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The linear stability characteristics of pressure-driven core-annular pipe flow of two
immiscible fluids are considered to investigate the effects of the density and viscosity
ratios, the Reynolds number, the interface location and the interfacial tension. Both
liquid-liquid and gas-liquid systems are examined. A new type of interfacial mode
associated with the axisymmetric and corkscrew perturbations is discovered for certain
ranges of the viscosity and density ratios in the immiscible liquid-liquid system. Two
distinct unstable regions in the long and short wavelengths are observed. The long-
wavelengths unstable region forms a close loop indicating that it is not a Tollmien-
Schlichting mode. The new interfacial mode observed in the present study is similar
to that discovered by Mohammadi & Smits (2017) in two-layer Couette flow for low
viscosity ratios. In contrast to the two distinct unstable regions found in the immiscible
configuration, the corresponding miscible system contains only one unstable mode. It
is found that in the liquid-liquid systems, the corkscrew (axisymmetric) perturbation
is most dominant when the annular fluid is less (more) viscous than the core fluid. On
the other hand, the axisymmetric perturbation is always the dominant one in the gas-
liquid system. In gas-liquid systems, the interfacial tension stabilises the short-wave and
destabilises the long-wave perturbations, while increasing the interface radius stabilises
the flow due to the presence of a plug region in the pipe.

1. Introduction

Two-layer flows are commonly observed in many natural phenomena, such as magma
flows, glaciers, Earth’s outer core, ocean and atmosphere (Govindarajan & Sahu 2014),
and industrial applications, such as crude oil transport in pipelines (Saffman & Taylor
1958; Joseph et al. 1997; Cao et al. 2003), coating technology (Weinstein & Ruschak
2004), displacement flow (Redapangu et al. 2012), de-icing aircraft wings (Yih 1990),
to name a few. The pioneering work by Yih (1967) demonstrated the existence of an
interfacial unstable mode associated with an infinitesimal small long-wave perturbation at
any Reynolds number in plane Couette and plane Poiseuille flows of two immiscible fluids
with different viscosities separated by a sharp interface. Since then, several researchers
have studied the interfacial instability in the long-wave limit (Hooper 1985), short-wave
limit (Hooper & Boyd 1983) and also via full linear stability analysis in two-layer plane
Poiseuille (Yiantsios & Higgins 1988a,b; Sahu et al. 2007; Valluri et al. 2010; Sahu &
Matar 2010), Couette (Mohammadi & Smits 2017), three-layer channel (Sahu et al. 2007;
Malik & Hooper 2005; Redapangu et al. 2012) and core-annular cylindrical pipe (Hickox
1971; Joseph et al. 1984; Usha & Sahu 2019; Salin & Talon 2019) flows. The mechanism
of the short-wave interfacial instability was provided by Hinch (1984). By conducting an
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energy budget analysis for the linear perturbations, Boomkamp & Miesen (1996) showed
that the interfacial instability is driven by the work done at the interface due to the jump
in viscosity across the interface.

Instability in the core-annular cylindrical pipe flow of two miscible (Scoffoni et al. 2001;
Selvam et al. 2007, 2009; Sahu 2016, 2019) and immiscible fluids (Hickox 1971; Joseph
et al. 1984; Usha & Sahu 2019; Salin & Talon 2019) has received increasing attention
recently not only because of its importance in many practical applications but also due
to its fundamental interest. The single fluid Hagen-Poiseuille flow is known to be linearly
stable for all values of Reynolds number (Schmid & Henningson 2001), which is not true
in two-fluid flows in a cylindrical pipe. The focus of all the above investigations in core-
annular cylindrical pipe flows was to demonstrate the behaviour of the linearly unstable
axisymmetric and corkscrew perturbations associated with viscosity stratification (in
miscible configuration) or viscosity contrast (in immiscible configuration) between the
fluids in density matched systems. The main findings of the earlier studies in the stability
of core-annular pipe flows of miscible and immiscible fluids are summarised below. (i)
While the immiscible configuration is unstable if the core fluid is more viscous than the
annular fluid (Joseph et al. 1997), the miscible configuration is found to be unstable
beyond a critical viscosity ratio (Selvam et al. 2007). (ii) In the miscible configurations,
the axisymmetric perturbation is dominant when the core fluid is more viscous than
the annular fluid, but when the core fluid is less viscous, the corkscrew perturbation
is most dangerous (Selvam et al. 2007). This result is in contrast with that of the
immiscible core-annular pipe flow in which the axisymmetric perturbation was found
to be most unstable when the core fluid is less viscous than the annular fluid (Usha &
Sahu 2019). It is also worth mentioning that in the Hagen-Poiseuille single fluid flow
(albeit stable for any Reynolds number), the corkscrew perturbation is always the least
stable one (Schmid & Henningson 2001). (iii) Selvam et al. (2009); Salin & Talon (2019)
demonstrated the transition from the convective instability to the absolute instability in
miscible and immiscible core-annular flows of two immiscible fluids of different viscosities
but of the same density.

In the present work, it is demonstrated the appearance of a new mode of instability
distinct from the Tollmien-Schlichting (TS) mode and Yih’s interfacial mode in core-
annular cylindrical pipe flow of two immiscible fluids. In this context, it is important to
discuss the earlier studies on the stability of two-layer plane Poiseuille flow of two miscible
fluids (Ranganathan & Govindarajan 2001; Govindarajan 2004; Malik & Hooper 2005;
Sahu & Govindarajan 2016) and two-layer Couette flow of two immiscible fluids (Ern
et al. 2003; Mohammadi & Smits 2017). Ern et al. (2003) demonstrated that the most
unstable mode in the miscible configuration is similar to that observed in immiscible flows
without surface tension for low diffusivity and in the limit of zero thickness of the mixed
region. However, in the miscible configuration, they also found that for a certain range of
diffusivity and interfacial thickness, the growth rate of the perturbations is higher than
the corresponding interfacial mode. In a three-layer channel flow, Govindarajan (2004)
reported the existence of a linearly unstable regime distinct from the Tollmien-Schlichting
(TS) mode and showed that these unstable regions merged when the mixed layer overlaps
with the critical layer (i.e., the location at which the perturbation phase velocity is
equal to the mean streamwise velocity). By comprising the instability behaviour of two
miscible and immiscible fluids in a two-layer plane Poiseuille flow, Malik & Hooper (2005)
showed that when the thickness of the mixed region is comparable to the thickness of
the critical layer, the most unstable mode resembles the interfacial mode (Yih 1967). In
a miscible channel flow, Talon & Meiburg (2011) observed four different types of modes
depending on the location of the mixed region in the Stokes flow regime. By analyzing
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Figure 1: (Colour online) Schematic of the pressure-driven core-annular flow of two
immiscible fluids in a vertical pipe of radius R. The acceleration due to gravity, g acts in
the positive z−direction. The fluids are separated by a sharp interface located at r = R0.

the concentration perturbation, they showed that the most unstable mode is similar to
that of Ern et al. (2003).

Most relevant to the present study is the discovery of a new type of interfacial instability
distinct from the Yih’s mode (Yih 1967) in a two-layer Couette flow for low viscosity
ratio by Mohammadi & Smits (2017). They also investigated the influence of the density
ratio and interfacial tension. In the present study, besides demonstrating the distinct
interfacial mode of instability in a core-annular cylindrical pipe flow, the effect of the
viscosity and density ratios is also studied, with an emphasis on investigating the linear
instability in the core-annular gas-liquid system that has not yet been studied to the
best of the author’s knowledge. The new interfacial instability mode is compared with
the most unstable mode observed in the corresponding miscible core-annular flow. Two
configurations have been considered in the gas-liquid system, namely when the annular
fluid is a liquid and the core fluid is a gas, and vice-versa. The effects of interface location
and interfacial tension have also been investigated. The rest of this paper is organised
as follows. The problem is formulated and the governing linear stability equations for
immiscible and miscible core-annular configuration are derived in §2. The associated
boundary conditions are also presented in this section. The linear stability results are
discussed in §3. Concluding remarks are provided in §4.

2. Formulation

2.1. Immiscible core-annular configuration

Linear instability characteristics of a steady and fully-developed core-annular pressure-
driven flow of two Newtonian and immiscible, incompressible fluids in a vertical cylin-
drical pipe of radius R are considered. This schematic diagram is shown in Fig. 1.
A cylindrical coordinate system (r, θ, z) is used, where r, θ and z denote the radial,
azimuthal and axial coordinates, respectively. The density and viscosity of the core fluid
(fluid ‘1’ in 0 6 r 6 R0) and annular fluid (fluid ‘2’ in R0 6 r 6 R) are denoted by (ρ1, µ1)
and (ρ2, µ2), respectively. The interfacial tension acting at the interface separating the
immiscible fluids is denoted by σ. Both liquid-liquid and gas-liquid systems are considered
in this study. The flow dynamics is governed by the continuity and the Navier-Stokes
equations in the cylindrical coordinate system, which are non-dimensionalized using the
radius of the pipe (R) and average velocity

(
V = Q/πR2

)
as the length and velocity
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scales, respectively. Here, Q is the volumetric flow rate. In the non-dimensionalization,
the properties of fluid ‘1’ are used as the reference scales. The reduced dimensionless
pressure pk in fluid k (k = 1, 2) is related to the corresponding total dimensional pressure,
pd,k as

pk = (pd,k + ρkgz)/ρkV
2. (2.1)

The various dimensionless numbers are the Reynolds number, (Re = ρ1V R/µ1), the
viscosity ratio (µr = µ2/µ1), the density ratio (ρr = ρ2/ρ1), the dimensionless radius
of the interface, (Ri = R0/R) and the inverse capillary number, (Γ = σ/µ1V ).

2.1.1. Basic state

The basic state is a steady, parallel, fully-developed unidirectional flow in the axial
direction, Uz,k in the core (k = 1) and annular (k = 2) regions of the pipe. The basic
state velocity profiles in the core (r ∈ [0, Ri]) and annular (r ∈ [Ri, 1]) regions are given
by

Uz,1 = −dP
dz

Re

4
(Ri

2 − r2)− dP

dz

Re

4µr
(Ri

2 − 1), (2.2)

Uz,2 = −dP
dz

Re

4µr
(1− r2), (2.3)

respectively. Eqs. (2.2) and (2.3) are obtained using the following boundary conditions:
(i) the no-slip boundary condition at the pipe wall (r = 1), (ii) the velocity maximum
condition (U ′z,1 = 0) at the centerline of the pipe (r = 0), and (iii) the continuity of
velocities (Uz,1 = Uz,2) and the shear stresses (dUz,1/dr = µrdUz,2/dr) at the interface
(r = Ri). The pressure gradient, dP/dz (whose value is negative for the flow in the
positive z direction) is calculated by maintaining the constant volumetric flow condition,

such that dimensionless average velocity, V = Q/2π
∫ 1

0
Uzrdr = 1.

2.1.2. Linear stability equations

The temporal linear stability equations for the basic flow (Eqs (2.2)-(2.3)) subjected
to infinitesimal perturbations are discussed in this section. A normal mode analysis is
used to express each flow variable as a sum of the basic state and a time-dependent
perturbation (designated by hat):

(ur,k,uθ,k,uz,k, pi)(r, θ, z, t) = (0, 0, Uz,k(r), P (z)) + (iûr,k, ûθ,k, ûz,k, p̂k)(r, θ, z, t), (2.4)

where

(iûr,k, ûθ,k, ûz,k, p̂k) = (iur,k, uθ,k, uz,k, pk)(r)ei(αz+βθ−αct).

Similarly, the perturbed interface can be represented as Ri + rie
i(αz+βθ−αct). Here,

i ≡
√
−1, α, β and c(≡ cr + ici) are the wavenumbers in the axial and azimuthal

directions (real), and the phase speed (complex) of the perturbation, respectively. The
real and imaginary parts of c are denoted by cr and ci, respectively. Thus a given mode
is temporally unstable if ci > 0, stable if ci < 0 and neutrally stable if ci = 0. The
governing temporal linear stability equations are derived using the standard approach
(Schmid & Henningson 2001; Usha & Sahu 2019), i.e. by substituting the perturbations
in the dimensionless continuity and Navier-Stokes equations and then subtracting the
corresponding unperturbed equations followed by linearising the resulting equations.
After suppressing the hat notations, the temporal linear stability equations for both
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the layers, k = (1, 2) are given by

u′r,k +
ur,k
r

+
βuθ,k
r

+ αuz,k = 0, (2.5)

ρk (−αcur,k + αur,kUz,k) = p′k −
iµk
Re

[
u′′r,k +

u′r,k
r
−
(
β2 + 1

r2
+ α2

)
ur,k −

2β

r2
uθ,k

]
,

(2.6)

ρk (−αcuθ,k + αuθ,kUz,k) = −βpk
r
− iµk
Re

[
u′′θ,k +

u′θ,k
r
−
(
β2 + 1

r2
+ α2

)
uθ,k −

2β

r2
ur,k

]
,

(2.7)

ρk
(
−αcuz,k + U ′z,kur,k + αUz,kuz,k

)
= −αpk −

iµk
Re

[
u′′z,k +

u′z,k
r
−
(
β2

r2
+ α2

)
uz,k

]
,

(2.8)
where the prime denotes differentiation with respect to r, ρk = (1, ρr) and µk = (1, µr).
Here, k = 1, 2 indicates the flow region. The stability equations in each layer are the
same as those given in Schmid & Henningson (2001). The boundary conditions for the
perturbation variables are discussed below.

At the centerline of the pipe (r = 0), the boundary conditions are

ur,1 = 0, uθ,1 = 0, u′z,1 = 0, p′1 = 0 for β = 0, (2.9)

ur,1 + uθ,1 = 0, 2u′r,1 + u′θ,1 = 0, uz,1 = 0, p1 = 0, for β = 1, (2.10)

ur,1 = 0, uθ,1 = 0, uz,1 = 0, p1 = 0, for β > 2. (2.11)

At the pipe wall (r = 1), the boundary conditions are

ur,2 = 0, uθ,2 = 0, uz,2 = 0, (2.12)

for all values of β.
The tangential stress balance equations for the perturbation at r = Ri in the azimuthal

and axial directions are given by

µr [−βur,2 +Riu
′
θ,2 − uθ,2] + [βur,1 −Riu′θ,1 + uθ,1] = 0, and (2.13)

µr [−αur,2 + riU
′′
z,2 + u′z,2] = −αur,1 + riU

′′
z,1 + u′z,1, (2.14)

respectively. The normal stress balance boundary condition at r = Ri are given by

Re(p1 − p2) + 2i [µru
′
r,2 − u′r,1] = −Γri

R2
i

[
1− β2 − α2R2

i

]
. (2.15)

The velocity components are also continuous at the interface (r = Ri), i.e.

ur,1 = ur,2, uθ,1 = uθ,2, uz,1 = uz,2. (2.16)

The kinematic boundary condition for perturbation is given by

ri =
ur,1

α(Uz,1 − c)
=

ur,2
α(Uz,2 − c)

. (2.17)

Eqs. (2.5) − (2.8), along with the boundary conditions (2.9)-(2.17) constitute an eigen-
value problem with the eigenvalue as the frequency of the perturbation (ω = αc) and

eigenvectors [ur,k, uθ,k, uz,k, pi]
T

. The domains [0, Ri] and [Ri, 1] are discretized using the
Chebyshev spectral collocation method (Canuto et al. 1987), and the eigenvalue problem
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Figure 2: (Colour online) Comparison of the eigenvalue spectrums obtained from the
present simulations for the immiscible configuration with Γ = 0 (‘#’) and those given in
Schmid & Henningson (2001) for the single fluid flow through a pipe (‘+’). (a) α = 1,
β = 0 and (b) α = 0.5, β = 1. The rest of the parameters are Re = 1000, Ri = 0.7,
µr = 1 and ρr = 1. The additional mode (‘ ’) obtained in the immiscible configuration
(mode ‘I’) is a neutrally stable (ci = 0) mode with cr = Uz|Ri

= 0.51Umax.

is solved using a public domain software, LAPACK, such that for domain [0, Ri]:

rj =
Ri
2

[
1− cos

(
π(j − 1)

N − 1

)]
, (2.18)

and for domain [Ri, 1]

rj =
1

2

[
1 + cos

(
π(j − 1)

N − 1

)]
+
Ri
2

[
1− cos

(
π(j − 1)

N − 1

)]
, (2.19)

where rj are the locations of the Chebyshev collocation points, and N is the number of
collocation points in each layer. The governing equations for the corresponding miscible
core-annular configuration are described in the Appendix A.

2.2. Validation

The linear stability solver developed for the immiscible configuration, as discussed in
§2.1, has been validated against several known results for the single fluid flow (Schmid
& Henningson 2001) and also plane Poiseuille flow configuration of two immiscible fluids
(Sahu et al. 2007). Table 1 shows a comparison between the most unstable eigenmode
obtained using the current solver with Hu & Joseph (1989) for two different set of
parameters. Several authors have used the results of Hu & Joseph (1989) to validate
their solvers (e.g., Orazzo et al. (2014)). In Table 1, it can be seen that the present
results are in good agreement with Hu & Joseph (1989). In addition, a grid convergence
test is also performed (see Fig. A3 in Appendix B) to ensure that the number of grids
used in the present study is adequate to generate the eigenvalues accurately at least up
to five decimal places. It is found that using more than 41 grids in each layer in the
case of immiscible configuration and 81 grids in the miscible configuration is sufficient to
achieve the desired accuracy. Figs. 2(a) and (b) show the comparisons of the eigenvalue
spectrums obtained from present simulations for the immiscible configuration (§2.1) with
Γ = 0 and those presented in Schmid & Henningson (2001) in the case of single fluid
flow through a pipe for (α = 1, β = 0) and (α = 0.5, β = 1), respectively. The rest of the
parameters are Re = 1000, Ri = 0.7, µr = 1 and ρr = 1. The real and imaginary parts
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Table 1: Comparison of the most unstable phase speed (c) with Hu & Joseph (1989).
Here, Rec = ρ1VcR/µ1 is the Reynolds number used by Hu & Joseph (1989), where Vc
is the centerline velocity.

Parameters Hu & Joseph (1989) Present
Set 1: Rec = 499.5, Ri = 0.9, Γ = 2, 0.38425 + 0.02075i 0.38405 + 0.02081i
µr = 0.05, ρr = 1, α = 5.0, β = 0

Set 2: Rec = 37.82, Ri = 0.7, Γ = 0, 0.66929 + 0.00413i 0.66916 + 0.00405i
µr = 0.5, ρr = 1, α = 10, β = 0

of the phase speed are normalised with the maximum velocity (Umax) of the basic state.
It can be seen that all the eigenvalues are overlapped, except for one additional mode
in the case of the immiscible configuration (shown by ‘ ’). This is a neutrally stable
(ci = 0) mode with cr = Uz|Ri , which is a solution of the kinematic boundary condition
(Eq. 2.17). Hereafter, this mode is termed as mode ‘I’. It is observed (also can be seen
below in several figures) that mode ‘I’ is always present in the immiscible core-annular
flow configuration (Fig. 1). In the following, the mode ‘I’ will be used to distinguish the
other unstable modes, namely mode ‘1’ and mode ‘2’, in the interfacial core-annular flow.

3. Results and discussion

3.1. Liquid-liquid system

In order to identify the most dominant mode of the perturbation in liquid-liquid
systems (ρr = O(1)), the variations of the normalised growth rate, αci,max/Umax
associated with the most unstable axisymmetric (β = 0) and corkscrew (β = 1)
perturbations (excluding the ‘I’ mode) are plotted for different viscosity ratios for ρr = 1.1
and density ratios for µr = 1.2 in Figs. 3(a) and (b), respectively. The rest of the
parameters are Re = 1000, Ri = 0.7, Γ = 0.1, and ci,max is the phase speed of
the perturbation corresponding to the most unstable wavenumber (α) for each set of
parameters. It is found (not shown) that the higher modes (β > 2) are stable for the
range of parameters considered in this study. It can be seen in Fig. 3(a) that for ρr = 1.1,
while the corkscrew (β = 1) perturbation is most dominant for µr < 1 (i.e. when the
annular fluid is less viscous than the core fluid), the axisymmetric (β = 0) perturbation
is more unstable for µr > 1 (i.e., when the annular fluid is more viscous than the core
fluid). This is also true for other values of the density ratios, albeit for ρr = O(1), i.e.,
in liquid-liquid systems, as shown in Fig. 3(b). Usha & Sahu (2019) also found that the
axisymmetric perturbation is the most dominant one in the core-annular flow of two
immiscible fluids for µr > 1 and ρr = 1. However, this behaviour contrasts with the
miscible configuration of two isodense fluids, in which the axisymmetric perturbation is
more dominant for µr < 1, but the corkscrew perturbation is more unstable for µr > 1
(Selvam et al. 2007; Sahu & Govindarajan 2016).

3.1.1. Axisymmetric perturbation: β = 0

In this section, the linear instability behaviour of the axisymmetric perturbation (β =
0) in the immiscible core-annular flow is discussed. The unstable mode in the immiscible
configuration is also compared with that of the corresponding miscible configuration.
Figs. 4(a) and (b) show the neutral stability curves for the most unstable mode (excluding
the ‘I’ mode) in the (Re, α)−plane and the variations of the normalised real part of
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Figure 3: Effect of β on the variations of αci,max/Umax (excluding the neutrally stable
interfacial ‘I’ mode) with (a) the viscosity ratio, µr for ρr = 1.1, and (b) the density ratio,
ρr for µr = 1.2 in the immiscible core-annular configuration. The rest of the parameters
are Re = 1000, Ri = 0.7 and Γ = 0.1. The insets in panels (a) and (b) are the magnified
views near µr = 1 and ρr = 1, respectively.

the phase speed (cr/Umax) along the neutral stability boundaries, respectively. The
parameters used for the immiscible configuration are Ri = 0.7, Γ = 0, ρr = 1, µr = 0.1
and β = 0. It can be seen in Fig. 4(a) that there are two distinct unstable regions
corresponding to the long wavelengths (small α) and short wavelengths (large α). The
normalised phase speeds of these modes are about 0.5 and 0.9 (see, Fig. 4b), which are
termed as ‘mode 1’ and ‘mode 2’, respectively. It can also be seen that only one mode is
unstable in the corresponding miscible core-annular configuration with Sc = 1, q = 0.02
(shown by the dashed line in Figs. 4(a) and (b)). The value of cr/Umax in the miscible
configuration lies in between the two unstable modes in the immiscible configuration. It
is also verified that the result qualitatively remains the same even when the value of q
is 10% of the pipe radius and for a range of finite Sc values (see, Fig. A2 in Appendix
A). It is found that mode ‘1’ in the low α region becomes stable at sufficiently high
values of Re. This indicates that this mode is inviscidly stable and thus, can not be a
Tollmien-Schlichting (TS) mode. Mohammadi & Smits (2017) found a similar unstable
mode in two-layer Couette flow for low viscosity ratios. This point is discussed further
in §3.1.2.

The eigenvalue spectrums associated with the immiscible configuration for Re = 500,
α = 1 (one typical set of parameters in the long wavelengths unstable region) and Re =
100, α = 5 (one typical set of parameters in the short wavelengths unstable region)
are shown in Figs. 4(c) and (d), respectively. It can be seen that for Re = 500, α =
1, mode ‘1’ is unstable (cr1, ci1 = 0.49100, 0.0067) and mode ‘2’ is stable (cr2, ci2 =
0.93783,−0.02550). On the other hand, for Re = 100, α = 5, mode ‘1’ becomes stable
(cr1, ci1 = 0.53618,−0.10152) and mode ‘2’ is unstable (cr2, ci2 = 0.91531, 0.07105). It is
also observed that, for µr < 1, while in the long wavelengths region the real part of the
phase speed of the most unstable mode is smaller than that of the ‘I’ mode, in the short
wavelengths region it is higher or of the same order.

To further understand the behaviour of the two distinct unstable modes in the im-
miscible configuration, the neutral stability curves are plotted for different values of the
viscosity ratio in Figs. 5(a-f). The rest of the parameters are the same as those used to
generate Fig. 4(a). It can be seen that as we increase the value of µr (while remaining
less than one), the neutral stability boundaries associated with mode ‘1’ and mode ‘2’
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Figure 4: (Colour online) (a) The neutral stability curves corresponding to the most
unstable axisymmetric (β = 0) perturbation (excluding the ‘I’ mode). (b) Variation of
the real part of the phase speed of the most unstable mode as a function of Re. The
inset in panel (b) corresponds to mode ‘1’ in the linear scale. The result associated
with the corresponding miscible configuration (with Sc = 1, q = 0.02) is shown by the
black dashed line in panels (a) and (b). The eigenvalue spectrums in the immiscible
configuration for (c) Re = 500, α = 1 and (d) Re = 100, α = 5. The mode ‘I’ with
cr = 0.91234 is shown by symbol ( ) in panels (c) and (d). The rest of the parameters
are Ri = 0.7, Γ = 0, ρr = 1 and µr = 0.1.

come closer and merge at µr ≈ 0.12. The overlap region (where both the modes are
unstable) grows while the unstable region associated with mode 2 shrinks as we further
increase the viscosity ratio, and it disappears for µr = 0.95. Close inspection of Figs.
5(a-f) also reveals that the smallest Reynolds number for which either mode ‘1’ or mode
‘2’ is unstable increases with an increase in the viscosity ratio. In Figs. 6(a) and (b),
the dispersion curves (ci/Umax versus α) for different viscosity ratios are plotted for
Re = 100 and Re = 1500, respectively. The rest of the parameters are the same as those
used to generate Figs. 5(a-f). In Figs. 6(a) and (b), it can be seen that ci/Umax > 0
over a finite band of wavenumbers, indicating the presence of linear instability. Fig. 6(a)
shows that only mode ‘2’ (in the large α region) is unstable for Re = 100, which can also
be seen in the neutral stability curve plotted in Fig. 5. For Re = 100, it can be observed
that the “most-dominant” mode that corresponds to the value of α for which ci/Umax is
maximum, decreases with increasing the viscosity ratio (µr). In contrast, depending on
the value of the viscosity ratio (µr), mode ‘1’ and/or mode ‘2’ become the most dominant
mode for Re = 1500. It is also observed that the value of α associated with the most
dominant mode has a non-monotonic variation with µr. In particular, inspection of Fig.
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Figure 5: (Colour online) The neutral stability curves associated with the most unstable
axisymmetric (β = 0) perturbation (excluding the mode ‘I’) for different viscosity ratios
in the immiscible configuration. (a) µr = 0.05, (b) µr = 0.1, (c) µr = 0.12, (d) µr = 0.15,
(e) µr = 0.5 and (f) µr = 0.95. The rest of the parameters are Ri = 0.7, Γ = 0 and
ρr = 1.

6(b) reveals the following: (i) only mode ‘2’ (with large α value) is unstable for µr = 0.05,
(ii) for µr = 0.15, mode ‘1’ (with small α value) is the most dominant mode as the value
of ci,max/Umax is higher than that of mode ‘2’, and (iii) mode ‘2’ is the most dominant
mode for µr = 0.5.

Then, the effect of the density ratio on the neutral stability curves is investigated for
the axisymmetric perturbation (β = 0) in the immiscible configuration with µr = 0.1
in Fig. 7. The rest of the parameters are Γ = 0 and Ri = 0.7. It can be seen that the
distinct modes merge and becomes a single unstable mode for ρr = 0.1 and 10. In order
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Figure 6: (Colour online) Effect of the viscosity ratio on the variation of ci/Umax versus
α for (a) Re = 100 and (b) Re = 1500. The rest of the parameters are β = 0, ρr = 1,
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Figure 7: (Colour online) Effect of the density ratio on the neutral stability curve for
µr = 0.1 in the immiscible core-annular configuration. The rest of the parameters are
β = 0, Γ = 0 and Ri = 0.7.

to find the range of the density ratios for which the two distinct modes are present, the
variations of ci/Umax and cr/Umax with α are plotted for µr = 0.1, Re = 1000, Γ = 0
and Ri = 0.7 in Figs. 8(a) and (b), respectively. It is observed that two unstable modes
associated with low and high α values appear in the range 0.7 6 ρr 6 5 for the set of
parameters considered. Inspection of Figs. 8(a) and (b) reveals that for ρr = 0.5 and
ρr = 7 there is only one unstable mode (ci/Umax > 0).

3.1.2. Corkscrew perturbation: β = 1

After establishing the new mode of instability associated with the axisymmetric
perturbation (β = 0), the linear stability behaviour of the corkscrew perturbation (β = 1)
is investigated in this section. Fig. 9(a) depicts the neutral stability curves associated with
the most unstable mode (excluding the mode ‘I’ with its real part, crI = Uz|Ri) in the
(Re, α)−plane. The rest of the parameters used to generate these results are Ri = 0.7,
Γ = 0, ρr = 1 and µr = 1.2. It can be seen that the corkscrew perturbation (β = 1)
too exhibits two distinct unstable regions corresponding to the long (small α) and short
wavelengths (large α) for the set of parameters considered. This is also clearly evident
in Fig. 9(b) which presents the variations of the normalised real part of the phase speed
(cr/Umax) along the neutral stability boundaries. However, close inspection of Figs. 9(a)
and (b) reveals that, in contrast to the axisymmetric perturbation (β = 0), the long and
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the phase speed of the most unstable axisymmetric perturbation (β = 0). (a) cr/Umax
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Figure 9: (Colour online) (a) The neutral stability curves for the most unstable corkscrew
(β = 1) perturbation. (b) Variation of the real part of the phase speed of the most
unstable mode as a function of Re. The result associated with a miscible configuration
(with Sc = 1, q = 0.02) is shown by black dashed line in panels (a) and (b). The
eigenvalue spectrums for (c) Re = 3000, α = 1 and (d) Re = 3000, α = 6 in the
immiscible configuration. The mode ‘I’ with cr = Uz|Ri

= 0.46448 is shown by symbol
( ) in panels (c) and (d). The rest of the parameters are Ri = 0.7, Γ = 0, ρr = 1 and
µr = 1.2.



Instability in core-annular flow 13

(a) (b)

100 1000 10000

Re

0.1

1

10

α

1.05

1.1

1.2

1.5

µ
r

100 1000 10000

Re

0.1

1

10

α

0.1

0.5

1

1.5

ρ
r

Figure 10: The neutral stability curves associated with the most unstable corkscrew
(β = 1) perturbation (excluding the mode ‘I’) for different (a) viscosity ratio for ρr = 1
and (b) density ratio for µr = 1.2 in the immiscible configuration. The rest of the
parameters are Γ = 0 and Ri = 0.7.

short wavelengths unstable regions are associated with mode ‘2’ (whose cr > crI) and
mode ‘1’ (whose cr < crI) in the case of corkscrew perturbation (β = 1). The results
for the corresponding miscible configuration (with Sc = 1, q = 0.02) is shown by black
dashed line in Figs. 9(a) and (b). It can be seen in Fig. 9(a) that the neutral stability
curves for mode ‘2’ (in the small α regime) in the immiscible configuration look similar
to that of the single unstable Tollmien-Schlichting (TS) mode observed in the miscible
case. However, the critical Reynolds number associated with mode ‘2’ in the immiscible
configuration is much smaller than that of the TS mode in the miscible configuration.

The characteristics of modes ‘1’ and ‘2’ in the immiscible configuration for β = 1 are
illustrated in Figs. 9(c) and (d), which show the eigenvalue spectrums for two typical sets
of parameters, namely (Re = 3000, α = 1) and (Re = 3000, α = 6) in the unstable long
and short wavelength regions, respectively. In Fig. 9(c), it can be seen that the real part
of the phase speed of the most unstable mode, cr is greater than crI ; thus, it is mode
‘2’ by definition. On the other hand, in Fig. 9(d), the phase speed of the most unstable
mode, cr is less than crI ; thus, it is mode ‘1’ by definition.

The effect of the viscosity ratio for ρr = 1 and the density ratio for µr = 1.2 on the
neutral stability curve associated with the most unstable corkscrew (β = 1) perturbation
(excluding the mode ‘I’) in the immiscible configuration is investigated in Figs. 10(a) and
(b), respectively. The rest of the parameters are fixed at Γ = 0 and Ri = 0.7. The two
distinct unstable regions in the long and short wavelengths perturbations are apparent
Fig. 10(a) for different viscosity ratios. Another important point to be noted here that
for µr = 1.5, the neutral stability boundary in the long wavelengths region form a closed
loop. It can be seen in Fig. 10(b) that while only mode ‘1’ is unstable for low density ratios
(see, for instance, ρr = 0.1), the two distinct unstable regions are present for ρr > 0.5.
However, increasing the density ratio shifts the neutral boundary towards high Reynolds
number for the set of parameters considered in Fig. 10(b). It is found (not shown) that
all the neutral stability boundaries for mode ‘2’ in Figs. 10(a) and (b) form close loops
(albeit it happens at large values of Re). This behaviour indicates that the unstable mode
‘2’ in the interfacial configuration is not a Tollmien-Schlichting (TS) mode. The new type
of interfacial mode observed in this study for the immiscible core-annular configuration
is similar to that found in two-layer Couette flow for low viscosity ratio (Mohammadi &
Smits 2017).
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Figure 12: (Colour online) Dispersion curves associated with the most unstable mode
(excluding the mode ‘I’) for β = 0 (axisymmetric perturbation). (a) Effect of Ri for
Re = 104, Γ = 0.1, and (b) effect of Γ for Re = 5000 and Ri = 0.7. The rest of the
parameters are ρr = 103 and µr = 102.

3.2. Gas-liquid systems

Finally, a parametric study is conducted to study the effect of the location of the
interface (Ri) and the inverse capillary number (Γ ) on the linear stability behaviour in
gas-liquid systems. Two configurations, namely, (i) when the core fluid is a gas and the
annular fluid is a liquid (i.e., ρr = 103 and µr = 102) and (ii) when the core fluid is a
liquid and the annular fluid is a gas (i.e., ρr = 10−3 and µr = 10−2) are considered. Figs.
11(a) and (b) depict the dispersion curves (αci/Umax versus α) associated with the most
unstable axisymmetric (β = 0) and corkscrew (β = 1) perturbations (excluding the ‘I’
mode) in the gas-liquid systems for (ρr = 103, µr = 102) and (ρr = 10−3, µr = 10−2),
respectively. It can be seen that, unlike the liquid-liquid system (discussed in §3.1), the
axisymmetric perturbation (β = 0) is the most dominant mode in gas-liquid system.
Thus, only the axisymmetric perturbation (β = 0) is examined hereafter in this section.

The effect of the interface location (Ri) and the inverse capillary number (Γ ) on the
dispersion curves for the most unstable mode (excluding the mode ‘I’) are shown in Figs.
12(a) and (b) for β = 0, ρr = 103 and µr = 102 (when the core fluid is a gas and the
annular fluid is a liquid). The rest of the parameters in Fig. 12(a) are Re = 104 and
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Figure 13: (Colour online) Dispersion curves associated with the most unstable mode
(excluding the mode ‘I’) for β = 0 (axisymmetric perturbation). (a) Effect of Ri for
Re = 104, Γ = 0.1, and (b) effect of Γ for Re = 2000 and Ri = 0.7. The rest of the
parameters are ρr = 10−3 and µr = 10−2.

Γ = 0.1, and in Fig. 12(b) are Re = 5000 and Ri = 0.7. Increasing Ri decreases the
gradient of velocity in the annular region (U ′z,2) and decreases the centreline velocity to
maintain the constant volumetric flow rate condition. Thus, increasing Ri makes the flow
in the annular region like a plug, which in turn stabilises the flow as seen in Fig. 12(a). It
can also be seen in Fig. 12(a) that the wavelength of the perturbation (2π/α) associated
with the highest growth rate decreases as the value of Ri increases. It can be seen in Fig.
12(b) that increasing Γ , which corresponds to increasing the surface tension, stabilises
the short-wave (high α) perturbation.

Figs. 13(a) and (b) depict the effect of the interface location (Ri) for Re = 104,
Γ = 0.1 and the inverse capillary number (Γ ) for Re = 2000, Ri = 0.7 on the growth
rate of the perturbation for ρr = 10−3 and µr = 10−2. In this case, as the core is a liquid
(highly viscous as compared to gas), the plug flow region appears in the core layer, which
stabilises the flow. In other words, increasing Ri decreases the maximum growth rate of
the perturbation (Fig. 13a). In the case of visco-plastic fluid flow in a channel, Frigaard
(2001) also found that the presence of unyielded (plug) region highly stabilises the flow.
It is found that increasing Γ destabilises the long-wave perturbation (Fig. 12b). Thus, it
can be concluded that increasing Γ , which corresponds to increasing the surface tension,
stabilises the short-wave (high α) but destabilises the long-wave perturbations (low α)
via the Rayleigh-Plateau instability. It is also observed (not shown) that the effect of
Γ on the stability characteristic is similar in the liquid-liquid configuration described in
§3.1.

4. Conclusions

The linear stability behaviour of the axisymmetric (β = 0) and corkscrew (β = 1)
perturbations in the core-annular pressure-driven flow of two immiscible fluids in a
cylindrical pipe is examined and compared to that observed in the corresponding
configuration of two miscible fluids. The effects of the viscosity ratio (µr), the density
ratio (ρr), the Reynolds number (Re), the dimensionless interface location (Ri) and the
inverse capillary number (Γ ) have been investigated. Both liquid-liquid and gas-liquid
systems are considered. A new mode of instability distinct from the Tollmien-Schlichting
(TS) mode and Yih’s interface mode (Yih 1967) is discovered for a certain range of
viscosity and density ratios in the immiscible liquid-liquid system (ρr = O(1)). The
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corkscrew perturbation also exhibits the new mode of instability for a certain range
of density ratios. Contrary to the immiscible core-annular configuration, in which two
regions of instability are observed for a range of viscosity and density ratios, only one
mode is found to be unstable in the miscible core-annular flow. The new interfacial mode
observed in the present study is similar to that found in two-layer Couette flow for low
viscosity ratios (Mohammadi & Smits 2017). It is also observed that in the liquid-liquid
systems (ρr = O(1)), while the corkscrew perturbation is most dominant when the
annular fluid is less viscous than the core fluid, the axisymmetric perturbation becomes
more unstable when the annular fluid is more viscous than the core fluid. In contrast to
the liquid-liquid system, the axisymmetric perturbation is always the dominant one in
the gas-liquid system. It is found that increasing the interface radius stabilises the flow
due to the presence of a plug flow region.
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Appendix A. Miscible core-annular configuration

In order to compare the linear stability behaviour of the immiscible configuration with
the corresponding miscible system, the basic state and the linear stability equations
associated with the core-annular flow of two miscible fluids are discussed briefly in this
section. The reader is referred to Sahu (2016) for more details. The schematic diagram
of the pressure-driven core-annular miscible flow configuration is shown in Fig. A1. In
this configuration, the fluids are miscible and separated by a mixed region of thickness
q0 in region R0− q0/2 6 r 6 R0 + q0/2 of the pipe. The dimensionless dynamic viscosity
is given by:

µ0 = exp(s0lnµr), (A 1)

where s0 is given by:

s0 = 0, 0 6 r 6 Ri − q/2,

s0 =

6∑
i=1

air
i−1, Ri − q/2 6 r 6 Ri + q/2,

s0 = 1, Ri + q/2 6 r 6 1, (A 2)

where ai (i = 1, 6) are obtained by assuming that the scalar is continuous up to the
second derivative at r = Ri − q/2 and r = Ri + q/2 (Govindarajan 2004; Sahu &
Govindarajan 2011), wherein q = q0/R. The other variables are nondimensionalised in
the same manner as described in §2.1 for the immiscible configuration. When the Péclet
number Pe(≡ ReSc) is large, s0 could be approximated by an error function that depends
on the combination (r − Ri)

√
Pe/z. In the stability calculation, the dependence of s0

on z is neglected. This “quasi-steady” approximation to represent basic concentration
profile in miscible flows is justified if the wavelength 2π/α of the disturbance is much
shorter than the length-scale over which s0 varies with z, namely q2Pe. It is also to be
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Figure A1: (Colour online) Schematic of the pressure-driven core-annular flows of two
miscible fluids in a vertical pipe of radius R. The acceleration due to gravity, g acts
in the positive z−direction. The fluids are separated by a mixed region of thickness q0
occupying the region R0 − q0/2 6 r 6 R0 + q0/2.

noted here that, after Tan & Homsy (1986), several authors have used the quasi-steady
approximation to represent basic concentration profile in miscible flows in the form of
a hyperbolic tangent (Ern et al. 2003), an error function (Selvam et al. 2007; Talon &
Meiburg 2011), and a fifth-order polynomial (Ranganathan & Govindarajan 2001; Sahu
2016).

In the case of the miscible core-annular flow, the basic state is given by

1

r

∂

∂r

[
rµ0

∂Uz
∂r

]
=
dP

dz
Re, (A 3)

which is solved using the no-slip boundary condition at the pipe wall and the symmetric
boundary condition at the centerline of the pipe. Unlike the immiscible configuration,
the interfacial boundary conditions are not needed in this case as the dynamics is
characterised by the diffusion coefficient (D) of the scalar and not the interfacial tension
(no sharp interface). The dimensionless pressure gradient, dP/dz is obtained using
constant volumetric flow condition.

In the derivation of the linear stability equations for the miscible configuration, the
scalar variable can be expressed as s0(r) + s(r)ei(αz+βθ−αct), such that the amplitude
of the perturbation viscosity, µ = (∂µ0/∂s0) s. The normal mode analysis used in this
case is also similar to that given in §2.1.2. The linear stability equations for the miscible
configuration are given by

u′r +
ur
r

+
βuθ
r

+ αuz = 0, (A 4)

ρ(−αcur + αurUz) = p′ − i

Re

[
µ0

{
ur
′′ +

ur
′

r
−
(
β2 + 1

r2
+ α2

)
ur −

2β

r2
uθ

}
+

2µ′0ur
′ + αU ′zµ

]
, (A 5)

ρ(−αcuθ + αuθUz) = −βp
r
− iµ0

Re

{
uθ
′′ +

uθ
′

r
−
(
β2 + 1

r2
+ α2

)
uθ −

2β

r2
ur

}
−

iµ0
′

Re

[
uθ
′ − uθ

r
− βur

r

]
, (A 6)
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ρ(−αcuz + Uz
′ur + αUzuz) = −αp− iµ0

Re

{
uz
′′ +

uz
′

r
−
(
β2

r2
+ α2

)
uz

}
−

iµ′0
Re

[v′z − αvr]−
iU ′z
Re

µ′ − iµ

Re

[
Uz
′′ +

U ′z
r

]
, (A 7)

−αcs+ s0
′ur + αUzs = − i

ReSc

{
s′′ +

s′

r
−
(
β2

r2
+ α2

)
s

}
, (A 8)

Here ρ = s0ρr + (1 − s0) and Sc(≡ µ1/ρD) is the Schmidt number. It is noted here
that Eqs. (A 4)-(A 7) are similar to the stability equations for each layer in the case of
immiscible core-annular flow configuration (§2.1.2). The boundary conditions for the
perturbation velocity field (vr, vθ, vz) at the centerline and wall of the pipe are the same
as Eqs. (2.9) and (2.12). The boundary conditions for the scalar variable, s are s = 0
and s′ = 0 at the centerline and wall of the pipe, respectively. For more details and
validation of the stability analysis of the miscible configuration presented in this section,
the reader is referred to our previous studies Sahu & Govindarajan (2011); Sahu (2016,
2019).
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Figure A2: (Colour online) Effect of Sc on the most unstable mode in the miscible core-
annular flow configuration for Re = 1500, α = 2.5, β = 0, q = 0.02, µr = 0.5, Ri = 0.7
and ρr = 1. The complete eigenvalue spectrum corresponds to Sc = 1. The unstable
modes ‘1’ and ‘2’ in the corresponding immiscible configuration with Γ = 0 are shown
by (‘ ’) and (‘ ’), respectively. It can be seen that increasing Sc has a non-monotonic
effect on the growth rate of the most unstable mode in the miscible configuration.
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Appendix B. Grid convergence test
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Figure A3: The eigenvalue spectrums obtained using different numbers of grids (N) in
the (a) immiscible configuration (Fig. 1) with Γ = 0 and (b) miscible configuration (Fig.
A1) with Sc = 1 and q = 0.02. The rest of the parameters are Re = 1500, α = 2.5, β = 0,
Ri = 0.7, µr = 0.5 and ρr = 1.
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