hamming distance is  

➤ Degree of each node is small: if  

➤ Starting from the output of BP decoder trace a path in of some length, say

• At each step, pick the neighbor with the largest likelihood  

➤ Among all codewords visited in the path, choose the one with largest likelihood

𝒢

𝒞⊗[r,m]

drnm−r

𝒪 (logr N) n ≠ 2d

𝒢 P

P
29

LOCAL GRAPH SEARCH [KAMENEV, T-COM ’22]
➤ Complexity order for second-order codes 

 
  

➤ If we use CRC for the recursive subproduct codes,  
we can ignore the codewords in the path that do not satisfy the CRC

P log2 N max {N, log2 N log P}

30

MAIN REFERENCES
➤ G. Reeves and H. D. Pfister, "Reed–Muller Codes on BMS Channels Achieve Vanishing Bit-Error

Probability for all Rates Below Capacity," in IEEE Transactions on Information Theory, vol. 70, no. 2,
pp. 920-949, Feb. 2024, doi: 10.1109/TIT.2023.3286452.

➤ L. P. Natarajan and P. Krishnan, "Berman Codes: A Generalization of Reed–Muller Codes That
Achieve BEC Capacity," in IEEE Transactions on Information Theory, vol. 69, no. 11, pp. 6956-6980,
Nov. 2023, doi: 10.1109/TIT.2023.3299287.

➤ M. Lian, C. Häger and H. D. Pfister, "Decoding Reed–Muller Codes Using Redundant Code
Constraints," 2020 IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA,
USA, 2020, pp. 42-47, doi: 10.1109/ISIT44484.2020.9174087.

➤ M. Kamenev, "On Decoding of Reed-Muller Codes Using a Local Graph Search," in IEEE Transactions
on Communications, vol. 70, no. 2, pp. 739-748, Feb. 2022, doi: 10.1109/TCOMM.2021.3128541.

➤ A. Ashikhmin and S. Litsyn, "Simple MAP decoding of first-order Reed-Muller and Hamming codes,"
in IEEE Transactions on Information Theory, vol. 50, no. 8, pp. 1812-1818, Aug. 2004, doi: 10.1109/
TIT.2004.831835.

31

